initial commit

This commit is contained in:
Chris PeBenito 2005-06-07 18:23:00 +00:00
parent 0fbe15dc8a
commit 89ec2321b7
3 changed files with 1018 additions and 0 deletions

484
refpolicy/support/fc_sort.c Normal file
View File

@ -0,0 +1,484 @@
#include <stdio.h>
/* file_context_node
* A node used in a linked list of file contexts.
* Each node contains the regular expression, the type and
* the context, as well as information about the regular
* expression. The regular expression data (meta, stem_len
* and str_len) can be filled in by using the fc_fill_data
* function after the regular expression has been loaded.
* next points to the next node in the linked list.
*/
struct file_context_node {
char* regex;
char* type;
char* context;
int meta;
int stem_len;
int str_len;
struct file_context_node* next;
};
/* file_context_bucket
* A node used in a linked list of buckets that contain
* file_context_node's.
* Each node contains a pointer to a file_context_node which
* is the header of its linked list. This linked list is the
* content of this bucket.
* next points to the next bucket in the linked list.
*/
struct file_context_bucket {
struct file_context_node* data;
struct file_context_bucket* next;
};
/* fc_merge
* Merges two sorted file context linked lists into one
* sorted one.
* Pass two lists a and b, and after the completion of fc_merge,
* the final list is contained in a, and b is empty.
*/
struct file_context_node* fc_merge( struct file_context_node* a, struct file_context_node* b )
{
struct file_context_node* a_current;
struct file_context_node* b_current;
struct file_context_node* temp;
struct file_context_node* jumpto;
/* If a is a empty list, and b is not,
* set a as b and proceed to the end. */
if( !a && b )
a = b;
/* If b is an empty list, leave a as it is. */
else if( !b ) { }
else {
/* Make it so the list a has the lesser
* first element always. */
if( fc_compare( a, b ) == 1 ) {
temp = a;
a = b;
b = temp;
}
a_current = a;
b_current = b;
/* Merge by inserting b's nodes inbetween a's nodes. */
while( a_current->next && b_current ) {
jumpto = a_current->next;
/* Insert b's nodes inbetween the current a node
* and the next a node.*/
while( b_current && a_current->next &&
fc_compare( a_current->next, b_current) != -1 ) { temp = a_current->next;
a_current->next = b_current;
b_current = b_current->next;
a_current->next->next = temp;
a_current = a_current->next;
}
/* Skip all the inserted node from b to the
* next node in the original a. */
a_current = jumpto;
}
/* if there is anything left in b to be inserted,
put it on the end */
if( b_current ) {
a_current->next = b_current;
}
}
b = NULL;
return a;
}
/* fc_merge_sort
* Sorts file contexts from least specific to more specific.
* The bucket linked list is passed and after the completion
* of the fc_merge_sort function, there is only one bucket
* (pointed to by master) that contains a linked list
* of all the file contexts, in sorted order.
* Explanation of the algorithm:
* The algorithm implemented in fc_merge_sort is an iterative
* implementation of merge sort.
* At first, each bucket has a linked list of file contexts
* that are 1 element each.
* Each pass, each odd numbered bucket is merged into the bucket
* before it. This halves the number of buckets each pass.
* It will continue passing over the buckets (as described above)
* until there is only one bucket left, containing the list of
* file contexts, sorted.
*/
void fc_merge_sort( struct file_context_bucket* master )
{
int i;
struct file_context_bucket* current;
struct file_context_bucket* temp;
struct file_context_node* ncurrent;
struct file_context_node* ntemp;
/* Loop until master is the only bucket left
* so that this will stop when master contains
* the sorted list. */
while( master->next ) {
current = master;
/* This loop merges buckets two-by-two. */
while( current ) {
if( current->next ) {
/* Merge the next one into the current one. */
current->data = fc_merge( current->data, current->next->data );
/* remove the next bucket that is now empty. */
temp = current->next;
current->next = current->next->next;
free( temp );
}
current = current->next;
}
}
}
/* fc_compare
* Compares two file contexts' regular expressions and returns:
* -1 if a is less specific than b
* 0 if a and be are equally specific
* 1 if a is more specific than b
* The comparison is based on the following statements,
* in order from most important to least important, given a and b:
* If a is a regular expression and b is not,
* -> a is less specific than b.
* If a's stem length is shorter than b's stem length,
* -> a is less specific than b.
* If a's string length is shorter than b's string length,
* -> a is less specific than b.
* If a does not have a specified type and b does not,
* -> a is less specific than b.
*/
int fc_compare( struct file_context_node* a, struct file_context_node* b )
{
/* Check to see if either a or b have meta characters
* and the other doesn't. */
if( a->meta && !b->meta )
return -1;
if( b->meta && !a->meta )
return 1;
/* Check to see if either a or b have a shorter stem
* length than the other. */
if( a->stem_len < b->stem_len )
return -1;
if( b->stem_len < a->stem_len )
return 1;
/* Check to see if either a or b have a shorter string
* length than the other. */
if( a->str_len < b->str_len )
return -1;
if( b->str_len < b->str_len )
return 1;
/* Check to see if either a or b has a specified type
* and the other doesn't. */
if( !a->type && b->type )
return -1;
if( !b->type && a->type )
return 1;
/* If none of the above conditions were satisfied,
* then a and b are equally specific. */
return 0;
}
/* fc_fill_data
* This processes a regular expression in a file context
* and sets the data held in file_context_node, namely
* meta, str_len and stem_len.
* The following changes are made to fc_node after the
* the completion of the function:
* fc_node->meta = 1 if regex has a meta character,
* 0 if not.
* fc_node->str_len = The string length of the regular
* expression.
* fc_node->stem_len = The number of characters up until
* the first meta character.
*/
void fc_fill_data( struct file_context_node* fc_node )
{
int c = 0;
fc_node->meta = 0;
fc_node->stem_len = 0;
fc_node->str_len = 0;
/* Process until the string termination character
* has been reached.
* Note: this while loop has been adapted from
* spec_hasMetaChars in matchpathcon.c from
* libselinux-1.22. */
while( fc_node->regex[c] != 0 ) {
switch( fc_node->regex[c] ) {
case '.':
case '^':
case '$':
case '?':
case '*':
case '+':
case '|':
case '[':
case '(':
case '{':
/* If a meta character is found,
* set meta to one */
fc_node->meta = 1;
break;
case '\\':
/* If a escape character is found,
* skip the next character. */
c++;
default:
/* If no meta character has been found yet,
* add one to the stem length. */
if( !fc_node->meta ) fc_node->stem_len++;
break;
}
fc_node->str_len++;
c++;
}
}
/* main
* This program takes in two arguments, the input filename and the
* output filename. The input file should be syntactically correct.
* Overall what is done in the main is read in the file and store each
* line of code, sort it, then output it to the output file.
*/
int main( int argc, char *argv[])
{
int i, j, lines;
int start, finish;
char* str;
struct file_context_node* temp;
struct file_context_node* head;
struct file_context_node* current;
struct file_context_node* array;
struct file_context_bucket* master;
struct file_context_bucket* bcurrent;
FILE *path;
char line_buf[ 127 ];
/* Check for the correct number of command line arguments. */
if( argc != 3 ) {
printf( "Error: invalid number of command line arguments.\n" );
return -1;
}
i = j = lines = 0;
/* Allocate the head of the file_context linked list. */
if( !( current = head = (struct file_context_node*)malloc( sizeof( struct file_context_node ) ) ) ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
/* Make sure to have a terminating character, always. */
line_buf[127] = 0;
/* Open the input file. */
if( !( path = fopen( argv[1], "r" ) ) ) {
printf( "Error: failure opening input file for read.\n" );
return -1;
}
/* Parse the file into a file_context linked list. */
while( fgets( line_buf, 126, path ) != NULL ) {
/* Get rid of whitespace from the front of the line. */
i = 0;
while( line_buf[i] && line_buf[i] <= 32 ) i++;
/* Check if the line isn't empty and isn't a comment */
if( line_buf[i] && line_buf[i] != '#' ) {
/* Allocate a new node. */
temp = (struct file_context_node*)malloc( sizeof( struct file_context_node ) );
if( !temp ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
temp->next = NULL;
/* Parse out the regular expression from the line. */
start = i;
while( line_buf[i] > 32 )i++;
finish = i;
/* Allocate a character array to hold the regular
* expression. */
temp->regex = (char*)malloc( sizeof( char ) * ( finish - start + 1) );
if( !( temp->regex ) ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
temp->regex[0] = 0;
/* Fill the regular expression array. */
temp->regex[ ( finish - start ) ] = 0;
for( j = 0; j < finish - start; j++ ) {
temp->regex[j] = line_buf[j + start];
}
/* Get rid of whitespace after the regular
* expression. */
while( line_buf[i] <= 32 ) i++;
/* Parse out the type from the line (if it
* is there). */
if( line_buf[i] == '-' ) {
/* Allocate a character array to
* hold the type. */
temp->type = (char*)malloc( sizeof( char ) * 3 );
if( !( temp->type ) ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
/* Fill the type into the array. */
temp->type[0] = line_buf[i];
temp->type[1] = line_buf[i + 1];
i += 2;
temp->type[2] = 0;
/* Get rid of whitespace after the type. */
while( line_buf[i] <= 32 ) i++;
}
/* Parse out the context from the line. */
start = i;
while( line_buf[i] > 32 ) i++;
finish = i;
/* Allocate a character array to hold the context. */
temp->context = (char*)malloc( sizeof( char ) * ( finish - start + 1 ) );
if( !( temp->context ) ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
temp->context[0] = 0;
/* Fill the context array. */
temp->context[ ( finish - start ) ] = 0;
for( j = 0; j < finish - start; j++ ) {
temp->context[j] = line_buf[j + start];
}
/* Set all the data about the regular
* expression. */
fc_fill_data( temp );
/* Link this line of code at the end of
* the linked list. */
current->next = temp;
current = current->next;
lines++;
}
}
fclose( path );
/* Create the bucket linked list from the earlier linked list. */
current = head->next;
bcurrent = master = (struct file_context_bucket*)malloc( sizeof( struct file_context_bucket ) );
/* Go until all the nodes have been put in individual buckets. */
while( current ) {
/* Copy over the file context line into the bucket. */
bcurrent->data = current;
current = current->next;
/* Detatch the node in the bucket from the old list. */
bcurrent->data->next = NULL;
/* If there should be another bucket, put one at the end. */
if( current ) {
bcurrent->next = (struct file_context_bucket*) malloc( sizeof( struct file_context_bucket ) );
if( !( bcurrent->next ) ) {
printf( "Error: failure allocating memory.\n" );
return -1;
}
/* Make sure the new bucket thinks it's the end of the
* list. */
bcurrent->next->next = NULL;
bcurrent = bcurrent->next;
}
}
/* Sort the bucket list. */
fc_merge_sort( master );
/* Open the output file. */
if( !(path = fopen( argv[2], "w" ) ) ) {
printf( "Error: failure opening output file for write.\n" );
return -1;
}
/* Output the sorted file_context linked list to the output file. */
current = master->data;
while( current ) {
/* Output the regular expression. */
i = 0;
while( current->regex[i] != 0 ) {
fprintf( path, "%c", current->regex[i] );
i++;
}
fprintf( path, "\t" );
/* Output the type, if there is one. */
if( current->type ) {
i = 0;
while( current->type[i] != 0 ) {
fprintf( path, "%c", current->type[i] );
i++;
}
fprintf( path, "\t" );
}
/* Output the context. */
i = 0;
while( current->context[i] != 0 ) {
fprintf( path, "%c", current->context[i] );
i++;
}
fprintf( path, "\n" );
/* Remove the node. */
temp = current;
current = current->next;
free( temp->regex );
if( temp->type)
free( temp->type );
free( temp->context );
free( temp );
}
free( master );
fclose( path );
return 0;
}

391
refpolicy/support/pyplate.py Executable file
View File

@ -0,0 +1,391 @@
"""PyPlate : a simple Python-based templating program
PyPlate parses a file and replaces directives (in double square brackets [[ ... ]])
by various means using a given dictionary of variables. Arbitrary Python code
can be run inside many of the directives, making this system highly flexible.
Usage:
# Load and parse template file
template = pyplate.Template("output") (filename or string)
# Execute it with a dictionary of variables
template.execute_file(output_stream, locals())
PyPlate defines the following directives:
[[...]] evaluate the arbitrary Python expression and insert the
result into the output
[[# ... #]] comment.
[[exec ...]] execute arbitrary Python code in the sandbox namespace
[[if ...]] conditional expressions with usual Python semantics
[[elif ...]]
[[else]]
[[end]]
[[for ... in ...]] for-loop with usual Python semantics
[[end]]
[[def ...(...)]] define a "function" out of other templating elements
[[end]]
[[call ...]] call a templating function (not a regular Python function)
"""
#
# Copyright (C) 2002 Michael Droettboom
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
from __future__ import nested_scopes
import sys, string, re, cStringIO
re_directive = re.compile("\[\[(.*)\]\]")
re_for_loop = re.compile("for (.*) in (.*)")
re_if = re.compile("if (.*)")
re_elif = re.compile("elif (.*)")
re_def = re.compile("def (.*?)\((.*)\)")
re_call = re.compile("call (.*?)\((.*)\)")
re_exec = re.compile("exec (.*)")
re_comment = re.compile("#(.*)#")
############################################################
# Template parser
class ParserException(Exception):
def __init__(self, lineno, s):
Exception.__init__(self, "line %d: %s" % (lineno, s))
class Template:
def __init__(self, filename=None):
if filename != None:
try:
self.parse_file(filename)
except:
self.parse_string(filename)
def parse_file(self, filename):
file = open(filename, 'r')
self.parse(file)
file.close()
def parse_string(self, template):
file = cStringIO.StringIO(template)
self.parse(file)
file.close()
def parse(self, file):
self.file = file
self.line = self.file.read()
self.lineno = 0
self.functions = {}
self.tree = TopLevelTemplateNode(self)
def parser_get(self):
if self.line == '':
return None
return self.line
def parser_eat(self, chars):
self.lineno = self.lineno + self.line[:chars].count("\n")
self.line = self.line[chars:]
def parser_exception(self, s):
raise ParserException(self.lineno, s)
def execute_file(self, filename, data):
file = open(filename, 'w')
self.execute(file, data)
file.close()
def execute_string(self, data):
s = cStringIO.StringIO()
self.execute(s, data)
return s.getvalue()
def execute_stdout(self, data):
self.execute(sys.stdout, data)
def execute(self, stream=sys.stdout, data={}):
self.tree.execute(stream, data)
def __repr__(self):
return repr(self.tree)
############################################################
# NODES
class TemplateNode:
def __init__(self, parent, s):
self.parent = parent
self.s = s
self.node_list = []
while 1:
new_node = TemplateNodeFactory(parent)
if self.add_node(new_node):
break
def add_node(self, node):
if node == 'end':
return 1
elif node != None:
self.node_list.append(node)
else:
raise self.parent.parser_exception(
"[[%s]] does not have a matching [[end]]" % self.s)
def execute(self, stream, data):
for node in self.node_list:
node.execute(stream, data)
def __repr__(self):
r = "<" + self.__class__.__name__ + " "
for i in self.node_list:
r = r + repr(i)
r = r + ">"
return r
class TopLevelTemplateNode(TemplateNode):
def __init__(self, parent):
TemplateNode.__init__(self, parent, '')
def add_node(self, node):
if node != None:
self.node_list.append(node)
else:
return 1
class ForTemplateNode(TemplateNode):
def __init__(self, parent, s):
TemplateNode.__init__(self, parent, s)
match = re_for_loop.match(s)
if match == None:
raise self.parent.parser_exception(
"[[%s]] is not a valid for-loop expression" % self.s)
else:
self.vars_temp = match.group(1).split(",")
self.vars = []
for v in self.vars_temp:
self.vars.append(v.strip())
print self.vars
self.expression = match.group(2)
def execute(self, stream, data):
remember_vars = {}
for var in self.vars:
if data.has_key(var):
remember_vars[var] = data[var]
for list in eval(self.expression, globals(), data):
if util.is_sequence(list):
for index, value in util.enumerate(list):
data[self.vars[index]] = value
else:
data[self.vars[0]] = list
TemplateNode.execute(self, stream, data)
for key, value in remember_vars.items():
data[key] = value
class IfTemplateNode(TemplateNode):
def __init__(self, parent, s):
self.else_node = None
TemplateNode.__init__(self, parent, s)
match = re_if.match(s)
if match == None:
raise self.parent.parser_exception(
"[[%s]] is not a valid if expression" % self.s)
else:
self.expression = match.group(1)
def add_node(self, node):
if node == 'end':
return 1
elif isinstance(node, ElseTemplateNode):
self.else_node = node
return 1
elif isinstance(node, ElifTemplateNode):
self.else_node = node
return 1
elif node != None:
self.node_list.append(node)
else:
raise self.parent.parser_exception(
"[[%s]] does not have a matching [[end]]" % self.s)
def execute(self, stream, data):
if eval(self.expression, globals(), data):
TemplateNode.execute(self, stream, data)
elif self.else_node != None:
self.else_node.execute(stream, data)
class ElifTemplateNode(IfTemplateNode):
def __init__(self, parent, s):
self.else_node = None
TemplateNode.__init__(self, parent, s)
match = re_elif.match(s)
if match == None:
self.parent.parser_exception(
"[[%s]] is not a valid elif expression" % self.s)
else:
self.expression = match.group(1)
class ElseTemplateNode(TemplateNode):
pass
class FunctionTemplateNode(TemplateNode):
def __init__(self, parent, s):
TemplateNode.__init__(self, parent, s)
match = re_def.match(s)
if match == None:
self.parent.parser_exception(
"[[%s]] is not a valid function definition" % self.s)
self.function_name = match.group(1)
self.vars_temp = match.group(2).split(",")
self.vars = []
for v in self.vars_temp:
self.vars.append(v.strip())
print self.vars
self.parent.functions[self.function_name] = self
def execute(self, stream, data):
pass
def call(self, args, stream, data):
remember_vars = {}
for index, var in util.enumerate(self.vars):
if data.has_key(var):
remember_vars[var] = data[var]
data[var] = args[index]
TemplateNode.execute(self, stream, data)
for key, value in remember_vars.items():
data[key] = value
class LeafTemplateNode(TemplateNode):
def __init__(self, parent, s):
self.parent = parent
self.s = s
def execute(self, stream, data):
stream.write(self.s)
def __repr__(self):
return "<" + self.__class__.__name__ + ">"
class CommentTemplateNode(LeafTemplateNode):
def execute(self, stream, data):
pass
class ExpressionTemplateNode(LeafTemplateNode):
def execute(self, stream, data):
stream.write(str(eval(self.s, globals(), data)))
class ExecTemplateNode(LeafTemplateNode):
def __init__(self, parent, s):
LeafTemplateNode.__init__(self, parent, s)
match = re_exec.match(s)
if match == None:
self.parent.parser_exception(
"[[%s]] is not a valid statement" % self.s)
self.s = match.group(1)
def execute(self, stream, data):
exec(self.s, globals(), data)
pass
class CallTemplateNode(LeafTemplateNode):
def __init__(self, parent, s):
LeafTemplateNode.__init__(self, parent, s)
match = re_call.match(s)
if match == None:
self.parent.parser_exception(
"[[%s]] is not a valid function call" % self.s)
self.function_name = match.group(1)
self.vars = "(" + match.group(2).strip() + ",)"
def execute(self, stream, data):
self.parent.functions[self.function_name].call(
eval(self.vars, globals(), data), stream, data)
############################################################
# Node factory
template_factory_type_map = {
'if' : IfTemplateNode,
'for' : ForTemplateNode,
'elif' : ElifTemplateNode,
'else' : ElseTemplateNode,
'def' : FunctionTemplateNode,
'call' : CallTemplateNode,
'exec' : ExecTemplateNode }
template_factory_types = template_factory_type_map.keys()
def TemplateNodeFactory(parent):
src = parent.parser_get()
if src == None:
return None
match = re_directive.search(src)
if match == None:
parent.parser_eat(len(src))
return LeafTemplateNode(parent, src)
elif src == '' or match.start() != 0:
parent.parser_eat(match.start())
return LeafTemplateNode(parent, src[:match.start()])
else:
directive = match.group()[2:-2].strip()
parent.parser_eat(match.end())
if directive == 'end':
return 'end'
elif re_comment.match(directive):
return CommentTemplateNode(parent, directive)
else:
for i in template_factory_types:
if directive[0:len(i)] == i:
return template_factory_type_map[i](parent, directive)
return ExpressionTemplateNode(parent, directive)
############################################################
# TESTING CODE
if __name__ == '__main__':
combinations = (('OneBit', 'Float', 'GreyScale'),
('GreyScale', 'RGB'))
template = Template("""
[[# This is a comment #]]
[[# This example does recursive function calls need to generate feature combinations #]]
[[def switch(layer, args)]]
switch(m[[layer]].id) {
[[for option in combinations[layer]]]
[[exec current = option + '(m' + str(layer) + ')']]
case [[option]]:
[[if layer == layers - 1]]
function_call([[string.join(args + [current], ',')]]);
[[else]]
[[call switch(layer + 1, args + [current])]]
[[end]]
break;
[[end]]
}
[[end]]
PyObject *py_overload_resolution_[[function_name]](PyObject *args) {
[[call switch(0, [])]]
}
""")
data = {'combinations' : combinations,
'function_name' : 'threshold',
'layers' : 2}
template.execute(sys.stdout, data)

143
refpolicy/support/sedoctool.py Executable file
View File

@ -0,0 +1,143 @@
#!/usr/bin/python
# Author: Joshua Brindle <jbrindle@tresys.com>
#
# Copyright (C) 2003 - 2005 Tresys Technology, LLC
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2.
"""
this does dstuff
"""
import sys
import getopt
import pyplate
from xml.dom.ext import *
from xml.dom.ext.reader import Sax2
def read_policy_xml(filename):
try:
reader = Sax2.Reader()
doc = reader.fromStream(filename)
except:
error("Error while parsing xml")
return doc
def gen_tunable_conf(doc, file):
for node in doc.getElementsByTagName("tunable"):
s = string.split(node.firstChild.data, "\n")
for line in s:
file.write("# %s\n" % line)
tun_name = tun_val = None
for (name, value) in node.attributes.items():
if name[1] == "name":
tun_name = value.value
elif name[1] == "dftval":
tun_val = value.value
if tun_name and tun_val:
file.write("%s = %s\n\n" % (tun_name, tun_val))
tun_name = tun_val = None
def gen_module_conf(doc, file):
for node in doc.getElementsByTagName("module"):
for desc in node.getElementsByTagName("summary"):
s = string.split(desc.firstChild.data, "\n")
for line in s:
file.write("# %s\n" % line)
file.write("#\n")
for (name, value) in node.attributes.items():
if name[1] == "name":
file.write("# %s\n\n" % value.value)
def gen_docs(doc, file):
try:
bodyfile = open("templates/header.html", "r")
intfile = open("templates/interface.html", "r")
except:
error("Could not open templates")
interface_buf = None
interface_parameters = {}
for node in doc.getElementsByTagName("module"):
for interface in node.getElementsByTagName("interface"):
interface_tpl = pyplate.Template(intfile.read())
for i,v in interface.attributes.items():
interface_name = v
for desc in interface.getElementsByTagName("description"):
interface_desc = desc.firstChild.data
for desc in interface.getElementsByTagName("securitydesc"):
if desc:
interface_secdesc = desc.firstChild.data
else:
interface_secdesc = None
for args in interface.getElementsByTagName("parameter"):
paramdesc = args.firstChild.data
for i,v in interface.attributes.items():
arg = { "name" : v,
"desc" : paramdesc }
def error(error):
sys.stderr.write("%s exiting for: " % sys.argv[0])
sys.stderr.write("%s\n" % error)
sys.stderr.flush()
sys.exit(1)
def usage():
sys.stdout.write("%s [-tmd] -x <xmlfile>\n\n" % sys.argv[0])
sys.stdout.write("Options:\n")
sys.stdout.write("-t --tunables -- write tunable config to <file>\n")
sys.stdout.write("-m --modules <file> -- write module config to <file>\n")
sys.stdout.write("-d --docs <dir> -- write interface documentation to <dir>\n")
sys.stdout.write("-x --xml <file> -- filename to read xml data from\n")
try:
opts, args = getopt.getopt(sys.argv[1:], "t:m:d:x:", ["tunables","modules","docs","xml"])
except getopt.GetoptError:
usage()
sys.exit(1)
tunables = modules = docs = xmlfile = None
for opt, val in opts:
if opt in ("-t", "--tunables"):
tunables = val
if opt in ("-m", "--modules"):
modules = val
if opt in ("-d", "--docs"):
docs = val
if opt in ("-x", "--xml"):
xmlfile = val
if xmlfile == None:
usage()
sys.exit(1)
doc = read_policy_xml(xmlfile)
if tunables:
try:
conf = open(tunables, 'w')
except:
error("Could not open tunables file for writing")
gen_tunable_conf(doc, conf)
conf.close()
if modules:
try:
conf = open(modules, 'w')
except:
error("Could not open modules file for writing")
gen_module_conf(doc, conf)
conf.close()
if docs:
gen_docs(doc, sys.stdout)