6327 lines
209 KiB
Diff
6327 lines
209 KiB
Diff
From c2f1645ae87d5b7fc5e5973c3a93a4ae1684a76b Mon Sep 17 00:00:00 2001
|
|
From: Kyle McMartin <kyle@dreadnought.i.jkkm.org>
|
|
Date: Tue, 22 Jun 2010 11:31:13 +0100
|
|
Subject: Merge remote branch 'utrace/utrace-ptrace' into rawhide
|
|
|
|
% git log --oneline --no-merges 7e27d6e..a91f6b7
|
|
f979955 utrace-ptrace: fix compiling ptrace_regset under CONFIG_UTRACE
|
|
b5f196b utrace-ptrace: copy PTRACE_GETREGSET code to utrace-ptrace
|
|
d83135e utrace: fix utrace_maybe_reap() vs find_matching_engine() race
|
|
9a2c607 utrace: move CONFIG_UTRACE after AUDITSYSCALL in init/Kconfig
|
|
62f4621 utrace: s/rmb/mb/ in tracehook_notify_resume()
|
|
65f5e9d utrace: fix utrace_maybe_reap logic
|
|
ed1f9c2 utrace: fix syntax nit for !CONFIG_UTRACE
|
|
71e3f39 ptrace: add utrace comment
|
|
e7afc73 utrace: use WARN with text
|
|
a8ced33 utrace: cosmetic restructure
|
|
4330b80 utrace: remove some inline keywords
|
|
d4be40a utrace: remove report_clone special priority for utrace_attach_task on child
|
|
8c56566 ptrace: updates for utrace API changes
|
|
1900135 utrace: streamline callback API
|
|
97662d3 utrace: more cosmetic trivia
|
|
fd414cd utrace: more cosmetic cleanup
|
|
f30f068 utrace: cosmetic trivia
|
|
cfebda7 utrace: fix the comments about rmb() in task_utrace_struct()
|
|
875858a utrace: improve the comment in tracehook_notify_resume()
|
|
76b49a5 utrace: fix the ->cloning check in utrace_attach_delay()
|
|
e0755bb utrace: kill mb() in tracehook_report_death()
|
|
9fdc988 fix __must_check warnings
|
|
3e02499 kill suppress_sigtrap()
|
|
f872e69 utrace: don't set ->ops = utrace_detached_ops lockless
|
|
938482e utrace: fix doc typo
|
|
7fae049 utrace: avoid BUG_ON when engine leaves bogus si_signo
|
|
71b7a85 utrace: trivial, move CONFIG_UTRACE into "General setup"
|
|
9c8dbe0 utrace: reset report action for UTRACE_SYSCALL_RESUMED iteration
|
|
4c7514e join PTRACE_EVENT_SYSCALL_XXX states
|
|
a8f782e export __ptrace_detach() and do_notify_parent_cldstop()
|
|
c3473e1 ptrace_signal: check PT_PTRACED before reporting a signal
|
|
b396f5e tracehooks: check PT_PTRACED before reporting the single-step
|
|
45667dd tracehooks: kill some PT_PTRACED checks
|
|
e8a2f23 ptrace: cleanup ptrace_init_task()->ptrace_link() path
|
|
611dab8 kill CONFIG_UTRACE_PTRACE
|
|
8d3833e rm kernel/ptrace-common.h
|
|
494deb7 export __ptrace_detach(), add "ifndef CONFIG_UTRACE" into ptrace.c
|
|
05cb325 (upstream) reorder the code in kernel/ptrace.c
|
|
eb10f13 restore the old kernel/ptrace.c
|
|
ddcc525 utrace_resume: Avoid finish_resume_report() for UTRACE_RESUME
|
|
47852f9 mv kernel/ptrace.c kernel/ptrace-utrace.c
|
|
de5a46e utrace: fix UTRACE_SYSCALL_RESUMED nits
|
|
3bd4be9 stepping, accommodate to utrace-cleanup changes
|
|
679be9e Revert "utrace: synthesize SIGTRAP for single-stepping at syscall-exit"
|
|
23ab966 utrace: barrier nits
|
|
d3800b8 utrace: tracehook_init_task
|
|
64daf14 utrace: task_utrace_struct() barrier
|
|
f19442c utrace: synthesize SIGTRAP for single-stepping at syscall-exit
|
|
2583b32 utrace: nit for utrace-ptrace
|
|
a88b467 ptrace: x86: change syscall_trace_leave() to rely on tracehook when stepping
|
|
e01acf4 ptrace: x86: implement user_single_step_siginfo()
|
|
462a57b ptrace: change tracehook_report_syscall_exit() to handle stepping
|
|
172590d ptrace: powerpc: implement user_single_step_siginfo()
|
|
d63b43d ptrace: introduce user_single_step_siginfo() helper
|
|
c575558 utrace: barriers for initializing struct utrace
|
|
89df3c7 utrace: utrace_attach_task() forgets to return when ->utrace == NULL
|
|
4d17e95 utrace: finish_report() must never set ->resume = UTRACE_STOP
|
|
212f67e utrace: utrace_get_signal() must check ->pending_attach
|
|
eff6ca8 change ptrace_report_signal() to use user_single_step_siginfo()
|
|
cba1272 don't send the unnecessary SIGTRAP after SYSCALL_EXIT
|
|
8aa71a6 revert "turn PTRACE_EVENT_SIGTRAP into PTRACE_EVENT_SIGNAL"
|
|
90c8237 utrace-ptrace: minimally handle UTRACE_SYSCALL_RESUMED
|
|
a7e9198 utrace: clean up resume-action handling
|
|
962eb2f utrace: update after merge
|
|
e2ced71 re-introduce utrace_finish_stop() to fix the race with SIGKILL
|
|
603e19c turn PTRACE_EVENT_SIGTRAP into PTRACE_EVENT_SIGNAL
|
|
ff87f65 introduce suppress_sigtrap() to prevent unwanted send_sigtrap()
|
|
6505e3c move ptrace_resume()->send_sigtrap() logic into ptrace_report_signal()
|
|
5261baa prepare ptrace_report_signal() to synthesize SIGTRAP
|
|
ef9534b ptrace_request: turn ptrace_resume() into default case
|
|
f50c776 s/context/ctx/
|
|
228b2e3 ptrace_notify_stop: kill the temporary WARN_ON()
|
|
93e866a ptrace_request(PTRACE_KILL) should not(?) return -ESRCH
|
|
26fefca utrace: sticky resume action
|
|
28b2774b utrace: remove ->stopped field
|
|
9e0f357 utrace_set_events: nit clean up
|
|
6d0bad3 nits
|
|
48bab07 (utrace) utrace_get_signal: don't dequeue_signal() if ->group_stop_count
|
|
d4ef551 (upstream) signals: check ->group_stop_count after tracehook_get_signal()
|
|
6292daa ptrace_detach_task: don't use valid_signal()
|
|
c5a6a82 cosmetic, renames
|
|
e422a3f cosmetic, relocate some code in ptrace.c
|
|
b96e4db (upstream) introduce kernel/ptrace.h
|
|
7665564 (upstream) tracehook_signal_handler: check PT_PTRACED
|
|
7d708ca tracehooks: revert utrace-ptrace changes
|
|
4104e29 (upstream) ptrace_init_task: cleanup the usage of ptrace_link()
|
|
d04ccb7 revert all utrace-ptrace changes in ptrace.h
|
|
80786ce revert utrace-ptrace changes in kernel/signal.c
|
|
0b02f9e introduce PT_UTRACED to replace PT_PTRACED inside ptrace.c
|
|
030ce35 tracehooks: remove some PT_PTRACED checks
|
|
4b7b15a revert the clone() related changes in tracehook.h
|
|
769030e hack ptrace_check_attach() to make it almost correct
|
|
7aa5c3a cosmetic, fold do_ptrace_resume() into ptrace_resume()
|
|
d27ebc1 cosmetic, introduce ptrace_resume_action()
|
|
35fbca4 turn context->sysemu into PTRACE_O_SYSEMU
|
|
38a8c1f PTRACE_SYSEMU_SINGLESTEP support
|
|
4367836 PTRACE_SYSEMU support
|
|
16819db ptrace_report_clone: minor cleanups + comments
|
|
ac1afd8 ptrace_resume: rewrite request processing
|
|
6b0d4f6 do_ptrace_resume: always use ptrace_wake_up()
|
|
fa92ce3 do_ptrace_resume: consolidate multiple switch stmts
|
|
135d780 uglify the code again to report VFORK_DONE after VFORK
|
|
4e3f362 fix PTRACE_SYSCALL after PTRACE_EVENT_VFORK_DONE stop
|
|
3f95189 ptrace_report_clone: uglify even more to handle TRACEVFORKDONE without TRACEVFORK
|
|
66ca8b6 ptrace_report_clone: uglify CLONE_PTRACE/CLONE_UNTRACED behaviour to match upstream
|
|
fc82b2c pretend PTRACE_O_TRACEVFORKDONE doesn't exist
|
|
28aa15a utrace_set_events: never return -EINPROGRESS unless clearing some event bits
|
|
a7f4350 utrace_stop: do ptrace_notify_stop() unconditionally
|
|
cb78492 ptrace_report_exit: fix WARN_ON() condition
|
|
bb941c3 do_ptrace_notify_stop: document the usage of tracee->exit_code
|
|
383ba85 ptrace_wake_up: don't clear tracee->exit_code + update comments
|
|
3d5c221 ptrace_wake_up: add "bool force_wakeup" argument for implicit detach
|
|
be6862e ptrace_wake_up: clear context->stop_code
|
|
bfb40c8 detach: use ptrace_wake_up() instead of utrace_control()
|
|
7de148a shift context re-initialization from detach to reuse
|
|
464def3 cleanup/optimize reuse/attch in ptrace_attach_task()
|
|
50f56b9 ptrace_attach_task: rely on utrace_barrier(), don't check ->ops
|
|
03376fd use set_stop_code() in ptrace_report_signal(UTRACE_SIGNAL_HANDLER)
|
|
85f8b3a detach should reset the context of self-detaching engine
|
|
a27233a attach: try to re-use the self-detaching engine
|
|
8667615 ptrace_notify_stop: fix engine leak
|
|
3d5d053 ptrace_detach_task: don't use engine ptr before IS_ERR(engine)
|
|
01875c7 fold detach_signal() into ptrace_detach_task()
|
|
464c2b7 don't detach the engine with the parting signal
|
|
97b345c implement the basic detach-with-signal logic
|
|
a158247 rework access to context->siginfo
|
|
20ea83b introduce set_stop_code() helper
|
|
eb222ed cosmetic, misc renames
|
|
f83b2ca move "event << 8" into syscall_code()
|
|
4c99287 kill context->ev_name
|
|
df7c8f2 encode internal stop events in ->ev_code too
|
|
3f48297 introduce get_stop_code(context) helper
|
|
313bad1 introduce syscall_code(context) helper
|
|
47b5e2c don't clear context->ev_code for debugging
|
|
4e09fe3 convert ptrace_setsiginfo() to use ptrace_rw_siginfo()
|
|
53187be convert ptrace_getsiginfo() to use ptrace_rw_siginfo()
|
|
e7ac055 introduce ptrace_rw_siginfo() helper
|
|
c625793 move "resume signal" logic into the tracee's context
|
|
0768d89 UTRACE_SIGNAL_HANDLER should never see ->siginfo != NULL
|
|
e90cb71 don't use task_struct->ptrace_message
|
|
842684f do_ptrace_notify_stop: fix the race with SIGKILL
|
|
d0ed18d do_ptrace_notify_stop: backport the "sync wakeup" logic
|
|
08f4a21 fix the stepping over syscall
|
|
a55d174 implement the stacked SYSCALL_EXIT event
|
|
ba73824 ptrace_resume: don't ignore "data" argument
|
|
fbd4368 kill context->ev_array[]
|
|
3c6f822 Revert "ptrace_resume_signal() should use context->siginfo under ->siglock"
|
|
ee31432 Revert "UTRACE_SIGNAL_HANDLER should never see ->siginfo != NULL"
|
|
a4e5af1 Revert "introduce context_siginfo() helper"
|
|
9bc939a revert merge w/s change
|
|
6752625 introduce context_siginfo() helper
|
|
d43a453 UTRACE_SIGNAL_HANDLER should never see ->siginfo != NULL
|
|
e4e48df ptrace_resume_signal() should use context->siginfo under ->siglock
|
|
4492770 implement UTRACE_SIGNAL_HANDLER stepping
|
|
5f926a5 implement PTRACE_SINGLESTEP/PTRACE_SINGLEBLOCK
|
|
8b70ae1 ptrace_request: use ptrace_lookup_engine()
|
|
abd580d change ptrace_resume() to have the single "return"
|
|
85878ae introduce ptrace_lookup_engine()
|
|
74904f1 mv task_struct->last_siginfo ptrace_context->siginfo
|
|
2b17f4a pretens ptrace_detach(sig) works
|
|
075db41 ptrace_report_quiesce() can't trust fatal_signal_pending()
|
|
d583c87 remove the now unneeded code
|
|
69a6c83 break ptrace_report_signal()
|
|
d6a31ee do_ptrace_notify_stop: kill "->ev_message != 0" check
|
|
e194687 convert ptrace_report_exit()
|
|
8bf8304 PTRACE_EVENT_VFORK_DONE: set ev_options = PTRACE_O_TRACEVFORKDONE
|
|
b8f5e2a make sure PTRACE_SYSCALL reports SYSCALL_EXIT
|
|
258b27d make sure PTRACE_CONT "disables" SYSCALL_EXIT report
|
|
d26b659 introduce ptrace_event->ev_options
|
|
03a0fe3 convert ptrace_report_exec()
|
|
bea6139 convert ptrace_report_syscall_entry()
|
|
17dd96d cleanup/simplify stop/resume mess
|
|
97fc962 utrace: comments
|
|
c661ddb utrace: move struct utrace back where it belongs
|
|
95dcdee implement stacked stop events
|
|
8608da6 ptrace_report_syscall_exit: do not WARN() if killed
|
|
95a6b6b ptrace_report_clone: rework the stop/resume logic
|
|
25dd723 remove the current PTRACE_EVENT_VFORK_DONE logic
|
|
7d8900a ptrace_wake_up: fix the "compatibility bug" logic
|
|
9a50d27 ptrace_report_syscall_exit: return UTRACE_STOP, not UTRACE_RESUME
|
|
c07370d simplify utrace_add_engine() vs utrace_reap() protection
|
|
0f4d918 utrace_add_engine: cleanup
|
|
a24e891 fix utrace_reset() vs release_task() theoretical race
|
|
dfc0917 change attach/release to avoid unnecessary utrace_reap()
|
|
cbed668 utrace_attach_task: do no check ->exit_state
|
|
9d114a6 utrace_wakeup: do not check target->state
|
|
9368f18 utrace_wakeup: lock ->siglock directly
|
|
e9b58e9 convert ptrace_report_syscall_exit() to use ptrace_context
|
|
1d47e4d introduce context->resume_stopped()
|
|
c34d813 introduce context->stopped_code
|
|
b7edb5e introduce ptrace_notify_stop()
|
|
93b2e7e utrace_release_task: cosmetic
|
|
ac6e19c utrace_reap: loop lockless, do not clear ->ops and ->flags early
|
|
7852d10 utrace: slow_path -> pending_attach
|
|
c827b15 utrace_add_engine() should set ->utrace_flags |= REAP
|
|
2e12892 utrace_reap: fix missing callback
|
|
04852f3 utrace: do not force report on attach
|
|
37b68f7 kill ptrace_setoptions() and ptrace_update_utrace()
|
|
f1b39f3 use context->options instead of "->ptrace & PT_"
|
|
d05bf8e ptrace_set_options: use PTRACE_O_ instead of PT_
|
|
167b56a "disable" tracehook_prepare_clone()
|
|
5e526f3 introduce ptrace_set_options()
|
|
4a50ac1 introduce ptrace_context->options
|
|
0457aa8 introduce the empty struct ptrace_context
|
|
a2bca6f utrace_reset: do not use "unsafe mode"
|
|
eac91f4 utrace_control: don't mark_engine_detached() before engine_wants_stop()
|
|
c2916fb utrace_control: fix utrace_reset(safe) usage when ->exit_state != 0
|
|
c36a311 utrace_reset fix
|
|
8d2fc04 utrace: remove unused inline
|
|
64a8ca3 utrace_reset cleanup
|
|
d1a14ce utrace: change UTRACE_STOP bookkeeping
|
|
96fe3cc Revert "utrace_stop: fix UTRACE_DETACH race"
|
|
ceaae71 utrace: check QUIESCE before reporting UTRACE_SIGNAL_REPORT/HANDLER
|
|
fc30d20 utrace_do_stop: move "if (exit_state)" logic to the caller
|
|
9b655f7 utrace_do_stop: don't set ->stopped when ->exit_state
|
|
9ed6a39 utrace_set_events: never return -EINPROGRESS on a zombie
|
|
592d977 utrace_do_stop: cleanup the usage of ->siglock
|
|
7f51e58 utrace: fix utrace->signal_handler "leakage"
|
|
be5e266 utrace: utrace_finish_vfork: check ->vfork_stop lockless
|
|
c3580f1 utrace-ptrace: fix conditions in ptrace_do_detach
|
|
00932db utrace_stop: fix UTRACE_DETACH race
|
|
b032859 utrace: move utrace_stop down
|
|
a62ed15 utrace: consolidate utrace_reset callers
|
|
c8315d3 ptrace_do_detach: Fiddle code to avoid warnings.
|
|
e3635f1 utrace-ptrace: use WARN_ON(), suppress __must_check warning
|
|
8ba59d7 ptrace_attach_task: kill ->ptrace != 0 check
|
|
a18378e exit_ptrace: use ptrace_do_detach()
|
|
371c69c ptrace_detach: do ptrace_unlink() first
|
|
096f3ed ptrace_detach: kill the unconditional wakeup
|
|
d999521 ptrace_report_clone: rework auto-attaching
|
|
8cefebf move ->ptrace == 0 checks to ptrace_attach_task()
|
|
471d6f4 utrace_engine_ops: add release hook
|
|
78ca7e7 utrace_control: return -EINVAL for missing UTRACE_EVENT(QUIESCE)
|
|
fcb8fa0 change ptrace_traceme() to use the new helpers, kill prepare/finish attach
|
|
e82feff rework prepare_ptrace_attach/finish_ptrace_attach
|
|
3bea38f do not use engine->data
|
|
57cedd0 ptrace_detach_task: always do UTRACE_DETACH
|
|
2093f3a shift ptrace_utrace_exit() from tracehook_report_exit() to exit_ptrace()
|
|
33fb930 ptrace_resume()->send_sig() can crash
|
|
a7b05fd ptrace_check_attach: check child->parent
|
|
5ed4eff remove (almost all) !CONFIG_UTRACE_PTRACE code
|
|
fb9379c change utrace_stop() to return void
|
|
5bbbb41 kill utrace_report->killed
|
|
0b57f74 finish_utrace_stop: use __fatal_signal_pending(), dont take ->siglock
|
|
113a07e utrace: rework finish_report flag logic
|
|
8ad60bb utrace_stop: preserve report/interrupt requests across stop/resume
|
|
af3eb44 get_utrace_lock: do not check EXIT_DEAD
|
|
d87e8c4 finish_utrace_stop: check ->stopped lockless
|
|
3e0a686 utrace_report_jctl/utrace_get_signal: do not play with ->stopped
|
|
7d97118 utrace_do_stop: s/STOPPED/TRACED/ to protect against SIGCONT
|
|
ad2497a use tracehook_finish_jctl() to clear ->stopped
|
|
f99db9f utrace_report_jctl: do not play with the group-stop state
|
|
fd89498 introduce tracehook_finish_jctl() helper
|
|
ff6be89 do_signal_stop: do not call tracehook_notify_jctl() in TASK_STOPPED state
|
|
66e0705 utrace_stop: don't forget about SIGNAL_STOP_STOPPED
|
|
2edad7d utrace_wakeup: take ->group_stop_count into account
|
|
d4bcb57 utrace_reap: clear engine->flags when finishing detach
|
|
cf890ad utrace: fix utrace->reporting left set for no callback
|
|
cbe5188 More than one user has hit the -EEXIST problem when using utrace_attach_task and UTRACE_ATTACH_EXCLUSIVE without UTRACE_ATTACH_MATCH_DATA|_OPS. Document that a bit more.
|
|
52db080 UTRACE_SYSCALL_RESUMED repeat callback
|
|
5e67e22 utrace docbook: s/first/last/ braino
|
|
4bd78f8 utrace: reverse engine callback order for report_syscall_entry
|
|
1757088 utrace: WARN instead of BUG on misuse of UTRACE_*STEP without arch_has_*_step() check
|
|
5d4e97b utrace: restore tracehook_report_death comment misplaced in merges
|
|
cb49dcd utrace_report_syscall_entry: remove unnecessary recalc_sigpending() check
|
|
c0909b5 utrace_resume: fix potential TIF_SIGPENDING race
|
|
f0a1c64 utrace: use \t separator in /proc/pid/status
|
|
13a5838 utrace: init_task syntax nit
|
|
715d2a1 utrace: cosmetic
|
|
42de707 utrace_report_jctl: do splice_attaching
|
|
622013d utrace_resume: remove racy BUG_ON
|
|
282d685 whitespace fix
|
|
bec92f8 signals: tracehook_notify_jctl change
|
|
a7181aa utrace: simplify death report condition
|
|
4d8a6fd utrace: barrier between TIF_NOTIFY_RESUME check and utrace_flags/utrace->report checks
|
|
ae3096f utrace-ptrace: remove unsafe_exec and tracer_task hooks
|
|
325fecc utrace: get rid of tracer_task and unsafe_exec hooks
|
|
0084fc2 utrace: ensure UTRACE_REPORT callback return leads to callback after utrace_stop
|
|
5bdc6f1 utrace: cosmetic: DEAD_FLAGS_MASK macro
|
|
5c5bdbe utrace: cosmetic: _UTRACE_DEATH_EVENTS macro
|
|
f067223 utrace: make sure utrace_flags is nonzero before set_notify_resume at attach
|
|
e2d293e utrace: drop racy unlocked check in utrace_do_stop
|
|
68f3899 utrace: fix ->report_jctl @notify argument
|
|
c743327 utrace: avoid unnecessary list_for_each_safe
|
|
acd516b utrace_stop: trivial, kill the unnecessary assignment
|
|
81ed517 utrace_add_engine: add missing 'else' after 'if (utrace->reap)'
|
|
215a076 utrace: tracehook.h comment
|
|
a584c66 utrace: fix utrace_attach_delay() creator test
|
|
827ec3b utrace: comment ->reporting implementation
|
|
07732b4 utrace-ptrace: handle -ERESTARTNOINTR from utrace_attach_task
|
|
2233b06 utrace: finish utrace_reap conversion after indirect->direct struct utrace
|
|
dd30e86 utrace: fix utrace_attach_delay() to loop, remove struct utrace.cloning field
|
|
be4f357 get_utrace_lock: kill the bogus engine->kref.refcount check
|
|
c367207 utrace: clear struct in utrace_init_task
|
|
94f168c utrace: define UTRACE_API_VERSION
|
|
742f120 utrace: place struct utrace directly in task_struct
|
|
cb25a58 utrace: comment fixes
|
|
2b834a5 utrace-ptrace: struct utrace_attached_engine -> struct utrace_engine
|
|
6b8306a utrace: struct utrace_attached_engine -> struct utrace_engine
|
|
9fe3bac utrace-ptrace: Kconfig doc update
|
|
5bb0052 utrace: cosmetic changes
|
|
556a7e7 utrace-ptrace: fix resuming with blocked signal
|
|
3a9f4c8 utrace: order utrace_control() after callback return value processing
|
|
269150d Cosmetic reorganization to further simplify utrace pointer vs embedded-struct.
|
|
ea30176 Use task_utrace_struct() helper in utrace_interrupt_pending().
|
|
ed2098a Use task_utrace_struct() helper
|
|
97d5cde cosmetic code reorganization
|
|
4e8a7ca Remove UTRACE_DEBUG hacks
|
|
25fb674 utrace: exclude PTRACE_TRACEME
|
|
f286be7 utrace-ptrace: remove utrace_engine_put stub
|
|
e0c36bd Disable mutual exclusion if CONFIG_UTRACE_PTRACE
|
|
c93d704 utrace/ptrace mutual exclusion
|
|
594f22c cond_resched() before race-restart in utrace_attach_task
|
|
0da72f3 Clean up utrace_attach_task code.
|
|
fd3d457 utrace: ptrace cooperation
|
|
f357a74 utrace core
|
|
---
|
|
Documentation/DocBook/Makefile | 2 +-
|
|
Documentation/DocBook/utrace.tmpl | 590 +++++++++
|
|
fs/proc/array.c | 3 +
|
|
include/linux/ptrace.h | 3 +-
|
|
include/linux/sched.h | 6 +
|
|
include/linux/tracehook.h | 97 ++-
|
|
include/linux/utrace.h | 692 +++++++++++
|
|
init/Kconfig | 9 +
|
|
kernel/Makefile | 2 +
|
|
kernel/fork.c | 3 +
|
|
kernel/ptrace-utrace.c | 1127 +++++++++++++++++
|
|
kernel/ptrace.c | 620 +++++-----
|
|
kernel/signal.c | 4 +-
|
|
kernel/utrace.c | 2452 +++++++++++++++++++++++++++++++++++++
|
|
14 files changed, 5291 insertions(+), 319 deletions(-)
|
|
create mode 100644 Documentation/DocBook/utrace.tmpl
|
|
create mode 100644 include/linux/utrace.h
|
|
create mode 100644 kernel/ptrace-utrace.c
|
|
create mode 100644 kernel/utrace.c
|
|
|
|
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
|
|
index c7e5dc7..e63f889 100644
|
|
--- a/Documentation/DocBook/Makefile
|
|
+++ b/Documentation/DocBook/Makefile
|
|
@@ -14,7 +14,7 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
|
|
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
|
|
mac80211.xml debugobjects.xml sh.xml regulator.xml \
|
|
alsa-driver-api.xml writing-an-alsa-driver.xml \
|
|
- tracepoint.xml media.xml drm.xml
|
|
+ tracepoint.xml utrace.xml media.xml drm.xml
|
|
|
|
###
|
|
# The build process is as follows (targets):
|
|
diff --git a/Documentation/DocBook/utrace.tmpl b/Documentation/DocBook/utrace.tmpl
|
|
new file mode 100644
|
|
index 0000000..e149f49
|
|
--- /dev/null
|
|
+++ b/Documentation/DocBook/utrace.tmpl
|
|
@@ -0,0 +1,590 @@
|
|
+<?xml version="1.0" encoding="UTF-8"?>
|
|
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
|
+"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
|
+
|
|
+<book id="utrace">
|
|
+ <bookinfo>
|
|
+ <title>The utrace User Debugging Infrastructure</title>
|
|
+ </bookinfo>
|
|
+
|
|
+ <toc></toc>
|
|
+
|
|
+ <chapter id="concepts"><title>utrace concepts</title>
|
|
+
|
|
+ <sect1 id="intro"><title>Introduction</title>
|
|
+
|
|
+ <para>
|
|
+ <application>utrace</application> is infrastructure code for tracing
|
|
+ and controlling user threads. This is the foundation for writing
|
|
+ tracing engines, which can be loadable kernel modules.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ The basic actors in <application>utrace</application> are the thread
|
|
+ and the tracing engine. A tracing engine is some body of code that
|
|
+ calls into the <filename><linux/utrace.h></filename>
|
|
+ interfaces, represented by a <structname>struct
|
|
+ utrace_engine_ops</structname>. (Usually it's a kernel module,
|
|
+ though the legacy <function>ptrace</function> support is a tracing
|
|
+ engine that is not in a kernel module.) The interface operates on
|
|
+ individual threads (<structname>struct task_struct</structname>).
|
|
+ If an engine wants to treat several threads as a group, that is up
|
|
+ to its higher-level code.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ Tracing begins by attaching an engine to a thread, using
|
|
+ <function>utrace_attach_task</function> or
|
|
+ <function>utrace_attach_pid</function>. If successful, it returns a
|
|
+ pointer that is the handle used in all other calls.
|
|
+ </para>
|
|
+
|
|
+ </sect1>
|
|
+
|
|
+ <sect1 id="callbacks"><title>Events and Callbacks</title>
|
|
+
|
|
+ <para>
|
|
+ An attached engine does nothing by default. An engine makes something
|
|
+ happen by requesting callbacks via <function>utrace_set_events</function>
|
|
+ and poking the thread with <function>utrace_control</function>.
|
|
+ The synchronization issues related to these two calls
|
|
+ are discussed further below in <xref linkend="teardown"/>.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ Events are specified using the macro
|
|
+ <constant>UTRACE_EVENT(<replaceable>type</replaceable>)</constant>.
|
|
+ Each event type is associated with a callback in <structname>struct
|
|
+ utrace_engine_ops</structname>. A tracing engine can leave unused
|
|
+ callbacks <constant>NULL</constant>. The only callbacks required
|
|
+ are those used by the event flags it sets.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ Many engines can be attached to each thread. When a thread has an
|
|
+ event, each engine gets a callback if it has set the event flag for
|
|
+ that event type. For most events, engines are called in the order they
|
|
+ attached. Engines that attach after the event has occurred do not get
|
|
+ callbacks for that event. This includes any new engines just attached
|
|
+ by an existing engine's callback function. Once the sequence of
|
|
+ callbacks for that one event has completed, such new engines are then
|
|
+ eligible in the next sequence that starts when there is another event.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ Event reporting callbacks have details particular to the event type,
|
|
+ but are all called in similar environments and have the same
|
|
+ constraints. Callbacks are made from safe points, where no locks
|
|
+ are held, no special resources are pinned (usually), and the
|
|
+ user-mode state of the thread is accessible. So, callback code has
|
|
+ a pretty free hand. But to be a good citizen, callback code should
|
|
+ never block for long periods. It is fine to block in
|
|
+ <function>kmalloc</function> and the like, but never wait for i/o or
|
|
+ for user mode to do something. If you need the thread to wait, use
|
|
+ <constant>UTRACE_STOP</constant> and return from the callback
|
|
+ quickly. When your i/o finishes or whatever, you can use
|
|
+ <function>utrace_control</function> to resume the thread.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ The <constant>UTRACE_EVENT(SYSCALL_ENTRY)</constant> event is a special
|
|
+ case. While other events happen in the kernel when it will return to
|
|
+ user mode soon, this event happens when entering the kernel before it
|
|
+ will proceed with the work requested from user mode. Because of this
|
|
+ difference, the <function>report_syscall_entry</function> callback is
|
|
+ special in two ways. For this event, engines are called in reverse of
|
|
+ the normal order (this includes the <function>report_quiesce</function>
|
|
+ call that precedes a <function>report_syscall_entry</function> call).
|
|
+ This preserves the semantics that the last engine to attach is called
|
|
+ "closest to user mode"--the engine that is first to see a thread's user
|
|
+ state when it enters the kernel is also the last to see that state when
|
|
+ the thread returns to user mode. For the same reason, if these
|
|
+ callbacks use <constant>UTRACE_STOP</constant> (see the next section),
|
|
+ the thread stops immediately after callbacks rather than only when it's
|
|
+ ready to return to user mode; when allowed to resume, it will actually
|
|
+ attempt the system call indicated by the register values at that time.
|
|
+ </para>
|
|
+
|
|
+ </sect1>
|
|
+
|
|
+ <sect1 id="safely"><title>Stopping Safely</title>
|
|
+
|
|
+ <sect2 id="well-behaved"><title>Writing well-behaved callbacks</title>
|
|
+
|
|
+ <para>
|
|
+ Well-behaved callbacks are important to maintain two essential
|
|
+ properties of the interface. The first of these is that unrelated
|
|
+ tracing engines should not interfere with each other. If your engine's
|
|
+ event callback does not return quickly, then another engine won't get
|
|
+ the event notification in a timely manner. The second important
|
|
+ property is that tracing should be as noninvasive as possible to the
|
|
+ normal operation of the system overall and of the traced thread in
|
|
+ particular. That is, attached tracing engines should not perturb a
|
|
+ thread's behavior, except to the extent that changing its user-visible
|
|
+ state is explicitly what you want to do. (Obviously some perturbation
|
|
+ is unavoidable, primarily timing changes, ranging from small delays due
|
|
+ to the overhead of tracing, to arbitrary pauses in user code execution
|
|
+ when a user stops a thread with a debugger for examination.) Even when
|
|
+ you explicitly want the perturbation of making the traced thread block,
|
|
+ just blocking directly in your callback has more unwanted effects. For
|
|
+ example, the <constant>CLONE</constant> event callbacks are called when
|
|
+ the new child thread has been created but not yet started running; the
|
|
+ child can never be scheduled until the <constant>CLONE</constant>
|
|
+ tracing callbacks return. (This allows engines tracing the parent to
|
|
+ attach to the child.) If a <constant>CLONE</constant> event callback
|
|
+ blocks the parent thread, it also prevents the child thread from
|
|
+ running (even to process a <constant>SIGKILL</constant>). If what you
|
|
+ want is to make both the parent and child block, then use
|
|
+ <function>utrace_attach_task</function> on the child and then use
|
|
+ <constant>UTRACE_STOP</constant> on both threads. A more crucial
|
|
+ problem with blocking in callbacks is that it can prevent
|
|
+ <constant>SIGKILL</constant> from working. A thread that is blocking
|
|
+ due to <constant>UTRACE_STOP</constant> will still wake up and die
|
|
+ immediately when sent a <constant>SIGKILL</constant>, as all threads
|
|
+ should. Relying on the <application>utrace</application>
|
|
+ infrastructure rather than on private synchronization calls in event
|
|
+ callbacks is an important way to help keep tracing robustly
|
|
+ noninvasive.
|
|
+ </para>
|
|
+
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="UTRACE_STOP"><title>Using <constant>UTRACE_STOP</constant></title>
|
|
+
|
|
+ <para>
|
|
+ To control another thread and access its state, it must be stopped
|
|
+ with <constant>UTRACE_STOP</constant>. This means that it is
|
|
+ stopped and won't start running again while we access it. When a
|
|
+ thread is not already stopped, <function>utrace_control</function>
|
|
+ returns <constant>-EINPROGRESS</constant> and an engine must wait
|
|
+ for an event callback when the thread is ready to stop. The thread
|
|
+ may be running on another CPU or may be blocked. When it is ready
|
|
+ to be examined, it will make callbacks to engines that set the
|
|
+ <constant>UTRACE_EVENT(QUIESCE)</constant> event bit. To wake up an
|
|
+ interruptible wait, use <constant>UTRACE_INTERRUPT</constant>.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ As long as some engine has used <constant>UTRACE_STOP</constant> and
|
|
+ not called <function>utrace_control</function> to resume the thread,
|
|
+ then the thread will remain stopped. <constant>SIGKILL</constant>
|
|
+ will wake it up, but it will not run user code. When the stop is
|
|
+ cleared with <function>utrace_control</function> or a callback
|
|
+ return value, the thread starts running again.
|
|
+ (See also <xref linkend="teardown"/>.)
|
|
+ </para>
|
|
+
|
|
+ </sect2>
|
|
+
|
|
+ </sect1>
|
|
+
|
|
+ <sect1 id="teardown"><title>Tear-down Races</title>
|
|
+
|
|
+ <sect2 id="SIGKILL"><title>Primacy of <constant>SIGKILL</constant></title>
|
|
+ <para>
|
|
+ Ordinarily synchronization issues for tracing engines are kept fairly
|
|
+ straightforward by using <constant>UTRACE_STOP</constant>. You ask a
|
|
+ thread to stop, and then once it makes the
|
|
+ <function>report_quiesce</function> callback it cannot do anything else
|
|
+ that would result in another callback, until you let it with a
|
|
+ <function>utrace_control</function> call. This simple arrangement
|
|
+ avoids complex and error-prone code in each one of a tracing engine's
|
|
+ event callbacks to keep them serialized with the engine's other
|
|
+ operations done on that thread from another thread of control.
|
|
+ However, giving tracing engines complete power to keep a traced thread
|
|
+ stuck in place runs afoul of a more important kind of simplicity that
|
|
+ the kernel overall guarantees: nothing can prevent or delay
|
|
+ <constant>SIGKILL</constant> from making a thread die and release its
|
|
+ resources. To preserve this important property of
|
|
+ <constant>SIGKILL</constant>, it as a special case can break
|
|
+ <constant>UTRACE_STOP</constant> like nothing else normally can. This
|
|
+ includes both explicit <constant>SIGKILL</constant> signals and the
|
|
+ implicit <constant>SIGKILL</constant> sent to each other thread in the
|
|
+ same thread group by a thread doing an exec, or processing a fatal
|
|
+ signal, or making an <function>exit_group</function> system call. A
|
|
+ tracing engine can prevent a thread from beginning the exit or exec or
|
|
+ dying by signal (other than <constant>SIGKILL</constant>) if it is
|
|
+ attached to that thread, but once the operation begins, no tracing
|
|
+ engine can prevent or delay all other threads in the same thread group
|
|
+ dying.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="reap"><title>Final callbacks</title>
|
|
+ <para>
|
|
+ The <function>report_reap</function> callback is always the final event
|
|
+ in the life cycle of a traced thread. Tracing engines can use this as
|
|
+ the trigger to clean up their own data structures. The
|
|
+ <function>report_death</function> callback is always the penultimate
|
|
+ event a tracing engine might see; it's seen unless the thread was
|
|
+ already in the midst of dying when the engine attached. Many tracing
|
|
+ engines will have no interest in when a parent reaps a dead process,
|
|
+ and nothing they want to do with a zombie thread once it dies; for
|
|
+ them, the <function>report_death</function> callback is the natural
|
|
+ place to clean up data structures and detach. To facilitate writing
|
|
+ such engines robustly, given the asynchrony of
|
|
+ <constant>SIGKILL</constant>, and without error-prone manual
|
|
+ implementation of synchronization schemes, the
|
|
+ <application>utrace</application> infrastructure provides some special
|
|
+ guarantees about the <function>report_death</function> and
|
|
+ <function>report_reap</function> callbacks. It still takes some care
|
|
+ to be sure your tracing engine is robust to tear-down races, but these
|
|
+ rules make it reasonably straightforward and concise to handle a lot of
|
|
+ corner cases correctly.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="refcount"><title>Engine and task pointers</title>
|
|
+ <para>
|
|
+ The first sort of guarantee concerns the core data structures
|
|
+ themselves. <structname>struct utrace_engine</structname> is
|
|
+ a reference-counted data structure. While you hold a reference, an
|
|
+ engine pointer will always stay valid so that you can safely pass it to
|
|
+ any <application>utrace</application> call. Each call to
|
|
+ <function>utrace_attach_task</function> or
|
|
+ <function>utrace_attach_pid</function> returns an engine pointer with a
|
|
+ reference belonging to the caller. You own that reference until you
|
|
+ drop it using <function>utrace_engine_put</function>. There is an
|
|
+ implicit reference on the engine while it is attached. So if you drop
|
|
+ your only reference, and then use
|
|
+ <function>utrace_attach_task</function> without
|
|
+ <constant>UTRACE_ATTACH_CREATE</constant> to look up that same engine,
|
|
+ you will get the same pointer with a new reference to replace the one
|
|
+ you dropped, just like calling <function>utrace_engine_get</function>.
|
|
+ When an engine has been detached, either explicitly with
|
|
+ <constant>UTRACE_DETACH</constant> or implicitly after
|
|
+ <function>report_reap</function>, then any references you hold are all
|
|
+ that keep the old engine pointer alive.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ There is nothing a kernel module can do to keep a <structname>struct
|
|
+ task_struct</structname> alive outside of
|
|
+ <function>rcu_read_lock</function>. When the task dies and is reaped
|
|
+ by its parent (or itself), that structure can be freed so that any
|
|
+ dangling pointers you have stored become invalid.
|
|
+ <application>utrace</application> will not prevent this, but it can
|
|
+ help you detect it safely. By definition, a task that has been reaped
|
|
+ has had all its engines detached. All
|
|
+ <application>utrace</application> calls can be safely called on a
|
|
+ detached engine if the caller holds a reference on that engine pointer,
|
|
+ even if the task pointer passed in the call is invalid. All calls
|
|
+ return <constant>-ESRCH</constant> for a detached engine, which tells
|
|
+ you that the task pointer you passed could be invalid now. Since
|
|
+ <function>utrace_control</function> and
|
|
+ <function>utrace_set_events</function> do not block, you can call those
|
|
+ inside a <function>rcu_read_lock</function> section and be sure after
|
|
+ they don't return <constant>-ESRCH</constant> that the task pointer is
|
|
+ still valid until <function>rcu_read_unlock</function>. The
|
|
+ infrastructure never holds task references of its own. Though neither
|
|
+ <function>rcu_read_lock</function> nor any other lock is held while
|
|
+ making a callback, it's always guaranteed that the <structname>struct
|
|
+ task_struct</structname> and the <structname>struct
|
|
+ utrace_engine</structname> passed as arguments remain valid
|
|
+ until the callback function returns.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ The common means for safely holding task pointers that is available to
|
|
+ kernel modules is to use <structname>struct pid</structname>, which
|
|
+ permits <function>put_pid</function> from kernel modules. When using
|
|
+ that, the calls <function>utrace_attach_pid</function>,
|
|
+ <function>utrace_control_pid</function>,
|
|
+ <function>utrace_set_events_pid</function>, and
|
|
+ <function>utrace_barrier_pid</function> are available.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="reap-after-death">
|
|
+ <title>
|
|
+ Serialization of <constant>DEATH</constant> and <constant>REAP</constant>
|
|
+ </title>
|
|
+ <para>
|
|
+ The second guarantee is the serialization of
|
|
+ <constant>DEATH</constant> and <constant>REAP</constant> event
|
|
+ callbacks for a given thread. The actual reaping by the parent
|
|
+ (<function>release_task</function> call) can occur simultaneously
|
|
+ while the thread is still doing the final steps of dying, including
|
|
+ the <function>report_death</function> callback. If a tracing engine
|
|
+ has requested both <constant>DEATH</constant> and
|
|
+ <constant>REAP</constant> event reports, it's guaranteed that the
|
|
+ <function>report_reap</function> callback will not be made until
|
|
+ after the <function>report_death</function> callback has returned.
|
|
+ If the <function>report_death</function> callback itself detaches
|
|
+ from the thread, then the <function>report_reap</function> callback
|
|
+ will never be made. Thus it is safe for a
|
|
+ <function>report_death</function> callback to clean up data
|
|
+ structures and detach.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="interlock"><title>Interlock with final callbacks</title>
|
|
+ <para>
|
|
+ The final sort of guarantee is that a tracing engine will know for sure
|
|
+ whether or not the <function>report_death</function> and/or
|
|
+ <function>report_reap</function> callbacks will be made for a certain
|
|
+ thread. These tear-down races are disambiguated by the error return
|
|
+ values of <function>utrace_set_events</function> and
|
|
+ <function>utrace_control</function>. Normally
|
|
+ <function>utrace_control</function> called with
|
|
+ <constant>UTRACE_DETACH</constant> returns zero, and this means that no
|
|
+ more callbacks will be made. If the thread is in the midst of dying,
|
|
+ it returns <constant>-EALREADY</constant> to indicate that the
|
|
+ <constant>report_death</constant> callback may already be in progress;
|
|
+ when you get this error, you know that any cleanup your
|
|
+ <function>report_death</function> callback does is about to happen or
|
|
+ has just happened--note that if the <function>report_death</function>
|
|
+ callback does not detach, the engine remains attached until the thread
|
|
+ gets reaped. If the thread is in the midst of being reaped,
|
|
+ <function>utrace_control</function> returns <constant>-ESRCH</constant>
|
|
+ to indicate that the <function>report_reap</function> callback may
|
|
+ already be in progress; this means the engine is implicitly detached
|
|
+ when the callback completes. This makes it possible for a tracing
|
|
+ engine that has decided asynchronously to detach from a thread to
|
|
+ safely clean up its data structures, knowing that no
|
|
+ <function>report_death</function> or <function>report_reap</function>
|
|
+ callback will try to do the same. <constant>utrace_detach</constant>
|
|
+ returns <constant>-ESRCH</constant> when the <structname>struct
|
|
+ utrace_engine</structname> has already been detached, but is
|
|
+ still a valid pointer because of its reference count. A tracing engine
|
|
+ can use this to safely synchronize its own independent multiple threads
|
|
+ of control with each other and with its event callbacks that detach.
|
|
+ </para>
|
|
+
|
|
+ <para>
|
|
+ In the same vein, <function>utrace_set_events</function> normally
|
|
+ returns zero; if the target thread was stopped before the call, then
|
|
+ after a successful call, no event callbacks not requested in the new
|
|
+ flags will be made. It fails with <constant>-EALREADY</constant> if
|
|
+ you try to clear <constant>UTRACE_EVENT(DEATH)</constant> when the
|
|
+ <function>report_death</function> callback may already have begun, if
|
|
+ you try to clear <constant>UTRACE_EVENT(REAP)</constant> when the
|
|
+ <function>report_reap</function> callback may already have begun, or if
|
|
+ you try to newly set <constant>UTRACE_EVENT(DEATH)</constant> or
|
|
+ <constant>UTRACE_EVENT(QUIESCE)</constant> when the target is already
|
|
+ dead or dying. Like <function>utrace_control</function>, it returns
|
|
+ <constant>-ESRCH</constant> when the thread has already been detached
|
|
+ (including forcible detach on reaping). This lets the tracing engine
|
|
+ know for sure which event callbacks it will or won't see after
|
|
+ <function>utrace_set_events</function> has returned. By checking for
|
|
+ errors, it can know whether to clean up its data structures immediately
|
|
+ or to let its callbacks do the work.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+ <sect2 id="barrier"><title>Using <function>utrace_barrier</function></title>
|
|
+ <para>
|
|
+ When a thread is safely stopped, calling
|
|
+ <function>utrace_control</function> with <constant>UTRACE_DETACH</constant>
|
|
+ or calling <function>utrace_set_events</function> to disable some events
|
|
+ ensures synchronously that your engine won't get any more of the callbacks
|
|
+ that have been disabled (none at all when detaching). But these can also
|
|
+ be used while the thread is not stopped, when it might be simultaneously
|
|
+ making a callback to your engine. For this situation, these calls return
|
|
+ <constant>-EINPROGRESS</constant> when it's possible a callback is in
|
|
+ progress. If you are not prepared to have your old callbacks still run,
|
|
+ then you can synchronize to be sure all the old callbacks are finished,
|
|
+ using <function>utrace_barrier</function>. This is necessary if the
|
|
+ kernel module containing your callback code is going to be unloaded.
|
|
+ </para>
|
|
+ <para>
|
|
+ After using <constant>UTRACE_DETACH</constant> once, further calls to
|
|
+ <function>utrace_control</function> with the same engine pointer will
|
|
+ return <constant>-ESRCH</constant>. In contrast, after getting
|
|
+ <constant>-EINPROGRESS</constant> from
|
|
+ <function>utrace_set_events</function>, you can call
|
|
+ <function>utrace_set_events</function> again later and if it returns zero
|
|
+ then know the old callbacks have finished.
|
|
+ </para>
|
|
+ <para>
|
|
+ Unlike all other calls, <function>utrace_barrier</function> (and
|
|
+ <function>utrace_barrier_pid</function>) will accept any engine pointer you
|
|
+ hold a reference on, even if <constant>UTRACE_DETACH</constant> has already
|
|
+ been used. After any <function>utrace_control</function> or
|
|
+ <function>utrace_set_events</function> call (these do not block), you can
|
|
+ call <function>utrace_barrier</function> to block until callbacks have
|
|
+ finished. This returns <constant>-ESRCH</constant> only if the engine is
|
|
+ completely detached (finished all callbacks). Otherwise it waits
|
|
+ until the thread is definitely not in the midst of a callback to this
|
|
+ engine and then returns zero, but can return
|
|
+ <constant>-ERESTARTSYS</constant> if its wait is interrupted.
|
|
+ </para>
|
|
+ </sect2>
|
|
+
|
|
+</sect1>
|
|
+
|
|
+</chapter>
|
|
+
|
|
+<chapter id="core"><title>utrace core API</title>
|
|
+
|
|
+<para>
|
|
+ The utrace API is declared in <filename><linux/utrace.h></filename>.
|
|
+</para>
|
|
+
|
|
+!Iinclude/linux/utrace.h
|
|
+!Ekernel/utrace.c
|
|
+
|
|
+</chapter>
|
|
+
|
|
+<chapter id="machine"><title>Machine State</title>
|
|
+
|
|
+<para>
|
|
+ The <function>task_current_syscall</function> function can be used on any
|
|
+ valid <structname>struct task_struct</structname> at any time, and does
|
|
+ not even require that <function>utrace_attach_task</function> was used at all.
|
|
+</para>
|
|
+
|
|
+<para>
|
|
+ The other ways to access the registers and other machine-dependent state of
|
|
+ a task can only be used on a task that is at a known safe point. The safe
|
|
+ points are all the places where <function>utrace_set_events</function> can
|
|
+ request callbacks (except for the <constant>DEATH</constant> and
|
|
+ <constant>REAP</constant> events). So at any event callback, it is safe to
|
|
+ examine <varname>current</varname>.
|
|
+</para>
|
|
+
|
|
+<para>
|
|
+ One task can examine another only after a callback in the target task that
|
|
+ returns <constant>UTRACE_STOP</constant> so that task will not return to user
|
|
+ mode after the safe point. This guarantees that the task will not resume
|
|
+ until the same engine uses <function>utrace_control</function>, unless the
|
|
+ task dies suddenly. To examine safely, one must use a pair of calls to
|
|
+ <function>utrace_prepare_examine</function> and
|
|
+ <function>utrace_finish_examine</function> surrounding the calls to
|
|
+ <structname>struct user_regset</structname> functions or direct examination
|
|
+ of task data structures. <function>utrace_prepare_examine</function> returns
|
|
+ an error if the task is not properly stopped, or is dead. After a
|
|
+ successful examination, the paired <function>utrace_finish_examine</function>
|
|
+ call returns an error if the task ever woke up during the examination. If
|
|
+ so, any data gathered may be scrambled and should be discarded. This means
|
|
+ there was a spurious wake-up (which should not happen), or a sudden death.
|
|
+</para>
|
|
+
|
|
+<sect1 id="regset"><title><structname>struct user_regset</structname></title>
|
|
+
|
|
+<para>
|
|
+ The <structname>struct user_regset</structname> API
|
|
+ is declared in <filename><linux/regset.h></filename>.
|
|
+</para>
|
|
+
|
|
+!Finclude/linux/regset.h
|
|
+
|
|
+</sect1>
|
|
+
|
|
+<sect1 id="task_current_syscall">
|
|
+ <title><filename>System Call Information</filename></title>
|
|
+
|
|
+<para>
|
|
+ This function is declared in <filename><linux/ptrace.h></filename>.
|
|
+</para>
|
|
+
|
|
+!Elib/syscall.c
|
|
+
|
|
+</sect1>
|
|
+
|
|
+<sect1 id="syscall"><title><filename>System Call Tracing</filename></title>
|
|
+
|
|
+<para>
|
|
+ The arch API for system call information is declared in
|
|
+ <filename><asm/syscall.h></filename>.
|
|
+ Each of these calls can be used only at system call entry tracing,
|
|
+ or can be used only at system call exit and the subsequent safe points
|
|
+ before returning to user mode.
|
|
+ At system call entry tracing means either during a
|
|
+ <structfield>report_syscall_entry</structfield> callback,
|
|
+ or any time after that callback has returned <constant>UTRACE_STOP</constant>.
|
|
+</para>
|
|
+
|
|
+!Finclude/asm-generic/syscall.h
|
|
+
|
|
+</sect1>
|
|
+
|
|
+</chapter>
|
|
+
|
|
+<chapter id="internals"><title>Kernel Internals</title>
|
|
+
|
|
+<para>
|
|
+ This chapter covers the interface to the tracing infrastructure
|
|
+ from the core of the kernel and the architecture-specific code.
|
|
+ This is for maintainers of the kernel and arch code, and not relevant
|
|
+ to using the tracing facilities described in preceding chapters.
|
|
+</para>
|
|
+
|
|
+<sect1 id="tracehook"><title>Core Calls In</title>
|
|
+
|
|
+<para>
|
|
+ These calls are declared in <filename><linux/tracehook.h></filename>.
|
|
+ The core kernel calls these functions at various important places.
|
|
+</para>
|
|
+
|
|
+!Finclude/linux/tracehook.h
|
|
+
|
|
+</sect1>
|
|
+
|
|
+<sect1 id="arch"><title>Architecture Calls Out</title>
|
|
+
|
|
+<para>
|
|
+ An arch that has done all these things sets
|
|
+ <constant>CONFIG_HAVE_ARCH_TRACEHOOK</constant>.
|
|
+ This is required to enable the <application>utrace</application> code.
|
|
+</para>
|
|
+
|
|
+<sect2 id="arch-ptrace"><title><filename><asm/ptrace.h></filename></title>
|
|
+
|
|
+<para>
|
|
+ An arch defines these in <filename><asm/ptrace.h></filename>
|
|
+ if it supports hardware single-step or block-step features.
|
|
+</para>
|
|
+
|
|
+!Finclude/linux/ptrace.h arch_has_single_step arch_has_block_step
|
|
+!Finclude/linux/ptrace.h user_enable_single_step user_enable_block_step
|
|
+!Finclude/linux/ptrace.h user_disable_single_step
|
|
+
|
|
+</sect2>
|
|
+
|
|
+<sect2 id="arch-syscall">
|
|
+ <title><filename><asm/syscall.h></filename></title>
|
|
+
|
|
+ <para>
|
|
+ An arch provides <filename><asm/syscall.h></filename> that
|
|
+ defines these as inlines, or declares them as exported functions.
|
|
+ These interfaces are described in <xref linkend="syscall"/>.
|
|
+ </para>
|
|
+
|
|
+</sect2>
|
|
+
|
|
+<sect2 id="arch-tracehook">
|
|
+ <title><filename><linux/tracehook.h></filename></title>
|
|
+
|
|
+ <para>
|
|
+ An arch must define <constant>TIF_NOTIFY_RESUME</constant>
|
|
+ and <constant>TIF_SYSCALL_TRACE</constant>
|
|
+ in its <filename><asm/thread_info.h></filename>.
|
|
+ The arch code must call the following functions, all declared
|
|
+ in <filename><linux/tracehook.h></filename> and
|
|
+ described in <xref linkend="tracehook"/>:
|
|
+
|
|
+ <itemizedlist>
|
|
+ <listitem>
|
|
+ <para><function>tracehook_notify_resume</function></para>
|
|
+ </listitem>
|
|
+ <listitem>
|
|
+ <para><function>tracehook_report_syscall_entry</function></para>
|
|
+ </listitem>
|
|
+ <listitem>
|
|
+ <para><function>tracehook_report_syscall_exit</function></para>
|
|
+ </listitem>
|
|
+ <listitem>
|
|
+ <para><function>tracehook_signal_handler</function></para>
|
|
+ </listitem>
|
|
+ </itemizedlist>
|
|
+
|
|
+ </para>
|
|
+
|
|
+</sect2>
|
|
+
|
|
+</sect1>
|
|
+
|
|
+</chapter>
|
|
+
|
|
+</book>
|
|
diff --git a/fs/proc/array.c b/fs/proc/array.c
|
|
index 9b58d38..c7c7881 100644
|
|
--- a/fs/proc/array.c
|
|
+++ b/fs/proc/array.c
|
|
@@ -81,6 +81,7 @@
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/tracehook.h>
|
|
+#include <linux/utrace.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
@@ -192,6 +193,8 @@ static inline void task_state(struct seq_file *m, struct pid_namespace *ns,
|
|
cred->uid, cred->euid, cred->suid, cred->fsuid,
|
|
cred->gid, cred->egid, cred->sgid, cred->fsgid);
|
|
|
|
+ task_utrace_proc_status(m, p);
|
|
+
|
|
task_lock(p);
|
|
if (p->files)
|
|
fdt = files_fdtable(p->files);
|
|
diff --git a/include/linux/ptrace.h b/include/linux/ptrace.h
|
|
index 4272521..235c1b0 100644
|
|
--- a/include/linux/ptrace.h
|
|
+++ b/include/linux/ptrace.h
|
|
@@ -99,12 +99,13 @@
|
|
#include <linux/compiler.h> /* For unlikely. */
|
|
#include <linux/sched.h> /* For struct task_struct. */
|
|
|
|
-
|
|
+extern void ptrace_notify_stop(struct task_struct *tracee);
|
|
extern long arch_ptrace(struct task_struct *child, long request, long addr, long data);
|
|
extern int ptrace_traceme(void);
|
|
extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
|
|
extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
|
|
extern int ptrace_attach(struct task_struct *tsk);
|
|
+extern bool __ptrace_detach(struct task_struct *tracer, struct task_struct *tracee);
|
|
extern int ptrace_detach(struct task_struct *, unsigned int);
|
|
extern void ptrace_disable(struct task_struct *);
|
|
extern int ptrace_check_attach(struct task_struct *task, int kill);
|
|
diff --git a/include/linux/sched.h b/include/linux/sched.h
|
|
index f118809..d3fef7a 100644
|
|
--- a/include/linux/sched.h
|
|
+++ b/include/linux/sched.h
|
|
@@ -1348,6 +1348,11 @@ struct task_struct {
|
|
#endif
|
|
seccomp_t seccomp;
|
|
|
|
+#ifdef CONFIG_UTRACE
|
|
+ struct utrace *utrace;
|
|
+ unsigned long utrace_flags;
|
|
+#endif
|
|
+
|
|
/* Thread group tracking */
|
|
u32 parent_exec_id;
|
|
u32 self_exec_id;
|
|
@@ -2033,6 +2038,7 @@ extern int kill_pgrp(struct pid *pid, int sig, int priv);
|
|
extern int kill_pid(struct pid *pid, int sig, int priv);
|
|
extern int kill_proc_info(int, struct siginfo *, pid_t);
|
|
extern int do_notify_parent(struct task_struct *, int);
|
|
+extern void do_notify_parent_cldstop(struct task_struct *, int);
|
|
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
|
|
extern void force_sig(int, struct task_struct *);
|
|
extern int send_sig(int, struct task_struct *, int);
|
|
diff --git a/include/linux/tracehook.h b/include/linux/tracehook.h
|
|
index 10db010..71fa250 100644
|
|
--- a/include/linux/tracehook.h
|
|
+++ b/include/linux/tracehook.h
|
|
@@ -49,6 +49,7 @@
|
|
#include <linux/sched.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/security.h>
|
|
+#include <linux/utrace.h>
|
|
struct linux_binprm;
|
|
|
|
/**
|
|
@@ -63,6 +64,8 @@ struct linux_binprm;
|
|
*/
|
|
static inline int tracehook_expect_breakpoints(struct task_struct *task)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(task) & UTRACE_EVENT(SIGNAL_CORE)))
|
|
+ return 1;
|
|
return (task_ptrace(task) & PT_PTRACED) != 0;
|
|
}
|
|
|
|
@@ -111,6 +114,9 @@ static inline void ptrace_report_syscall(struct pt_regs *regs)
|
|
static inline __must_check int tracehook_report_syscall_entry(
|
|
struct pt_regs *regs)
|
|
{
|
|
+ if ((task_utrace_flags(current) & UTRACE_EVENT(SYSCALL_ENTRY)) &&
|
|
+ utrace_report_syscall_entry(regs))
|
|
+ return 1;
|
|
ptrace_report_syscall(regs);
|
|
return 0;
|
|
}
|
|
@@ -134,7 +140,10 @@ static inline __must_check int tracehook_report_syscall_entry(
|
|
*/
|
|
static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step)
|
|
{
|
|
- if (step) {
|
|
+ if (task_utrace_flags(current) & UTRACE_EVENT(SYSCALL_EXIT))
|
|
+ utrace_report_syscall_exit(regs);
|
|
+
|
|
+ if (step && (task_ptrace(current) & PT_PTRACED)) {
|
|
siginfo_t info;
|
|
user_single_step_siginfo(current, regs, &info);
|
|
force_sig_info(SIGTRAP, &info, current);
|
|
@@ -156,7 +165,7 @@ static inline int tracehook_unsafe_exec(struct task_struct *task)
|
|
{
|
|
int unsafe = 0;
|
|
int ptrace = task_ptrace(task);
|
|
- if (ptrace & PT_PTRACED) {
|
|
+ if (ptrace) {
|
|
if (ptrace & PT_PTRACE_CAP)
|
|
unsafe |= LSM_UNSAFE_PTRACE_CAP;
|
|
else
|
|
@@ -178,7 +187,7 @@ static inline int tracehook_unsafe_exec(struct task_struct *task)
|
|
*/
|
|
static inline struct task_struct *tracehook_tracer_task(struct task_struct *tsk)
|
|
{
|
|
- if (task_ptrace(tsk) & PT_PTRACED)
|
|
+ if (task_ptrace(tsk))
|
|
return rcu_dereference(tsk->parent);
|
|
return NULL;
|
|
}
|
|
@@ -201,6 +210,8 @@ static inline void tracehook_report_exec(struct linux_binfmt *fmt,
|
|
struct linux_binprm *bprm,
|
|
struct pt_regs *regs)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(EXEC)))
|
|
+ utrace_report_exec(fmt, bprm, regs);
|
|
if (!ptrace_event(PT_TRACE_EXEC, PTRACE_EVENT_EXEC, 0) &&
|
|
unlikely(task_ptrace(current) & PT_PTRACED))
|
|
send_sig(SIGTRAP, current, 0);
|
|
@@ -218,10 +229,37 @@ static inline void tracehook_report_exec(struct linux_binfmt *fmt,
|
|
*/
|
|
static inline void tracehook_report_exit(long *exit_code)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(EXIT)))
|
|
+ utrace_report_exit(exit_code);
|
|
ptrace_event(PT_TRACE_EXIT, PTRACE_EVENT_EXIT, *exit_code);
|
|
}
|
|
|
|
/**
|
|
+ * tracehook_init_task - task_struct has just been copied
|
|
+ * @task: new &struct task_struct just copied from parent
|
|
+ *
|
|
+ * Called from do_fork() when @task has just been duplicated.
|
|
+ * After this, @task will be passed to tracehook_free_task()
|
|
+ * even if the rest of its setup fails before it is fully created.
|
|
+ */
|
|
+static inline void tracehook_init_task(struct task_struct *task)
|
|
+{
|
|
+ utrace_init_task(task);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * tracehook_free_task - task_struct is being freed
|
|
+ * @task: dead &struct task_struct being freed
|
|
+ *
|
|
+ * Called from free_task() when @task is no longer in use.
|
|
+ */
|
|
+static inline void tracehook_free_task(struct task_struct *task)
|
|
+{
|
|
+ if (task_utrace_struct(task))
|
|
+ utrace_free_task(task);
|
|
+}
|
|
+
|
|
+/**
|
|
* tracehook_prepare_clone - prepare for new child to be cloned
|
|
* @clone_flags: %CLONE_* flags from clone/fork/vfork system call
|
|
*
|
|
@@ -285,6 +323,8 @@ static inline void tracehook_report_clone(struct pt_regs *regs,
|
|
unsigned long clone_flags,
|
|
pid_t pid, struct task_struct *child)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(CLONE)))
|
|
+ utrace_report_clone(clone_flags, child);
|
|
if (unlikely(task_ptrace(child))) {
|
|
/*
|
|
* It doesn't matter who attached/attaching to this
|
|
@@ -317,6 +357,9 @@ static inline void tracehook_report_clone_complete(int trace,
|
|
pid_t pid,
|
|
struct task_struct *child)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(CLONE)) &&
|
|
+ (clone_flags & CLONE_VFORK))
|
|
+ utrace_finish_vfork(current);
|
|
if (unlikely(trace))
|
|
ptrace_event(0, trace, pid);
|
|
}
|
|
@@ -351,6 +394,10 @@ static inline void tracehook_report_vfork_done(struct task_struct *child,
|
|
*/
|
|
static inline void tracehook_prepare_release_task(struct task_struct *task)
|
|
{
|
|
+ /* see utrace_add_engine() about this barrier */
|
|
+ smp_mb();
|
|
+ if (task_utrace_flags(task))
|
|
+ utrace_maybe_reap(task, task_utrace_struct(task), true);
|
|
}
|
|
|
|
/**
|
|
@@ -365,6 +412,7 @@ static inline void tracehook_prepare_release_task(struct task_struct *task)
|
|
static inline void tracehook_finish_release_task(struct task_struct *task)
|
|
{
|
|
ptrace_release_task(task);
|
|
+ BUG_ON(task->exit_state != EXIT_DEAD);
|
|
}
|
|
|
|
/**
|
|
@@ -386,7 +434,9 @@ static inline void tracehook_signal_handler(int sig, siginfo_t *info,
|
|
const struct k_sigaction *ka,
|
|
struct pt_regs *regs, int stepping)
|
|
{
|
|
- if (stepping)
|
|
+ if (task_utrace_flags(current))
|
|
+ utrace_signal_handler(current, stepping);
|
|
+ if (stepping && (task_ptrace(current) & PT_PTRACED))
|
|
ptrace_notify(SIGTRAP);
|
|
}
|
|
|
|
@@ -403,6 +453,8 @@ static inline void tracehook_signal_handler(int sig, siginfo_t *info,
|
|
static inline int tracehook_consider_ignored_signal(struct task_struct *task,
|
|
int sig)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(task) & UTRACE_EVENT(SIGNAL_IGN)))
|
|
+ return 1;
|
|
return (task_ptrace(task) & PT_PTRACED) != 0;
|
|
}
|
|
|
|
@@ -422,6 +474,9 @@ static inline int tracehook_consider_ignored_signal(struct task_struct *task,
|
|
static inline int tracehook_consider_fatal_signal(struct task_struct *task,
|
|
int sig)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(task) & (UTRACE_EVENT(SIGNAL_TERM) |
|
|
+ UTRACE_EVENT(SIGNAL_CORE))))
|
|
+ return 1;
|
|
return (task_ptrace(task) & PT_PTRACED) != 0;
|
|
}
|
|
|
|
@@ -436,6 +491,8 @@ static inline int tracehook_consider_fatal_signal(struct task_struct *task,
|
|
*/
|
|
static inline int tracehook_force_sigpending(void)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(current)))
|
|
+ return utrace_interrupt_pending();
|
|
return 0;
|
|
}
|
|
|
|
@@ -465,6 +522,8 @@ static inline int tracehook_get_signal(struct task_struct *task,
|
|
siginfo_t *info,
|
|
struct k_sigaction *return_ka)
|
|
{
|
|
+ if (unlikely(task_utrace_flags(task)))
|
|
+ return utrace_get_signal(task, regs, info, return_ka);
|
|
return 0;
|
|
}
|
|
|
|
@@ -492,7 +551,9 @@ static inline int tracehook_get_signal(struct task_struct *task,
|
|
*/
|
|
static inline int tracehook_notify_jctl(int notify, int why)
|
|
{
|
|
- return notify ?: (current->ptrace & PT_PTRACED) ? why : 0;
|
|
+ if (task_utrace_flags(current) & UTRACE_EVENT(JCTL))
|
|
+ utrace_report_jctl(notify, why);
|
|
+ return notify ?: task_ptrace(current) ? why : 0;
|
|
}
|
|
|
|
/**
|
|
@@ -502,6 +563,8 @@ static inline int tracehook_notify_jctl(int notify, int why)
|
|
*/
|
|
static inline void tracehook_finish_jctl(void)
|
|
{
|
|
+ if (task_utrace_flags(current))
|
|
+ utrace_finish_stop();
|
|
}
|
|
|
|
#define DEATH_REAP -1
|
|
@@ -524,6 +587,8 @@ static inline void tracehook_finish_jctl(void)
|
|
static inline int tracehook_notify_death(struct task_struct *task,
|
|
void **death_cookie, int group_dead)
|
|
{
|
|
+ *death_cookie = task_utrace_struct(task);
|
|
+
|
|
if (task_detached(task))
|
|
return task->ptrace ? SIGCHLD : DEATH_REAP;
|
|
|
|
@@ -560,6 +625,15 @@ static inline void tracehook_report_death(struct task_struct *task,
|
|
int signal, void *death_cookie,
|
|
int group_dead)
|
|
{
|
|
+ /*
|
|
+ * If utrace_set_events() was just called to enable
|
|
+ * UTRACE_EVENT(DEATH), then we are obliged to call
|
|
+ * utrace_report_death() and not miss it. utrace_set_events()
|
|
+ * checks @task->exit_state under tasklist_lock to synchronize
|
|
+ * with exit_notify(), the caller.
|
|
+ */
|
|
+ if (task_utrace_flags(task) & _UTRACE_DEATH_EVENTS)
|
|
+ utrace_report_death(task, death_cookie, group_dead, signal);
|
|
}
|
|
|
|
#ifdef TIF_NOTIFY_RESUME
|
|
@@ -589,10 +663,21 @@ static inline void set_notify_resume(struct task_struct *task)
|
|
* asynchronously, this will be called again before we return to
|
|
* user mode.
|
|
*
|
|
- * Called without locks.
|
|
+ * Called without locks. However, on some machines this may be
|
|
+ * called with interrupts disabled.
|
|
*/
|
|
static inline void tracehook_notify_resume(struct pt_regs *regs)
|
|
{
|
|
+ struct task_struct *task = current;
|
|
+ /*
|
|
+ * Prevent the following store/load from getting ahead of the
|
|
+ * caller which clears TIF_NOTIFY_RESUME. This pairs with the
|
|
+ * implicit mb() before setting TIF_NOTIFY_RESUME in
|
|
+ * set_notify_resume().
|
|
+ */
|
|
+ smp_mb();
|
|
+ if (task_utrace_flags(task))
|
|
+ utrace_resume(task, regs);
|
|
}
|
|
#endif /* TIF_NOTIFY_RESUME */
|
|
|
|
diff --git a/include/linux/utrace.h b/include/linux/utrace.h
|
|
new file mode 100644
|
|
index 0000000..f251efe
|
|
--- /dev/null
|
|
+++ b/include/linux/utrace.h
|
|
@@ -0,0 +1,692 @@
|
|
+/*
|
|
+ * utrace infrastructure interface for debugging user processes
|
|
+ *
|
|
+ * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
|
|
+ *
|
|
+ * This copyrighted material is made available to anyone wishing to use,
|
|
+ * modify, copy, or redistribute it subject to the terms and conditions
|
|
+ * of the GNU General Public License v.2.
|
|
+ *
|
|
+ * Red Hat Author: Roland McGrath.
|
|
+ *
|
|
+ * This interface allows for notification of interesting events in a
|
|
+ * thread. It also mediates access to thread state such as registers.
|
|
+ * Multiple unrelated users can be associated with a single thread.
|
|
+ * We call each of these a tracing engine.
|
|
+ *
|
|
+ * A tracing engine starts by calling utrace_attach_task() or
|
|
+ * utrace_attach_pid() on the chosen thread, passing in a set of hooks
|
|
+ * (&struct utrace_engine_ops), and some associated data. This produces a
|
|
+ * &struct utrace_engine, which is the handle used for all other
|
|
+ * operations. An attached engine has its ops vector, its data, and an
|
|
+ * event mask controlled by utrace_set_events().
|
|
+ *
|
|
+ * For each event bit that is set, that engine will get the
|
|
+ * appropriate ops->report_*() callback when the event occurs. The
|
|
+ * &struct utrace_engine_ops need not provide callbacks for an event
|
|
+ * unless the engine sets one of the associated event bits.
|
|
+ */
|
|
+
|
|
+#ifndef _LINUX_UTRACE_H
|
|
+#define _LINUX_UTRACE_H 1
|
|
+
|
|
+#include <linux/list.h>
|
|
+#include <linux/kref.h>
|
|
+#include <linux/signal.h>
|
|
+#include <linux/sched.h>
|
|
+
|
|
+struct linux_binprm;
|
|
+struct pt_regs;
|
|
+struct utrace;
|
|
+struct user_regset;
|
|
+struct user_regset_view;
|
|
+
|
|
+/*
|
|
+ * Event bits passed to utrace_set_events().
|
|
+ * These appear in &struct task_struct.@utrace_flags
|
|
+ * and &struct utrace_engine.@flags.
|
|
+ */
|
|
+enum utrace_events {
|
|
+ _UTRACE_EVENT_QUIESCE, /* Thread is available for examination. */
|
|
+ _UTRACE_EVENT_REAP, /* Zombie reaped, no more tracing possible. */
|
|
+ _UTRACE_EVENT_CLONE, /* Successful clone/fork/vfork just done. */
|
|
+ _UTRACE_EVENT_EXEC, /* Successful execve just completed. */
|
|
+ _UTRACE_EVENT_EXIT, /* Thread exit in progress. */
|
|
+ _UTRACE_EVENT_DEATH, /* Thread has died. */
|
|
+ _UTRACE_EVENT_SYSCALL_ENTRY, /* User entered kernel for system call. */
|
|
+ _UTRACE_EVENT_SYSCALL_EXIT, /* Returning to user after system call. */
|
|
+ _UTRACE_EVENT_SIGNAL, /* Signal delivery will run a user handler. */
|
|
+ _UTRACE_EVENT_SIGNAL_IGN, /* No-op signal to be delivered. */
|
|
+ _UTRACE_EVENT_SIGNAL_STOP, /* Signal delivery will suspend. */
|
|
+ _UTRACE_EVENT_SIGNAL_TERM, /* Signal delivery will terminate. */
|
|
+ _UTRACE_EVENT_SIGNAL_CORE, /* Signal delivery will dump core. */
|
|
+ _UTRACE_EVENT_JCTL, /* Job control stop or continue completed. */
|
|
+ _UTRACE_NEVENTS
|
|
+};
|
|
+#define UTRACE_EVENT(type) (1UL << _UTRACE_EVENT_##type)
|
|
+
|
|
+/*
|
|
+ * All the kinds of signal events.
|
|
+ * These all use the @report_signal() callback.
|
|
+ */
|
|
+#define UTRACE_EVENT_SIGNAL_ALL (UTRACE_EVENT(SIGNAL) \
|
|
+ | UTRACE_EVENT(SIGNAL_IGN) \
|
|
+ | UTRACE_EVENT(SIGNAL_STOP) \
|
|
+ | UTRACE_EVENT(SIGNAL_TERM) \
|
|
+ | UTRACE_EVENT(SIGNAL_CORE))
|
|
+/*
|
|
+ * Both kinds of syscall events; these call the @report_syscall_entry()
|
|
+ * and @report_syscall_exit() callbacks, respectively.
|
|
+ */
|
|
+#define UTRACE_EVENT_SYSCALL \
|
|
+ (UTRACE_EVENT(SYSCALL_ENTRY) | UTRACE_EVENT(SYSCALL_EXIT))
|
|
+
|
|
+/*
|
|
+ * The event reports triggered synchronously by task death.
|
|
+ */
|
|
+#define _UTRACE_DEATH_EVENTS (UTRACE_EVENT(DEATH) | UTRACE_EVENT(QUIESCE))
|
|
+
|
|
+/*
|
|
+ * Hooks in <linux/tracehook.h> call these entry points to the utrace dispatch.
|
|
+ */
|
|
+void utrace_free_task(struct task_struct *);
|
|
+bool utrace_interrupt_pending(void);
|
|
+void utrace_resume(struct task_struct *, struct pt_regs *);
|
|
+void utrace_finish_stop(void);
|
|
+void utrace_maybe_reap(struct task_struct *, struct utrace *, bool);
|
|
+int utrace_get_signal(struct task_struct *, struct pt_regs *,
|
|
+ siginfo_t *, struct k_sigaction *);
|
|
+void utrace_report_clone(unsigned long, struct task_struct *);
|
|
+void utrace_finish_vfork(struct task_struct *);
|
|
+void utrace_report_exit(long *exit_code);
|
|
+void utrace_report_death(struct task_struct *, struct utrace *, bool, int);
|
|
+void utrace_report_jctl(int notify, int type);
|
|
+void utrace_report_exec(struct linux_binfmt *, struct linux_binprm *,
|
|
+ struct pt_regs *regs);
|
|
+bool utrace_report_syscall_entry(struct pt_regs *);
|
|
+void utrace_report_syscall_exit(struct pt_regs *);
|
|
+void utrace_signal_handler(struct task_struct *, int);
|
|
+
|
|
+#ifndef CONFIG_UTRACE
|
|
+
|
|
+/*
|
|
+ * <linux/tracehook.h> uses these accessors to avoid #ifdef CONFIG_UTRACE.
|
|
+ */
|
|
+static inline unsigned long task_utrace_flags(struct task_struct *task)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+static inline struct utrace *task_utrace_struct(struct task_struct *task)
|
|
+{
|
|
+ return NULL;
|
|
+}
|
|
+static inline void utrace_init_task(struct task_struct *child)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline void task_utrace_proc_status(struct seq_file *m,
|
|
+ struct task_struct *p)
|
|
+{
|
|
+}
|
|
+
|
|
+#else /* CONFIG_UTRACE */
|
|
+
|
|
+static inline unsigned long task_utrace_flags(struct task_struct *task)
|
|
+{
|
|
+ return task->utrace_flags;
|
|
+}
|
|
+
|
|
+static inline struct utrace *task_utrace_struct(struct task_struct *task)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+
|
|
+ /*
|
|
+ * This barrier ensures that any prior load of task->utrace_flags
|
|
+ * is ordered before this load of task->utrace. We use those
|
|
+ * utrace_flags checks in the hot path to decide to call into
|
|
+ * the utrace code. The first attach installs task->utrace before
|
|
+ * setting task->utrace_flags nonzero with implicit barrier in
|
|
+ * between, see utrace_add_engine().
|
|
+ */
|
|
+ smp_rmb();
|
|
+ utrace = task->utrace;
|
|
+
|
|
+ smp_read_barrier_depends(); /* See utrace_task_alloc(). */
|
|
+ return utrace;
|
|
+}
|
|
+
|
|
+static inline void utrace_init_task(struct task_struct *task)
|
|
+{
|
|
+ task->utrace_flags = 0;
|
|
+ task->utrace = NULL;
|
|
+}
|
|
+
|
|
+void task_utrace_proc_status(struct seq_file *m, struct task_struct *p);
|
|
+
|
|
+
|
|
+/*
|
|
+ * Version number of the API defined in this file. This will change
|
|
+ * whenever a tracing engine's code would need some updates to keep
|
|
+ * working. We maintain this here for the benefit of tracing engine code
|
|
+ * that is developed concurrently with utrace API improvements before they
|
|
+ * are merged into the kernel, making LINUX_VERSION_CODE checks unwieldy.
|
|
+ */
|
|
+#define UTRACE_API_VERSION 20091216
|
|
+
|
|
+/**
|
|
+ * enum utrace_resume_action - engine's choice of action for a traced task
|
|
+ * @UTRACE_STOP: Stay quiescent after callbacks.
|
|
+ * @UTRACE_INTERRUPT: Make @report_signal() callback soon.
|
|
+ * @UTRACE_REPORT: Make some callback soon.
|
|
+ * @UTRACE_SINGLESTEP: Resume in user mode for one instruction.
|
|
+ * @UTRACE_BLOCKSTEP: Resume in user mode until next branch.
|
|
+ * @UTRACE_RESUME: Resume normally in user mode.
|
|
+ * @UTRACE_DETACH: Detach my engine (implies %UTRACE_RESUME).
|
|
+ *
|
|
+ * See utrace_control() for detailed descriptions of each action. This is
|
|
+ * encoded in the @action argument and the return value for every callback
|
|
+ * with a &u32 return value.
|
|
+ *
|
|
+ * The order of these is important. When there is more than one engine,
|
|
+ * each supplies its choice and the smallest value prevails.
|
|
+ */
|
|
+enum utrace_resume_action {
|
|
+ UTRACE_STOP,
|
|
+ UTRACE_INTERRUPT,
|
|
+ UTRACE_REPORT,
|
|
+ UTRACE_SINGLESTEP,
|
|
+ UTRACE_BLOCKSTEP,
|
|
+ UTRACE_RESUME,
|
|
+ UTRACE_DETACH,
|
|
+ UTRACE_RESUME_MAX
|
|
+};
|
|
+#define UTRACE_RESUME_BITS (ilog2(UTRACE_RESUME_MAX) + 1)
|
|
+#define UTRACE_RESUME_MASK ((1 << UTRACE_RESUME_BITS) - 1)
|
|
+
|
|
+/**
|
|
+ * utrace_resume_action - &enum utrace_resume_action from callback action
|
|
+ * @action: &u32 callback @action argument or return value
|
|
+ *
|
|
+ * This extracts the &enum utrace_resume_action from @action,
|
|
+ * which is the @action argument to a &struct utrace_engine_ops
|
|
+ * callback or the return value from one.
|
|
+ */
|
|
+static inline enum utrace_resume_action utrace_resume_action(u32 action)
|
|
+{
|
|
+ return action & UTRACE_RESUME_MASK;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * enum utrace_signal_action - disposition of signal
|
|
+ * @UTRACE_SIGNAL_DELIVER: Deliver according to sigaction.
|
|
+ * @UTRACE_SIGNAL_IGN: Ignore the signal.
|
|
+ * @UTRACE_SIGNAL_TERM: Terminate the process.
|
|
+ * @UTRACE_SIGNAL_CORE: Terminate with core dump.
|
|
+ * @UTRACE_SIGNAL_STOP: Deliver as absolute stop.
|
|
+ * @UTRACE_SIGNAL_TSTP: Deliver as job control stop.
|
|
+ * @UTRACE_SIGNAL_REPORT: Reporting before pending signals.
|
|
+ * @UTRACE_SIGNAL_HANDLER: Reporting after signal handler setup.
|
|
+ *
|
|
+ * This is encoded in the @action argument and the return value for
|
|
+ * a @report_signal() callback. It says what will happen to the
|
|
+ * signal described by the &siginfo_t parameter to the callback.
|
|
+ *
|
|
+ * The %UTRACE_SIGNAL_REPORT value is used in an @action argument when
|
|
+ * a tracing report is being made before dequeuing any pending signal.
|
|
+ * If this is immediately after a signal handler has been set up, then
|
|
+ * %UTRACE_SIGNAL_HANDLER is used instead. A @report_signal callback
|
|
+ * that uses %UTRACE_SIGNAL_DELIVER|%UTRACE_SINGLESTEP will ensure
|
|
+ * it sees a %UTRACE_SIGNAL_HANDLER report.
|
|
+ */
|
|
+enum utrace_signal_action {
|
|
+ UTRACE_SIGNAL_DELIVER = 0x00,
|
|
+ UTRACE_SIGNAL_IGN = 0x10,
|
|
+ UTRACE_SIGNAL_TERM = 0x20,
|
|
+ UTRACE_SIGNAL_CORE = 0x30,
|
|
+ UTRACE_SIGNAL_STOP = 0x40,
|
|
+ UTRACE_SIGNAL_TSTP = 0x50,
|
|
+ UTRACE_SIGNAL_REPORT = 0x60,
|
|
+ UTRACE_SIGNAL_HANDLER = 0x70
|
|
+};
|
|
+#define UTRACE_SIGNAL_MASK 0xf0
|
|
+#define UTRACE_SIGNAL_HOLD 0x100 /* Flag, push signal back on queue. */
|
|
+
|
|
+/**
|
|
+ * utrace_signal_action - &enum utrace_signal_action from callback action
|
|
+ * @action: @report_signal callback @action argument or return value
|
|
+ *
|
|
+ * This extracts the &enum utrace_signal_action from @action, which
|
|
+ * is the @action argument to a @report_signal callback or the
|
|
+ * return value from one.
|
|
+ */
|
|
+static inline enum utrace_signal_action utrace_signal_action(u32 action)
|
|
+{
|
|
+ return action & UTRACE_SIGNAL_MASK;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * enum utrace_syscall_action - disposition of system call attempt
|
|
+ * @UTRACE_SYSCALL_RUN: Run the system call.
|
|
+ * @UTRACE_SYSCALL_ABORT: Don't run the system call.
|
|
+ *
|
|
+ * This is encoded in the @action argument and the return value for
|
|
+ * a @report_syscall_entry callback.
|
|
+ */
|
|
+enum utrace_syscall_action {
|
|
+ UTRACE_SYSCALL_RUN = 0x00,
|
|
+ UTRACE_SYSCALL_ABORT = 0x10
|
|
+};
|
|
+#define UTRACE_SYSCALL_MASK 0xf0
|
|
+#define UTRACE_SYSCALL_RESUMED 0x100 /* Flag, report_syscall_entry() repeats */
|
|
+
|
|
+/**
|
|
+ * utrace_syscall_action - &enum utrace_syscall_action from callback action
|
|
+ * @action: @report_syscall_entry callback @action or return value
|
|
+ *
|
|
+ * This extracts the &enum utrace_syscall_action from @action, which
|
|
+ * is the @action argument to a @report_syscall_entry callback or the
|
|
+ * return value from one.
|
|
+ */
|
|
+static inline enum utrace_syscall_action utrace_syscall_action(u32 action)
|
|
+{
|
|
+ return action & UTRACE_SYSCALL_MASK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Flags for utrace_attach_task() and utrace_attach_pid().
|
|
+ */
|
|
+#define UTRACE_ATTACH_MATCH_OPS 0x0001 /* Match engines on ops. */
|
|
+#define UTRACE_ATTACH_MATCH_DATA 0x0002 /* Match engines on data. */
|
|
+#define UTRACE_ATTACH_MATCH_MASK 0x000f
|
|
+#define UTRACE_ATTACH_CREATE 0x0010 /* Attach a new engine. */
|
|
+#define UTRACE_ATTACH_EXCLUSIVE 0x0020 /* Refuse if existing match. */
|
|
+
|
|
+/**
|
|
+ * struct utrace_engine - per-engine structure
|
|
+ * @ops: &struct utrace_engine_ops pointer passed to utrace_attach_task()
|
|
+ * @data: engine-private &void * passed to utrace_attach_task()
|
|
+ * @flags: event mask set by utrace_set_events() plus internal flag bits
|
|
+ *
|
|
+ * The task itself never has to worry about engines detaching while
|
|
+ * it's doing event callbacks. These structures are removed from the
|
|
+ * task's active list only when it's stopped, or by the task itself.
|
|
+ *
|
|
+ * utrace_engine_get() and utrace_engine_put() maintain a reference count.
|
|
+ * When it drops to zero, the structure is freed. One reference is held
|
|
+ * implicitly while the engine is attached to its task.
|
|
+ */
|
|
+struct utrace_engine {
|
|
+/* private: */
|
|
+ struct kref kref;
|
|
+ void (*release)(void *);
|
|
+ struct list_head entry;
|
|
+
|
|
+/* public: */
|
|
+ const struct utrace_engine_ops *ops;
|
|
+ void *data;
|
|
+
|
|
+ unsigned long flags;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * utrace_engine_get - acquire a reference on a &struct utrace_engine
|
|
+ * @engine: &struct utrace_engine pointer
|
|
+ *
|
|
+ * You must hold a reference on @engine, and you get another.
|
|
+ */
|
|
+static inline void utrace_engine_get(struct utrace_engine *engine)
|
|
+{
|
|
+ kref_get(&engine->kref);
|
|
+}
|
|
+
|
|
+void __utrace_engine_release(struct kref *);
|
|
+
|
|
+/**
|
|
+ * utrace_engine_put - release a reference on a &struct utrace_engine
|
|
+ * @engine: &struct utrace_engine pointer
|
|
+ *
|
|
+ * You must hold a reference on @engine, and you lose that reference.
|
|
+ * If it was the last one, @engine becomes an invalid pointer.
|
|
+ */
|
|
+static inline void utrace_engine_put(struct utrace_engine *engine)
|
|
+{
|
|
+ kref_put(&engine->kref, __utrace_engine_release);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * struct utrace_engine_ops - tracing engine callbacks
|
|
+ *
|
|
+ * Each @report_*() callback corresponds to an %UTRACE_EVENT(*) bit.
|
|
+ * utrace_set_events() calls on @engine choose which callbacks will
|
|
+ * be made to @engine from @task.
|
|
+ *
|
|
+ * Most callbacks take an @action argument, giving the resume action
|
|
+ * chosen by other tracing engines. All callbacks take an @engine
|
|
+ * argument. The @report_reap callback takes a @task argument that
|
|
+ * might or might not be @current. All other @report_* callbacks
|
|
+ * report an event in the @current task.
|
|
+ *
|
|
+ * For some calls, @action also includes bits specific to that event
|
|
+ * and utrace_resume_action() is used to extract the resume action.
|
|
+ * This shows what would happen if @engine wasn't there, or will if
|
|
+ * the callback's return value uses %UTRACE_RESUME. This always
|
|
+ * starts as %UTRACE_RESUME when no other tracing is being done on
|
|
+ * this task.
|
|
+ *
|
|
+ * All return values contain &enum utrace_resume_action bits. For
|
|
+ * some calls, other bits specific to that kind of event are added to
|
|
+ * the resume action bits with OR. These are the same bits used in
|
|
+ * the @action argument. The resume action returned by a callback
|
|
+ * does not override previous engines' choices, it only says what
|
|
+ * @engine wants done. What @current actually does is the action that's
|
|
+ * most constrained among the choices made by all attached engines.
|
|
+ * See utrace_control() for more information on the actions.
|
|
+ *
|
|
+ * When %UTRACE_STOP is used in @report_syscall_entry, then @current
|
|
+ * stops before attempting the system call. In this case, another
|
|
+ * @report_syscall_entry callback will follow after @current resumes if
|
|
+ * %UTRACE_REPORT or %UTRACE_INTERRUPT was returned by some callback
|
|
+ * or passed to utrace_control(). In a second or later callback,
|
|
+ * %UTRACE_SYSCALL_RESUMED is set in the @action argument to indicate
|
|
+ * a repeat callback still waiting to attempt the same system call
|
|
+ * invocation. This repeat callback gives each engine an opportunity
|
|
+ * to reexamine registers another engine might have changed while
|
|
+ * @current was held in %UTRACE_STOP.
|
|
+ *
|
|
+ * In other cases, the resume action does not take effect until @current
|
|
+ * is ready to check for signals and return to user mode. If there
|
|
+ * are more callbacks to be made, the last round of calls determines
|
|
+ * the final action. A @report_quiesce callback with @event zero, or
|
|
+ * a @report_signal callback, will always be the last one made before
|
|
+ * @current resumes. Only %UTRACE_STOP is "sticky"--if @engine returned
|
|
+ * %UTRACE_STOP then @current stays stopped unless @engine returns
|
|
+ * different from a following callback.
|
|
+ *
|
|
+ * The report_death() and report_reap() callbacks do not take @action
|
|
+ * arguments, and only %UTRACE_DETACH is meaningful in the return value
|
|
+ * from a report_death() callback. None of the resume actions applies
|
|
+ * to a dead thread.
|
|
+ *
|
|
+ * All @report_*() hooks are called with no locks held, in a generally
|
|
+ * safe environment when we will be returning to user mode soon (or just
|
|
+ * entered the kernel). It is fine to block for memory allocation and
|
|
+ * the like, but all hooks are asynchronous and must not block on
|
|
+ * external events! If you want the thread to block, use %UTRACE_STOP
|
|
+ * in your hook's return value; then later wake it up with utrace_control().
|
|
+ *
|
|
+ * @report_quiesce:
|
|
+ * Requested by %UTRACE_EVENT(%QUIESCE).
|
|
+ * This does not indicate any event, but just that @current is in a
|
|
+ * safe place for examination. This call is made before each specific
|
|
+ * event callback, except for @report_reap. The @event argument gives
|
|
+ * the %UTRACE_EVENT(@which) value for the event occurring. This
|
|
+ * callback might be made for events @engine has not requested, if
|
|
+ * some other engine is tracing the event; calling utrace_set_events()
|
|
+ * call here can request the immediate callback for this occurrence of
|
|
+ * @event. @event is zero when there is no other event, @current is
|
|
+ * now ready to check for signals and return to user mode, and some
|
|
+ * engine has used %UTRACE_REPORT or %UTRACE_INTERRUPT to request this
|
|
+ * callback. For this case, if @report_signal is not %NULL, the
|
|
+ * @report_quiesce callback may be replaced with a @report_signal
|
|
+ * callback passing %UTRACE_SIGNAL_REPORT in its @action argument,
|
|
+ * whenever @current is entering the signal-check path anyway.
|
|
+ *
|
|
+ * @report_signal:
|
|
+ * Requested by %UTRACE_EVENT(%SIGNAL_*) or %UTRACE_EVENT(%QUIESCE).
|
|
+ * Use utrace_signal_action() and utrace_resume_action() on @action.
|
|
+ * The signal action is %UTRACE_SIGNAL_REPORT when some engine has
|
|
+ * used %UTRACE_REPORT or %UTRACE_INTERRUPT; the callback can choose
|
|
+ * to stop or to deliver an artificial signal, before pending signals.
|
|
+ * It's %UTRACE_SIGNAL_HANDLER instead when signal handler setup just
|
|
+ * finished (after a previous %UTRACE_SIGNAL_DELIVER return); this
|
|
+ * serves in lieu of any %UTRACE_SIGNAL_REPORT callback requested by
|
|
+ * %UTRACE_REPORT or %UTRACE_INTERRUPT, and is also implicitly
|
|
+ * requested by %UTRACE_SINGLESTEP or %UTRACE_BLOCKSTEP into the
|
|
+ * signal delivery. The other signal actions indicate a signal about
|
|
+ * to be delivered; the previous engine's return value sets the signal
|
|
+ * action seen by the the following engine's callback. The @info data
|
|
+ * can be changed at will, including @info->si_signo. The settings in
|
|
+ * @return_ka determines what %UTRACE_SIGNAL_DELIVER does. @orig_ka
|
|
+ * is what was in force before other tracing engines intervened, and
|
|
+ * it's %NULL when this report began as %UTRACE_SIGNAL_REPORT or
|
|
+ * %UTRACE_SIGNAL_HANDLER. For a report without a new signal, @info
|
|
+ * is left uninitialized and must be set completely by an engine that
|
|
+ * chooses to deliver a signal; if there was a previous @report_signal
|
|
+ * callback ending in %UTRACE_STOP and it was just resumed using
|
|
+ * %UTRACE_REPORT or %UTRACE_INTERRUPT, then @info is left unchanged
|
|
+ * from the previous callback. In this way, the original signal can
|
|
+ * be left in @info while returning %UTRACE_STOP|%UTRACE_SIGNAL_IGN
|
|
+ * and then found again when resuming with %UTRACE_INTERRUPT.
|
|
+ * The %UTRACE_SIGNAL_HOLD flag bit can be OR'd into the return value,
|
|
+ * and might be in @action if the previous engine returned it. This
|
|
+ * flag asks that the signal in @info be pushed back on @current's queue
|
|
+ * so that it will be seen again after whatever action is taken now.
|
|
+ *
|
|
+ * @report_clone:
|
|
+ * Requested by %UTRACE_EVENT(%CLONE).
|
|
+ * Event reported for parent, before the new task @child might run.
|
|
+ * @clone_flags gives the flags used in the clone system call, or
|
|
+ * equivalent flags for a fork() or vfork() system call. This
|
|
+ * function can use utrace_attach_task() on @child. Then passing
|
|
+ * %UTRACE_STOP to utrace_control() on @child here keeps the child
|
|
+ * stopped before it ever runs in user mode, %UTRACE_REPORT or
|
|
+ * %UTRACE_INTERRUPT ensures a callback from @child before it
|
|
+ * starts in user mode.
|
|
+ *
|
|
+ * @report_jctl:
|
|
+ * Requested by %UTRACE_EVENT(%JCTL).
|
|
+ * Job control event; @type is %CLD_STOPPED or %CLD_CONTINUED,
|
|
+ * indicating whether we are stopping or resuming now. If @notify
|
|
+ * is nonzero, @current is the last thread to stop and so will send
|
|
+ * %SIGCHLD to its parent after this callback; @notify reflects
|
|
+ * what the parent's %SIGCHLD has in @si_code, which can sometimes
|
|
+ * be %CLD_STOPPED even when @type is %CLD_CONTINUED.
|
|
+ *
|
|
+ * @report_exec:
|
|
+ * Requested by %UTRACE_EVENT(%EXEC).
|
|
+ * An execve system call has succeeded and the new program is about to
|
|
+ * start running. The initial user register state is handy to be tweaked
|
|
+ * directly in @regs. @fmt and @bprm gives the details of this exec.
|
|
+ *
|
|
+ * @report_syscall_entry:
|
|
+ * Requested by %UTRACE_EVENT(%SYSCALL_ENTRY).
|
|
+ * Thread has entered the kernel to request a system call.
|
|
+ * The user register state is handy to be tweaked directly in @regs.
|
|
+ * The @action argument contains an &enum utrace_syscall_action,
|
|
+ * use utrace_syscall_action() to extract it. The return value
|
|
+ * overrides the last engine's action for the system call.
|
|
+ * If the final action is %UTRACE_SYSCALL_ABORT, no system call
|
|
+ * is made. The details of the system call being attempted can
|
|
+ * be fetched here with syscall_get_nr() and syscall_get_arguments().
|
|
+ * The parameter registers can be changed with syscall_set_arguments().
|
|
+ * See above about the %UTRACE_SYSCALL_RESUMED flag in @action.
|
|
+ * Use %UTRACE_REPORT in the return value to guarantee you get
|
|
+ * another callback (with %UTRACE_SYSCALL_RESUMED flag) in case
|
|
+ * @current stops with %UTRACE_STOP before attempting the system call.
|
|
+ *
|
|
+ * @report_syscall_exit:
|
|
+ * Requested by %UTRACE_EVENT(%SYSCALL_EXIT).
|
|
+ * Thread is about to leave the kernel after a system call request.
|
|
+ * The user register state is handy to be tweaked directly in @regs.
|
|
+ * The results of the system call attempt can be examined here using
|
|
+ * syscall_get_error() and syscall_get_return_value(). It is safe
|
|
+ * here to call syscall_set_return_value() or syscall_rollback().
|
|
+ *
|
|
+ * @report_exit:
|
|
+ * Requested by %UTRACE_EVENT(%EXIT).
|
|
+ * Thread is exiting and cannot be prevented from doing so,
|
|
+ * but all its state is still live. The @code value will be
|
|
+ * the wait result seen by the parent, and can be changed by
|
|
+ * this engine or others. The @orig_code value is the real
|
|
+ * status, not changed by any tracing engine. Returning %UTRACE_STOP
|
|
+ * here keeps @current stopped before it cleans up its state and dies,
|
|
+ * so it can be examined by other processes. When @current is allowed
|
|
+ * to run, it will die and get to the @report_death callback.
|
|
+ *
|
|
+ * @report_death:
|
|
+ * Requested by %UTRACE_EVENT(%DEATH).
|
|
+ * Thread is really dead now. It might be reaped by its parent at
|
|
+ * any time, or self-reap immediately. Though the actual reaping
|
|
+ * may happen in parallel, a report_reap() callback will always be
|
|
+ * ordered after a report_death() callback.
|
|
+ *
|
|
+ * @report_reap:
|
|
+ * Requested by %UTRACE_EVENT(%REAP).
|
|
+ * Called when someone reaps the dead task (parent, init, or self).
|
|
+ * This means the parent called wait, or else this was a detached
|
|
+ * thread or a process whose parent ignores SIGCHLD.
|
|
+ * No more callbacks are made after this one.
|
|
+ * The engine is always detached.
|
|
+ * There is nothing more a tracing engine can do about this thread.
|
|
+ * After this callback, the @engine pointer will become invalid.
|
|
+ * The @task pointer may become invalid if get_task_struct() hasn't
|
|
+ * been used to keep it alive.
|
|
+ * An engine should always request this callback if it stores the
|
|
+ * @engine pointer or stores any pointer in @engine->data, so it
|
|
+ * can clean up its data structures.
|
|
+ * Unlike other callbacks, this can be called from the parent's context
|
|
+ * rather than from the traced thread itself--it must not delay the
|
|
+ * parent by blocking.
|
|
+ *
|
|
+ * @release:
|
|
+ * If not %NULL, this is called after the last utrace_engine_put()
|
|
+ * call for a &struct utrace_engine, which could be implicit after
|
|
+ * a %UTRACE_DETACH return from another callback. Its argument is
|
|
+ * the engine's @data member.
|
|
+ */
|
|
+struct utrace_engine_ops {
|
|
+ u32 (*report_quiesce)(u32 action, struct utrace_engine *engine,
|
|
+ unsigned long event);
|
|
+ u32 (*report_signal)(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs,
|
|
+ siginfo_t *info,
|
|
+ const struct k_sigaction *orig_ka,
|
|
+ struct k_sigaction *return_ka);
|
|
+ u32 (*report_clone)(u32 action, struct utrace_engine *engine,
|
|
+ unsigned long clone_flags,
|
|
+ struct task_struct *child);
|
|
+ u32 (*report_jctl)(u32 action, struct utrace_engine *engine,
|
|
+ int type, int notify);
|
|
+ u32 (*report_exec)(u32 action, struct utrace_engine *engine,
|
|
+ const struct linux_binfmt *fmt,
|
|
+ const struct linux_binprm *bprm,
|
|
+ struct pt_regs *regs);
|
|
+ u32 (*report_syscall_entry)(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs);
|
|
+ u32 (*report_syscall_exit)(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs);
|
|
+ u32 (*report_exit)(u32 action, struct utrace_engine *engine,
|
|
+ long orig_code, long *code);
|
|
+ u32 (*report_death)(struct utrace_engine *engine,
|
|
+ bool group_dead, int signal);
|
|
+ void (*report_reap)(struct utrace_engine *engine,
|
|
+ struct task_struct *task);
|
|
+ void (*release)(void *data);
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct utrace_examiner - private state for using utrace_prepare_examine()
|
|
+ *
|
|
+ * The members of &struct utrace_examiner are private to the implementation.
|
|
+ * This data type holds the state from a call to utrace_prepare_examine()
|
|
+ * to be used by a call to utrace_finish_examine().
|
|
+ */
|
|
+struct utrace_examiner {
|
|
+/* private: */
|
|
+ long state;
|
|
+ unsigned long ncsw;
|
|
+};
|
|
+
|
|
+/*
|
|
+ * These are the exported entry points for tracing engines to use.
|
|
+ * See kernel/utrace.c for their kerneldoc comments with interface details.
|
|
+ */
|
|
+struct utrace_engine *utrace_attach_task(struct task_struct *, int,
|
|
+ const struct utrace_engine_ops *,
|
|
+ void *);
|
|
+struct utrace_engine *utrace_attach_pid(struct pid *, int,
|
|
+ const struct utrace_engine_ops *,
|
|
+ void *);
|
|
+int __must_check utrace_control(struct task_struct *,
|
|
+ struct utrace_engine *,
|
|
+ enum utrace_resume_action);
|
|
+int __must_check utrace_set_events(struct task_struct *,
|
|
+ struct utrace_engine *,
|
|
+ unsigned long eventmask);
|
|
+int __must_check utrace_barrier(struct task_struct *,
|
|
+ struct utrace_engine *);
|
|
+int __must_check utrace_prepare_examine(struct task_struct *,
|
|
+ struct utrace_engine *,
|
|
+ struct utrace_examiner *);
|
|
+int __must_check utrace_finish_examine(struct task_struct *,
|
|
+ struct utrace_engine *,
|
|
+ struct utrace_examiner *);
|
|
+
|
|
+/**
|
|
+ * utrace_control_pid - control a thread being traced by a tracing engine
|
|
+ * @pid: thread to affect
|
|
+ * @engine: attached engine to affect
|
|
+ * @action: &enum utrace_resume_action for thread to do
|
|
+ *
|
|
+ * This is the same as utrace_control(), but takes a &struct pid
|
|
+ * pointer rather than a &struct task_struct pointer. The caller must
|
|
+ * hold a ref on @pid, but does not need to worry about the task
|
|
+ * staying valid. If it's been reaped so that @pid points nowhere,
|
|
+ * then this call returns -%ESRCH.
|
|
+ */
|
|
+static inline __must_check int utrace_control_pid(
|
|
+ struct pid *pid, struct utrace_engine *engine,
|
|
+ enum utrace_resume_action action)
|
|
+{
|
|
+ /*
|
|
+ * We don't bother with rcu_read_lock() here to protect the
|
|
+ * task_struct pointer, because utrace_control will return
|
|
+ * -ESRCH without looking at that pointer if the engine is
|
|
+ * already detached. A task_struct pointer can't die before
|
|
+ * all the engines are detached in release_task() first.
|
|
+ */
|
|
+ struct task_struct *task = pid_task(pid, PIDTYPE_PID);
|
|
+ return unlikely(!task) ? -ESRCH : utrace_control(task, engine, action);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_set_events_pid - choose which event reports a tracing engine gets
|
|
+ * @pid: thread to affect
|
|
+ * @engine: attached engine to affect
|
|
+ * @eventmask: new event mask
|
|
+ *
|
|
+ * This is the same as utrace_set_events(), but takes a &struct pid
|
|
+ * pointer rather than a &struct task_struct pointer. The caller must
|
|
+ * hold a ref on @pid, but does not need to worry about the task
|
|
+ * staying valid. If it's been reaped so that @pid points nowhere,
|
|
+ * then this call returns -%ESRCH.
|
|
+ */
|
|
+static inline __must_check int utrace_set_events_pid(
|
|
+ struct pid *pid, struct utrace_engine *engine, unsigned long eventmask)
|
|
+{
|
|
+ struct task_struct *task = pid_task(pid, PIDTYPE_PID);
|
|
+ return unlikely(!task) ? -ESRCH :
|
|
+ utrace_set_events(task, engine, eventmask);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_barrier_pid - synchronize with simultaneous tracing callbacks
|
|
+ * @pid: thread to affect
|
|
+ * @engine: engine to affect (can be detached)
|
|
+ *
|
|
+ * This is the same as utrace_barrier(), but takes a &struct pid
|
|
+ * pointer rather than a &struct task_struct pointer. The caller must
|
|
+ * hold a ref on @pid, but does not need to worry about the task
|
|
+ * staying valid. If it's been reaped so that @pid points nowhere,
|
|
+ * then this call returns -%ESRCH.
|
|
+ */
|
|
+static inline __must_check int utrace_barrier_pid(struct pid *pid,
|
|
+ struct utrace_engine *engine)
|
|
+{
|
|
+ struct task_struct *task = pid_task(pid, PIDTYPE_PID);
|
|
+ return unlikely(!task) ? -ESRCH : utrace_barrier(task, engine);
|
|
+}
|
|
+
|
|
+#endif /* CONFIG_UTRACE */
|
|
+
|
|
+#endif /* linux/utrace.h */
|
|
diff --git a/init/Kconfig b/init/Kconfig
|
|
index 5cff9a9..c0b7f81 100644
|
|
--- a/init/Kconfig
|
|
+++ b/init/Kconfig
|
|
@@ -328,6 +328,15 @@ config AUDIT_TREE
|
|
depends on AUDITSYSCALL
|
|
select INOTIFY
|
|
|
|
+config UTRACE
|
|
+ bool "Infrastructure for tracing and debugging user processes"
|
|
+ depends on EXPERIMENTAL
|
|
+ depends on HAVE_ARCH_TRACEHOOK
|
|
+ help
|
|
+ Enable the utrace process tracing interface. This is an internal
|
|
+ kernel interface exported to kernel modules, to track events in
|
|
+ user threads, extract and change user thread state.
|
|
+
|
|
menu "RCU Subsystem"
|
|
|
|
choice
|
|
diff --git a/kernel/Makefile b/kernel/Makefile
|
|
index 057472f..dfdc01c 100644
|
|
--- a/kernel/Makefile
|
|
+++ b/kernel/Makefile
|
|
@@ -70,6 +70,8 @@ obj-$(CONFIG_IKCONFIG) += configs.o
|
|
obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o
|
|
obj-$(CONFIG_SMP) += stop_machine.o
|
|
obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
|
|
+obj-$(CONFIG_UTRACE) += utrace.o
|
|
+obj-$(CONFIG_UTRACE) += ptrace-utrace.o
|
|
obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o
|
|
obj-$(CONFIG_AUDITSYSCALL) += auditsc.o
|
|
obj-$(CONFIG_GCOV_KERNEL) += gcov/
|
|
diff --git a/kernel/fork.c b/kernel/fork.c
|
|
index b6cce14..ac4a6ec 100644
|
|
--- a/kernel/fork.c
|
|
+++ b/kernel/fork.c
|
|
@@ -161,6 +161,7 @@ void free_task(struct task_struct *tsk)
|
|
free_thread_info(tsk->stack);
|
|
rt_mutex_debug_task_free(tsk);
|
|
ftrace_graph_exit_task(tsk);
|
|
+ tracehook_free_task(tsk);
|
|
free_task_struct(tsk);
|
|
}
|
|
EXPORT_SYMBOL(free_task);
|
|
@@ -1007,6 +1008,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
|
|
if (!p)
|
|
goto fork_out;
|
|
|
|
+ tracehook_init_task(p);
|
|
+
|
|
ftrace_graph_init_task(p);
|
|
|
|
rt_mutex_init_task(p);
|
|
diff --git a/kernel/ptrace-utrace.c b/kernel/ptrace-utrace.c
|
|
new file mode 100644
|
|
index 0000000..86234ee
|
|
--- /dev/null
|
|
+++ b/kernel/ptrace-utrace.c
|
|
@@ -0,0 +1,1127 @@
|
|
+/*
|
|
+ * linux/kernel/ptrace.c
|
|
+ *
|
|
+ * (C) Copyright 1999 Linus Torvalds
|
|
+ *
|
|
+ * Common interfaces for "ptrace()" which we do not want
|
|
+ * to continually duplicate across every architecture.
|
|
+ */
|
|
+
|
|
+#include <linux/capability.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/sched.h>
|
|
+#include <linux/errno.h>
|
|
+#include <linux/mm.h>
|
|
+#include <linux/highmem.h>
|
|
+#include <linux/pagemap.h>
|
|
+#include <linux/smp_lock.h>
|
|
+#include <linux/ptrace.h>
|
|
+#include <linux/utrace.h>
|
|
+#include <linux/security.h>
|
|
+#include <linux/signal.h>
|
|
+#include <linux/audit.h>
|
|
+#include <linux/pid_namespace.h>
|
|
+#include <linux/syscalls.h>
|
|
+#include <linux/uaccess.h>
|
|
+
|
|
+/*
|
|
+ * ptrace a task: make the debugger its new parent and
|
|
+ * move it to the ptrace list.
|
|
+ *
|
|
+ * Must be called with the tasklist lock write-held.
|
|
+ */
|
|
+void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
|
|
+{
|
|
+ BUG_ON(!list_empty(&child->ptrace_entry));
|
|
+ list_add(&child->ptrace_entry, &new_parent->ptraced);
|
|
+ child->parent = new_parent;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * unptrace a task: move it back to its original parent and
|
|
+ * remove it from the ptrace list.
|
|
+ *
|
|
+ * Must be called with the tasklist lock write-held.
|
|
+ */
|
|
+void __ptrace_unlink(struct task_struct *child)
|
|
+{
|
|
+ BUG_ON(!child->ptrace);
|
|
+
|
|
+ child->ptrace = 0;
|
|
+ child->parent = child->real_parent;
|
|
+ list_del_init(&child->ptrace_entry);
|
|
+
|
|
+ arch_ptrace_untrace(child);
|
|
+}
|
|
+
|
|
+struct ptrace_context {
|
|
+ int options;
|
|
+
|
|
+ int signr;
|
|
+ siginfo_t *siginfo;
|
|
+
|
|
+ int stop_code;
|
|
+ unsigned long eventmsg;
|
|
+
|
|
+ enum utrace_resume_action resume;
|
|
+};
|
|
+
|
|
+#define PT_UTRACED 0x00001000
|
|
+
|
|
+#define PTRACE_O_SYSEMU 0x100
|
|
+
|
|
+#define PTRACE_EVENT_SYSCALL (1 << 16)
|
|
+#define PTRACE_EVENT_SIGTRAP (2 << 16)
|
|
+#define PTRACE_EVENT_SIGNAL (3 << 16)
|
|
+/* events visible to user-space */
|
|
+#define PTRACE_EVENT_MASK 0xFFFF
|
|
+
|
|
+static inline bool ptrace_event_pending(struct ptrace_context *ctx)
|
|
+{
|
|
+ return ctx->stop_code != 0;
|
|
+}
|
|
+
|
|
+static inline int get_stop_event(struct ptrace_context *ctx)
|
|
+{
|
|
+ return ctx->stop_code >> 8;
|
|
+}
|
|
+
|
|
+static inline void set_stop_code(struct ptrace_context *ctx, int event)
|
|
+{
|
|
+ ctx->stop_code = (event << 8) | SIGTRAP;
|
|
+}
|
|
+
|
|
+static inline struct ptrace_context *
|
|
+ptrace_context(struct utrace_engine *engine)
|
|
+{
|
|
+ return engine->data;
|
|
+}
|
|
+
|
|
+static const struct utrace_engine_ops ptrace_utrace_ops; /* forward decl */
|
|
+
|
|
+static struct utrace_engine *ptrace_lookup_engine(struct task_struct *tracee)
|
|
+{
|
|
+ return utrace_attach_task(tracee, UTRACE_ATTACH_MATCH_OPS,
|
|
+ &ptrace_utrace_ops, NULL);
|
|
+}
|
|
+
|
|
+static struct utrace_engine *
|
|
+ptrace_reuse_engine(struct task_struct *tracee)
|
|
+{
|
|
+ struct utrace_engine *engine;
|
|
+ struct ptrace_context *ctx;
|
|
+ int err = -EPERM;
|
|
+
|
|
+ engine = ptrace_lookup_engine(tracee);
|
|
+ if (IS_ERR(engine))
|
|
+ return engine;
|
|
+
|
|
+ ctx = ptrace_context(engine);
|
|
+ if (unlikely(ctx->resume == UTRACE_DETACH)) {
|
|
+ /*
|
|
+ * Try to reuse this self-detaching engine.
|
|
+ * The only caller which can hit this case is ptrace_attach(),
|
|
+ * it holds ->cred_guard_mutex.
|
|
+ */
|
|
+ ctx->options = 0;
|
|
+ ctx->eventmsg = 0;
|
|
+
|
|
+ /* make sure we don't get unwanted reports */
|
|
+ err = utrace_set_events(tracee, engine, UTRACE_EVENT(QUIESCE));
|
|
+ if (!err || err == -EINPROGRESS) {
|
|
+ ctx->resume = UTRACE_RESUME;
|
|
+ /* synchronize with ptrace_report_signal() */
|
|
+ err = utrace_barrier(tracee, engine);
|
|
+ }
|
|
+ WARN_ON(!err != (engine->ops == &ptrace_utrace_ops));
|
|
+
|
|
+ if (!err)
|
|
+ return engine;
|
|
+ }
|
|
+
|
|
+ utrace_engine_put(engine);
|
|
+ return ERR_PTR(err);
|
|
+}
|
|
+
|
|
+static struct utrace_engine *
|
|
+ptrace_attach_engine(struct task_struct *tracee)
|
|
+{
|
|
+ struct utrace_engine *engine;
|
|
+ struct ptrace_context *ctx;
|
|
+
|
|
+ if (unlikely(task_utrace_flags(tracee))) {
|
|
+ engine = ptrace_reuse_engine(tracee);
|
|
+ if (!IS_ERR(engine) || IS_ERR(engine) == -EPERM)
|
|
+ return engine;
|
|
+ }
|
|
+
|
|
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
+ if (unlikely(!ctx))
|
|
+ return ERR_PTR(-ENOMEM);
|
|
+
|
|
+ ctx->resume = UTRACE_RESUME;
|
|
+
|
|
+ engine = utrace_attach_task(tracee, UTRACE_ATTACH_CREATE |
|
|
+ UTRACE_ATTACH_EXCLUSIVE |
|
|
+ UTRACE_ATTACH_MATCH_OPS,
|
|
+ &ptrace_utrace_ops, ctx);
|
|
+ if (unlikely(IS_ERR(engine))) {
|
|
+ if (engine != ERR_PTR(-ESRCH) &&
|
|
+ engine != ERR_PTR(-ERESTARTNOINTR))
|
|
+ engine = ERR_PTR(-EPERM);
|
|
+ kfree(ctx);
|
|
+ }
|
|
+
|
|
+ return engine;
|
|
+}
|
|
+
|
|
+static inline int ptrace_set_events(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ unsigned long options)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+ /*
|
|
+ * We need QUIESCE for resume handling, CLONE to check
|
|
+ * for CLONE_PTRACE, other events are always reported.
|
|
+ */
|
|
+ unsigned long events = UTRACE_EVENT(QUIESCE) | UTRACE_EVENT(CLONE) |
|
|
+ UTRACE_EVENT(EXEC) | UTRACE_EVENT_SIGNAL_ALL;
|
|
+
|
|
+ ctx->options = options;
|
|
+ if (options & PTRACE_O_TRACEEXIT)
|
|
+ events |= UTRACE_EVENT(EXIT);
|
|
+
|
|
+ return utrace_set_events(target, engine, events);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Attach a utrace engine for ptrace and set up its event mask.
|
|
+ * Returns error code or 0 on success.
|
|
+ */
|
|
+static int ptrace_attach_task(struct task_struct *tracee, int options)
|
|
+{
|
|
+ struct utrace_engine *engine;
|
|
+ int err;
|
|
+
|
|
+ engine = ptrace_attach_engine(tracee);
|
|
+ if (IS_ERR(engine))
|
|
+ return PTR_ERR(engine);
|
|
+ /*
|
|
+ * It can fail only if the tracee is dead, the caller
|
|
+ * must notice this before setting PT_UTRACED.
|
|
+ */
|
|
+ err = ptrace_set_events(tracee, engine, options);
|
|
+ WARN_ON(err && !tracee->exit_state);
|
|
+ utrace_engine_put(engine);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int ptrace_wake_up(struct task_struct *tracee,
|
|
+ struct utrace_engine *engine,
|
|
+ enum utrace_resume_action action,
|
|
+ bool force_wakeup)
|
|
+{
|
|
+ if (force_wakeup) {
|
|
+ unsigned long flags;
|
|
+ /*
|
|
+ * Preserve the compatibility bug. Historically ptrace
|
|
+ * wakes up the tracee even if it should not. Clear
|
|
+ * SIGNAL_STOP_STOPPED for utrace_wakeup().
|
|
+ */
|
|
+ if (lock_task_sighand(tracee, &flags)) {
|
|
+ tracee->signal->flags &= ~SIGNAL_STOP_STOPPED;
|
|
+ unlock_task_sighand(tracee, &flags);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (action != UTRACE_REPORT)
|
|
+ ptrace_context(engine)->stop_code = 0;
|
|
+
|
|
+ return utrace_control(tracee, engine, action);
|
|
+}
|
|
+
|
|
+static void ptrace_detach_task(struct task_struct *tracee, int sig)
|
|
+{
|
|
+ /*
|
|
+ * If true, the caller is PTRACE_DETACH, otherwise
|
|
+ * the tracer detaches implicitly during exit.
|
|
+ */
|
|
+ bool voluntary = (sig >= 0);
|
|
+ struct utrace_engine *engine = ptrace_lookup_engine(tracee);
|
|
+ enum utrace_resume_action action = UTRACE_DETACH;
|
|
+
|
|
+ if (unlikely(IS_ERR(engine)))
|
|
+ return;
|
|
+
|
|
+ if (sig) {
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ switch (get_stop_event(ctx)) {
|
|
+ case PTRACE_EVENT_SYSCALL:
|
|
+ if (voluntary)
|
|
+ send_sig_info(sig, SEND_SIG_PRIV, tracee);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_EVENT_SIGNAL:
|
|
+ if (voluntary)
|
|
+ ctx->signr = sig;
|
|
+ ctx->resume = UTRACE_DETACH;
|
|
+ action = UTRACE_RESUME;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ ptrace_wake_up(tracee, engine, action, voluntary);
|
|
+ utrace_engine_put(engine);
|
|
+}
|
|
+
|
|
+static void ptrace_abort_attach(struct task_struct *tracee)
|
|
+{
|
|
+ ptrace_detach_task(tracee, 0);
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_exit(u32 action, struct utrace_engine *engine,
|
|
+ long orig_code, long *code)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ WARN_ON(ptrace_event_pending(ctx) &&
|
|
+ !signal_group_exit(current->signal));
|
|
+
|
|
+ set_stop_code(ctx, PTRACE_EVENT_EXIT);
|
|
+ ctx->eventmsg = *code;
|
|
+
|
|
+ return UTRACE_STOP;
|
|
+}
|
|
+
|
|
+static void ptrace_clone_attach(struct task_struct *child,
|
|
+ int options)
|
|
+{
|
|
+ struct task_struct *parent = current;
|
|
+ struct task_struct *tracer;
|
|
+ bool abort = true;
|
|
+
|
|
+ if (unlikely(ptrace_attach_task(child, options))) {
|
|
+ WARN_ON(1);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ write_lock_irq(&tasklist_lock);
|
|
+ tracer = parent->parent;
|
|
+ if (!(tracer->flags & PF_EXITING) && parent->ptrace) {
|
|
+ child->ptrace = parent->ptrace;
|
|
+ __ptrace_link(child, tracer);
|
|
+ abort = false;
|
|
+ }
|
|
+ write_unlock_irq(&tasklist_lock);
|
|
+ if (unlikely(abort)) {
|
|
+ ptrace_abort_attach(child);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ sigaddset(&child->pending.signal, SIGSTOP);
|
|
+ set_tsk_thread_flag(child, TIF_SIGPENDING);
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_clone(u32 action, struct utrace_engine *engine,
|
|
+ unsigned long clone_flags,
|
|
+ struct task_struct *child)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+ int event = 0;
|
|
+
|
|
+ WARN_ON(ptrace_event_pending(ctx));
|
|
+
|
|
+ if (clone_flags & CLONE_UNTRACED) {
|
|
+ /* no events reported */
|
|
+ } else if (clone_flags & CLONE_VFORK) {
|
|
+ if (ctx->options & PTRACE_O_TRACEVFORK)
|
|
+ event = PTRACE_EVENT_VFORK;
|
|
+ else if (ctx->options & PTRACE_O_TRACEVFORKDONE)
|
|
+ event = PTRACE_EVENT_VFORK_DONE;
|
|
+ } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
|
|
+ if (ctx->options & PTRACE_O_TRACECLONE)
|
|
+ event = PTRACE_EVENT_CLONE;
|
|
+ } else if (ctx->options & PTRACE_O_TRACEFORK) {
|
|
+ event = PTRACE_EVENT_FORK;
|
|
+ }
|
|
+ /*
|
|
+ * Any of these reports implies auto-attaching the new child.
|
|
+ * So does CLONE_PTRACE, even with no event to report.
|
|
+ */
|
|
+ if ((event && event != PTRACE_EVENT_VFORK_DONE) ||
|
|
+ (clone_flags & CLONE_PTRACE))
|
|
+ ptrace_clone_attach(child, ctx->options);
|
|
+
|
|
+ if (!event)
|
|
+ return UTRACE_RESUME;
|
|
+
|
|
+ set_stop_code(ctx, event);
|
|
+ ctx->eventmsg = child->pid;
|
|
+ /*
|
|
+ * We shouldn't stop now, inside the do_fork() path.
|
|
+ * We will stop later, before return to user-mode.
|
|
+ */
|
|
+ if (event == PTRACE_EVENT_VFORK_DONE)
|
|
+ return UTRACE_REPORT;
|
|
+ else
|
|
+ return UTRACE_STOP;
|
|
+}
|
|
+
|
|
+static inline void set_syscall_code(struct ptrace_context *ctx)
|
|
+{
|
|
+ set_stop_code(ctx, PTRACE_EVENT_SYSCALL);
|
|
+ if (ctx->options & PTRACE_O_TRACESYSGOOD)
|
|
+ ctx->stop_code |= 0x80;
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_syscall_entry(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ if (action & UTRACE_SYSCALL_RESUMED) {
|
|
+ /*
|
|
+ * We already reported the first time.
|
|
+ * Nothing more to do now.
|
|
+ */
|
|
+ if (unlikely(ctx->options & PTRACE_O_SYSEMU))
|
|
+ return UTRACE_SYSCALL_ABORT | UTRACE_REPORT;
|
|
+ return utrace_syscall_action(action) | UTRACE_RESUME;
|
|
+ }
|
|
+
|
|
+ WARN_ON(ptrace_event_pending(ctx));
|
|
+
|
|
+ set_syscall_code(ctx);
|
|
+
|
|
+ if (unlikely(ctx->options & PTRACE_O_SYSEMU))
|
|
+ return UTRACE_SYSCALL_ABORT | UTRACE_REPORT;
|
|
+ /*
|
|
+ * Stop now to report. We will get another callback after
|
|
+ * we resume, with the UTRACE_SYSCALL_RESUMED flag set.
|
|
+ */
|
|
+ return UTRACE_SYSCALL_RUN | UTRACE_STOP;
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_syscall_exit(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ if (ptrace_event_pending(ctx))
|
|
+ return UTRACE_STOP;
|
|
+
|
|
+ if (ctx->resume != UTRACE_RESUME) {
|
|
+ WARN_ON(ctx->resume != UTRACE_BLOCKSTEP &&
|
|
+ ctx->resume != UTRACE_SINGLESTEP);
|
|
+ ctx->resume = UTRACE_RESUME;
|
|
+
|
|
+ ctx->signr = SIGTRAP;
|
|
+ return UTRACE_INTERRUPT;
|
|
+ }
|
|
+
|
|
+ set_syscall_code(ctx);
|
|
+ return UTRACE_STOP;
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_exec(u32 action, struct utrace_engine *engine,
|
|
+ const struct linux_binfmt *fmt,
|
|
+ const struct linux_binprm *bprm,
|
|
+ struct pt_regs *regs)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ WARN_ON(ptrace_event_pending(ctx));
|
|
+
|
|
+ if (!(ctx->options & PTRACE_O_TRACEEXEC)) {
|
|
+ /*
|
|
+ * Old-fashioned ptrace'd exec just posts a plain signal.
|
|
+ */
|
|
+ send_sig(SIGTRAP, current, 0);
|
|
+ return UTRACE_RESUME;
|
|
+ }
|
|
+
|
|
+ set_stop_code(ctx, PTRACE_EVENT_EXEC);
|
|
+ return UTRACE_STOP;
|
|
+}
|
|
+
|
|
+static enum utrace_signal_action resume_signal(struct ptrace_context *ctx,
|
|
+ struct k_sigaction *return_ka)
|
|
+{
|
|
+ siginfo_t *info = ctx->siginfo;
|
|
+ int signr = ctx->signr;
|
|
+
|
|
+ ctx->siginfo = NULL;
|
|
+ ctx->signr = 0;
|
|
+
|
|
+ /* Did the debugger cancel the sig? */
|
|
+ if (!signr)
|
|
+ return UTRACE_SIGNAL_IGN;
|
|
+ /*
|
|
+ * Update the siginfo structure if the signal has changed.
|
|
+ * If the debugger wanted something specific in the siginfo
|
|
+ * then it should have updated *info via PTRACE_SETSIGINFO.
|
|
+ */
|
|
+ if (info->si_signo != signr) {
|
|
+ info->si_signo = signr;
|
|
+ info->si_errno = 0;
|
|
+ info->si_code = SI_USER;
|
|
+ info->si_pid = task_pid_vnr(current->parent);
|
|
+ info->si_uid = task_uid(current->parent);
|
|
+ }
|
|
+
|
|
+ /* If the (new) signal is now blocked, requeue it. */
|
|
+ if (sigismember(¤t->blocked, signr)) {
|
|
+ send_sig_info(signr, info, current);
|
|
+ return UTRACE_SIGNAL_IGN;
|
|
+ }
|
|
+
|
|
+ spin_lock_irq(¤t->sighand->siglock);
|
|
+ *return_ka = current->sighand->action[signr - 1];
|
|
+ spin_unlock_irq(¤t->sighand->siglock);
|
|
+
|
|
+ return UTRACE_SIGNAL_DELIVER;
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_signal(u32 action, struct utrace_engine *engine,
|
|
+ struct pt_regs *regs,
|
|
+ siginfo_t *info,
|
|
+ const struct k_sigaction *orig_ka,
|
|
+ struct k_sigaction *return_ka)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+ enum utrace_resume_action resume = ctx->resume;
|
|
+
|
|
+ if (ptrace_event_pending(ctx)) {
|
|
+ action = utrace_signal_action(action);
|
|
+ WARN_ON(action != UTRACE_SIGNAL_REPORT);
|
|
+ return action | UTRACE_STOP;
|
|
+ }
|
|
+
|
|
+ switch (utrace_signal_action(action)) {
|
|
+ case UTRACE_SIGNAL_HANDLER:
|
|
+ if (WARN_ON(ctx->siginfo))
|
|
+ ctx->siginfo = NULL;
|
|
+
|
|
+ if (resume != UTRACE_RESUME) {
|
|
+ WARN_ON(resume != UTRACE_BLOCKSTEP &&
|
|
+ resume != UTRACE_SINGLESTEP);
|
|
+
|
|
+ set_stop_code(ctx, PTRACE_EVENT_SIGTRAP);
|
|
+ return UTRACE_STOP | UTRACE_SIGNAL_IGN;
|
|
+ }
|
|
+
|
|
+ case UTRACE_SIGNAL_REPORT:
|
|
+ if (!ctx->siginfo) {
|
|
+ if (ctx->signr) {
|
|
+ /* set by ptrace_resume(SYSCALL_EXIT) */
|
|
+ WARN_ON(ctx->signr != SIGTRAP);
|
|
+ user_single_step_siginfo(current, regs, info);
|
|
+ force_sig_info(SIGTRAP, info, current);
|
|
+ }
|
|
+
|
|
+ return resume | UTRACE_SIGNAL_IGN;
|
|
+ }
|
|
+
|
|
+ if (WARN_ON(ctx->siginfo != info))
|
|
+ return resume | UTRACE_SIGNAL_IGN;
|
|
+
|
|
+ return resume | resume_signal(ctx, return_ka);
|
|
+
|
|
+ default:
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ WARN_ON(ctx->siginfo);
|
|
+ ctx->siginfo = info;
|
|
+ /*
|
|
+ * ctx->siginfo points to the caller's stack.
|
|
+ * Make sure the subsequent UTRACE_SIGNAL_REPORT clears
|
|
+ * ->siginfo before return from get_signal_to_deliver().
|
|
+ */
|
|
+ if (utrace_control(current, engine, UTRACE_INTERRUPT))
|
|
+ WARN_ON(1);
|
|
+
|
|
+ ctx->signr = info->si_signo;
|
|
+ ctx->stop_code = (PTRACE_EVENT_SIGNAL << 8) | ctx->signr;
|
|
+
|
|
+ return UTRACE_STOP | UTRACE_SIGNAL_IGN;
|
|
+}
|
|
+
|
|
+static u32 ptrace_report_quiesce(u32 action, struct utrace_engine *engine,
|
|
+ unsigned long event)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+
|
|
+ if (ptrace_event_pending(ctx))
|
|
+ return UTRACE_STOP;
|
|
+
|
|
+ return event ? UTRACE_RESUME : ctx->resume;
|
|
+}
|
|
+
|
|
+static void ptrace_release(void *data)
|
|
+{
|
|
+ kfree(data);
|
|
+}
|
|
+
|
|
+static const struct utrace_engine_ops ptrace_utrace_ops = {
|
|
+ .report_signal = ptrace_report_signal,
|
|
+ .report_quiesce = ptrace_report_quiesce,
|
|
+ .report_exec = ptrace_report_exec,
|
|
+ .report_exit = ptrace_report_exit,
|
|
+ .report_clone = ptrace_report_clone,
|
|
+ .report_syscall_entry = ptrace_report_syscall_entry,
|
|
+ .report_syscall_exit = ptrace_report_syscall_exit,
|
|
+ .release = ptrace_release,
|
|
+};
|
|
+
|
|
+int ptrace_check_attach(struct task_struct *child, int kill)
|
|
+{
|
|
+ struct utrace_engine *engine;
|
|
+ struct utrace_examiner exam;
|
|
+ int ret = -ESRCH;
|
|
+
|
|
+ engine = ptrace_lookup_engine(child);
|
|
+ if (IS_ERR(engine))
|
|
+ return ret;
|
|
+
|
|
+ if (child->parent != current)
|
|
+ goto out;
|
|
+
|
|
+ if (unlikely(kill))
|
|
+ ret = 0;
|
|
+
|
|
+ if (!task_is_stopped_or_traced(child))
|
|
+ goto out;
|
|
+ /*
|
|
+ * Make sure our engine has already stopped the child.
|
|
+ * Then wait for it to be off the CPU.
|
|
+ */
|
|
+ if (!utrace_control(child, engine, UTRACE_STOP) &&
|
|
+ !utrace_prepare_examine(child, engine, &exam))
|
|
+ ret = 0;
|
|
+out:
|
|
+ utrace_engine_put(engine);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+int ptrace_attach(struct task_struct *task)
|
|
+{
|
|
+ int retval;
|
|
+
|
|
+ audit_ptrace(task);
|
|
+
|
|
+ retval = -EPERM;
|
|
+ if (unlikely(task->flags & PF_KTHREAD))
|
|
+ goto out;
|
|
+ if (same_thread_group(task, current))
|
|
+ goto out;
|
|
+
|
|
+ /*
|
|
+ * Protect exec's credential calculations against our interference;
|
|
+ * interference; SUID, SGID and LSM creds get determined differently
|
|
+ * under ptrace.
|
|
+ */
|
|
+ retval = -ERESTARTNOINTR;
|
|
+ if (mutex_lock_interruptible(&task->cred_guard_mutex))
|
|
+ goto out;
|
|
+
|
|
+ task_lock(task);
|
|
+ retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
|
|
+ task_unlock(task);
|
|
+ if (retval)
|
|
+ goto unlock_creds;
|
|
+
|
|
+ retval = ptrace_attach_task(task, 0);
|
|
+ if (unlikely(retval))
|
|
+ goto unlock_creds;
|
|
+
|
|
+ write_lock_irq(&tasklist_lock);
|
|
+ retval = -EPERM;
|
|
+ if (unlikely(task->exit_state))
|
|
+ goto unlock_tasklist;
|
|
+
|
|
+ BUG_ON(task->ptrace);
|
|
+ task->ptrace = PT_UTRACED;
|
|
+ if (capable(CAP_SYS_PTRACE))
|
|
+ task->ptrace |= PT_PTRACE_CAP;
|
|
+
|
|
+ __ptrace_link(task, current);
|
|
+ send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
|
|
+
|
|
+ retval = 0;
|
|
+unlock_tasklist:
|
|
+ write_unlock_irq(&tasklist_lock);
|
|
+unlock_creds:
|
|
+ mutex_unlock(&task->cred_guard_mutex);
|
|
+out:
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Performs checks and sets PT_UTRACED.
|
|
+ * Should be used by all ptrace implementations for PTRACE_TRACEME.
|
|
+ */
|
|
+int ptrace_traceme(void)
|
|
+{
|
|
+ bool detach = true;
|
|
+ int ret = ptrace_attach_task(current, 0);
|
|
+
|
|
+ if (unlikely(ret))
|
|
+ return ret;
|
|
+
|
|
+ ret = -EPERM;
|
|
+ write_lock_irq(&tasklist_lock);
|
|
+ BUG_ON(current->ptrace);
|
|
+ ret = security_ptrace_traceme(current->parent);
|
|
+ /*
|
|
+ * Check PF_EXITING to ensure ->real_parent has not passed
|
|
+ * exit_ptrace(). Otherwise we don't report the error but
|
|
+ * pretend ->real_parent untraces us right after return.
|
|
+ */
|
|
+ if (!ret && !(current->real_parent->flags & PF_EXITING)) {
|
|
+ current->ptrace = PT_UTRACED;
|
|
+ __ptrace_link(current, current->real_parent);
|
|
+ detach = false;
|
|
+ }
|
|
+ write_unlock_irq(&tasklist_lock);
|
|
+
|
|
+ if (detach)
|
|
+ ptrace_abort_attach(current);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static void ptrace_do_detach(struct task_struct *tracee, unsigned int data)
|
|
+{
|
|
+ bool detach, release;
|
|
+
|
|
+ write_lock_irq(&tasklist_lock);
|
|
+ /*
|
|
+ * This tracee can be already killed. Make sure de_thread() or
|
|
+ * our sub-thread doing do_wait() didn't do release_task() yet.
|
|
+ */
|
|
+ detach = tracee->ptrace != 0;
|
|
+ release = false;
|
|
+ if (likely(detach))
|
|
+ release = __ptrace_detach(current, tracee);
|
|
+ write_unlock_irq(&tasklist_lock);
|
|
+
|
|
+ if (unlikely(release))
|
|
+ release_task(tracee);
|
|
+ else if (likely(detach))
|
|
+ ptrace_detach_task(tracee, data);
|
|
+}
|
|
+
|
|
+int ptrace_detach(struct task_struct *child, unsigned int data)
|
|
+{
|
|
+ if (!valid_signal(data))
|
|
+ return -EIO;
|
|
+
|
|
+ ptrace_do_detach(child, data);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Detach all tasks we were using ptrace on.
|
|
+ */
|
|
+void exit_ptrace(struct task_struct *tracer)
|
|
+{
|
|
+ for (;;) {
|
|
+ struct task_struct *tracee = NULL;
|
|
+
|
|
+ read_lock(&tasklist_lock);
|
|
+ if (!list_empty(&tracer->ptraced)) {
|
|
+ tracee = list_first_entry(&tracer->ptraced,
|
|
+ struct task_struct, ptrace_entry);
|
|
+ get_task_struct(tracee);
|
|
+ }
|
|
+ read_unlock(&tasklist_lock);
|
|
+ if (!tracee)
|
|
+ break;
|
|
+
|
|
+ ptrace_do_detach(tracee, -1);
|
|
+ put_task_struct(tracee);
|
|
+ }
|
|
+}
|
|
+
|
|
+static int ptrace_set_options(struct task_struct *tracee,
|
|
+ struct utrace_engine *engine, long data)
|
|
+{
|
|
+ BUILD_BUG_ON(PTRACE_O_MASK & PTRACE_O_SYSEMU);
|
|
+
|
|
+ ptrace_set_events(tracee, engine, data & PTRACE_O_MASK);
|
|
+ return (data & ~PTRACE_O_MASK) ? -EINVAL : 0;
|
|
+}
|
|
+
|
|
+static int ptrace_rw_siginfo(struct task_struct *tracee,
|
|
+ struct ptrace_context *ctx,
|
|
+ siginfo_t *info, bool write)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int err;
|
|
+
|
|
+ switch (get_stop_event(ctx)) {
|
|
+ case 0: /* jctl stop */
|
|
+ return -EINVAL;
|
|
+
|
|
+ case PTRACE_EVENT_SIGNAL:
|
|
+ err = -ESRCH;
|
|
+ if (lock_task_sighand(tracee, &flags)) {
|
|
+ if (likely(task_is_traced(tracee))) {
|
|
+ if (write)
|
|
+ *ctx->siginfo = *info;
|
|
+ else
|
|
+ *info = *ctx->siginfo;
|
|
+ err = 0;
|
|
+ }
|
|
+ unlock_task_sighand(tracee, &flags);
|
|
+ }
|
|
+
|
|
+ return err;
|
|
+
|
|
+ default:
|
|
+ if (!write) {
|
|
+ memset(info, 0, sizeof(*info));
|
|
+ info->si_signo = SIGTRAP;
|
|
+ info->si_code = ctx->stop_code & PTRACE_EVENT_MASK;
|
|
+ info->si_pid = task_pid_vnr(tracee);
|
|
+ info->si_uid = task_uid(tracee);
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+static void do_ptrace_notify_stop(struct ptrace_context *ctx,
|
|
+ struct task_struct *tracee)
|
|
+{
|
|
+ /*
|
|
+ * This can race with SIGKILL, but we borrow this race from
|
|
+ * the old ptrace implementation. ->exit_code is only needed
|
|
+ * for wait_task_stopped()->task_stopped_code(), we should
|
|
+ * change it to use ptrace_context.
|
|
+ */
|
|
+ tracee->exit_code = ctx->stop_code & PTRACE_EVENT_MASK;
|
|
+ WARN_ON(!tracee->exit_code);
|
|
+
|
|
+ read_lock(&tasklist_lock);
|
|
+ /*
|
|
+ * Don't want to allow preemption here, because
|
|
+ * sys_ptrace() needs this task to be inactive.
|
|
+ */
|
|
+ preempt_disable();
|
|
+ /*
|
|
+ * It can be killed and then released by our subthread,
|
|
+ * or ptrace_attach() has not completed yet.
|
|
+ */
|
|
+ if (task_ptrace(tracee))
|
|
+ do_notify_parent_cldstop(tracee, CLD_TRAPPED);
|
|
+ read_unlock(&tasklist_lock);
|
|
+ preempt_enable_no_resched();
|
|
+}
|
|
+
|
|
+void ptrace_notify_stop(struct task_struct *tracee)
|
|
+{
|
|
+ struct utrace_engine *engine = ptrace_lookup_engine(tracee);
|
|
+
|
|
+ if (IS_ERR(engine))
|
|
+ return;
|
|
+
|
|
+ do_ptrace_notify_stop(ptrace_context(engine), tracee);
|
|
+ utrace_engine_put(engine);
|
|
+}
|
|
+
|
|
+static int ptrace_resume_action(struct task_struct *tracee,
|
|
+ struct utrace_engine *engine, long request)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+ unsigned long events;
|
|
+ int action;
|
|
+
|
|
+ ctx->options &= ~PTRACE_O_SYSEMU;
|
|
+ events = engine->flags & ~UTRACE_EVENT_SYSCALL;
|
|
+ action = UTRACE_RESUME;
|
|
+
|
|
+ switch (request) {
|
|
+#ifdef PTRACE_SINGLEBLOCK
|
|
+ case PTRACE_SINGLEBLOCK:
|
|
+ if (unlikely(!arch_has_block_step()))
|
|
+ return -EIO;
|
|
+ action = UTRACE_BLOCKSTEP;
|
|
+ events |= UTRACE_EVENT(SYSCALL_EXIT);
|
|
+ break;
|
|
+#endif
|
|
+
|
|
+#ifdef PTRACE_SINGLESTEP
|
|
+ case PTRACE_SINGLESTEP:
|
|
+ if (unlikely(!arch_has_single_step()))
|
|
+ return -EIO;
|
|
+ action = UTRACE_SINGLESTEP;
|
|
+ events |= UTRACE_EVENT(SYSCALL_EXIT);
|
|
+ break;
|
|
+#endif
|
|
+
|
|
+#ifdef PTRACE_SYSEMU
|
|
+ case PTRACE_SYSEMU_SINGLESTEP:
|
|
+ if (unlikely(!arch_has_single_step()))
|
|
+ return -EIO;
|
|
+ action = UTRACE_SINGLESTEP;
|
|
+ case PTRACE_SYSEMU:
|
|
+ ctx->options |= PTRACE_O_SYSEMU;
|
|
+ events |= UTRACE_EVENT(SYSCALL_ENTRY);
|
|
+ break;
|
|
+#endif
|
|
+
|
|
+ case PTRACE_SYSCALL:
|
|
+ events |= UTRACE_EVENT_SYSCALL;
|
|
+ break;
|
|
+
|
|
+ case PTRACE_CONT:
|
|
+ break;
|
|
+ default:
|
|
+ return -EIO;
|
|
+ }
|
|
+
|
|
+ if (events != engine->flags &&
|
|
+ utrace_set_events(tracee, engine, events))
|
|
+ return -ESRCH;
|
|
+
|
|
+ return action;
|
|
+}
|
|
+
|
|
+static int ptrace_resume(struct task_struct *tracee,
|
|
+ struct utrace_engine *engine,
|
|
+ long request, long data)
|
|
+{
|
|
+ struct ptrace_context *ctx = ptrace_context(engine);
|
|
+ int action;
|
|
+
|
|
+ if (!valid_signal(data))
|
|
+ return -EIO;
|
|
+
|
|
+ action = ptrace_resume_action(tracee, engine, request);
|
|
+ if (action < 0)
|
|
+ return action;
|
|
+
|
|
+ switch (get_stop_event(ctx)) {
|
|
+ case PTRACE_EVENT_VFORK:
|
|
+ if (ctx->options & PTRACE_O_TRACEVFORKDONE) {
|
|
+ set_stop_code(ctx, PTRACE_EVENT_VFORK_DONE);
|
|
+ action = UTRACE_REPORT;
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ case PTRACE_EVENT_EXEC:
|
|
+ case PTRACE_EVENT_FORK:
|
|
+ case PTRACE_EVENT_CLONE:
|
|
+ case PTRACE_EVENT_VFORK_DONE:
|
|
+ if (request == PTRACE_SYSCALL) {
|
|
+ set_syscall_code(ctx);
|
|
+ do_ptrace_notify_stop(ctx, tracee);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ if (action != UTRACE_RESUME) {
|
|
+ /*
|
|
+ * single-stepping. UTRACE_SIGNAL_REPORT will
|
|
+ * synthesize a trap to follow the syscall insn.
|
|
+ */
|
|
+ ctx->signr = SIGTRAP;
|
|
+ action = UTRACE_INTERRUPT;
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ case PTRACE_EVENT_SYSCALL:
|
|
+ if (data)
|
|
+ send_sig_info(data, SEND_SIG_PRIV, tracee);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_EVENT_SIGNAL:
|
|
+ ctx->signr = data;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ ctx->resume = action;
|
|
+ ptrace_wake_up(tracee, engine, action, true);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+extern int ptrace_regset(struct task_struct *task, int req, unsigned int type,
|
|
+ struct iovec *kiov);
|
|
+
|
|
+int ptrace_request(struct task_struct *child, long request,
|
|
+ long addr, long data)
|
|
+{
|
|
+ struct utrace_engine *engine = ptrace_lookup_engine(child);
|
|
+ siginfo_t siginfo;
|
|
+ int ret;
|
|
+
|
|
+ if (unlikely(IS_ERR(engine)))
|
|
+ return -ESRCH;
|
|
+
|
|
+ switch (request) {
|
|
+ case PTRACE_PEEKTEXT:
|
|
+ case PTRACE_PEEKDATA:
|
|
+ ret = generic_ptrace_peekdata(child, addr, data);
|
|
+ break;
|
|
+ case PTRACE_POKETEXT:
|
|
+ case PTRACE_POKEDATA:
|
|
+ ret = generic_ptrace_pokedata(child, addr, data);
|
|
+ break;
|
|
+
|
|
+#ifdef PTRACE_OLDSETOPTIONS
|
|
+ case PTRACE_OLDSETOPTIONS:
|
|
+#endif
|
|
+ case PTRACE_SETOPTIONS:
|
|
+ ret = ptrace_set_options(child, engine, data);
|
|
+ break;
|
|
+ case PTRACE_GETEVENTMSG:
|
|
+ ret = put_user(ptrace_context(engine)->eventmsg,
|
|
+ (unsigned long __user *) data);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_GETSIGINFO:
|
|
+ ret = ptrace_rw_siginfo(child, ptrace_context(engine),
|
|
+ &siginfo, false);
|
|
+ if (!ret)
|
|
+ ret = copy_siginfo_to_user((siginfo_t __user *) data,
|
|
+ &siginfo);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_SETSIGINFO:
|
|
+ if (copy_from_user(&siginfo, (siginfo_t __user *) data,
|
|
+ sizeof siginfo))
|
|
+ ret = -EFAULT;
|
|
+ else
|
|
+ ret = ptrace_rw_siginfo(child, ptrace_context(engine),
|
|
+ &siginfo, true);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_DETACH: /* detach a process that was attached. */
|
|
+ ret = ptrace_detach(child, data);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_KILL:
|
|
+ /* Ugly historical behaviour. */
|
|
+ if (task_is_traced(child))
|
|
+ ptrace_resume(child, engine, PTRACE_CONT, SIGKILL);
|
|
+ ret = 0;
|
|
+ break;
|
|
+
|
|
+ case PTRACE_GETREGSET:
|
|
+ case PTRACE_SETREGSET:
|
|
+ {
|
|
+ struct iovec kiov;
|
|
+ struct iovec __user *uiov = (struct iovec __user *) data;
|
|
+
|
|
+ if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
|
|
+ return -EFAULT;
|
|
+
|
|
+ if (__get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
+ __get_user(kiov.iov_len, &uiov->iov_len))
|
|
+ return -EFAULT;
|
|
+
|
|
+ ret = ptrace_regset(child, request, addr, &kiov);
|
|
+ if (!ret)
|
|
+ ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ default:
|
|
+ ret = ptrace_resume(child, engine, request, data);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ utrace_engine_put(engine);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+#if defined CONFIG_COMPAT
|
|
+#include <linux/compat.h>
|
|
+
|
|
+int compat_ptrace_request(struct task_struct *child, compat_long_t request,
|
|
+ compat_ulong_t addr, compat_ulong_t data)
|
|
+{
|
|
+ struct utrace_engine *engine = ptrace_lookup_engine(child);
|
|
+ compat_ulong_t __user *datap = compat_ptr(data);
|
|
+ compat_ulong_t word;
|
|
+ siginfo_t siginfo;
|
|
+ int ret;
|
|
+
|
|
+ if (unlikely(IS_ERR(engine)))
|
|
+ return -ESRCH;
|
|
+
|
|
+ switch (request) {
|
|
+ case PTRACE_PEEKTEXT:
|
|
+ case PTRACE_PEEKDATA:
|
|
+ ret = access_process_vm(child, addr, &word, sizeof(word), 0);
|
|
+ if (ret != sizeof(word))
|
|
+ ret = -EIO;
|
|
+ else
|
|
+ ret = put_user(word, datap);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_POKETEXT:
|
|
+ case PTRACE_POKEDATA:
|
|
+ ret = access_process_vm(child, addr, &data, sizeof(data), 1);
|
|
+ ret = (ret != sizeof(data) ? -EIO : 0);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_GETEVENTMSG:
|
|
+ ret = put_user((compat_ulong_t)ptrace_context(engine)->eventmsg,
|
|
+ datap);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_GETSIGINFO:
|
|
+ ret = ptrace_rw_siginfo(child, ptrace_context(engine),
|
|
+ &siginfo, false);
|
|
+ if (!ret)
|
|
+ ret = copy_siginfo_to_user32(
|
|
+ (struct compat_siginfo __user *) datap,
|
|
+ &siginfo);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_SETSIGINFO:
|
|
+ memset(&siginfo, 0, sizeof siginfo);
|
|
+ if (copy_siginfo_from_user32(
|
|
+ &siginfo, (struct compat_siginfo __user *) datap))
|
|
+ ret = -EFAULT;
|
|
+ else
|
|
+ ret = ptrace_rw_siginfo(child, ptrace_context(engine),
|
|
+ &siginfo, true);
|
|
+ break;
|
|
+
|
|
+ case PTRACE_GETREGSET:
|
|
+ case PTRACE_SETREGSET:
|
|
+ {
|
|
+ struct iovec kiov;
|
|
+ struct compat_iovec __user *uiov =
|
|
+ (struct compat_iovec __user *) datap;
|
|
+ compat_uptr_t ptr;
|
|
+ compat_size_t len;
|
|
+
|
|
+ if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
|
|
+ return -EFAULT;
|
|
+
|
|
+ if (__get_user(ptr, &uiov->iov_base) ||
|
|
+ __get_user(len, &uiov->iov_len))
|
|
+ return -EFAULT;
|
|
+
|
|
+ kiov.iov_base = compat_ptr(ptr);
|
|
+ kiov.iov_len = len;
|
|
+
|
|
+ ret = ptrace_regset(child, request, addr, &kiov);
|
|
+ if (!ret)
|
|
+ ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ default:
|
|
+ ret = ptrace_request(child, request, addr, data);
|
|
+ }
|
|
+
|
|
+ utrace_engine_put(engine);
|
|
+ return ret;
|
|
+}
|
|
+#endif /* CONFIG_COMPAT */
|
|
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
|
|
index 74a3d69..c77f9bf 100644
|
|
--- a/kernel/ptrace.c
|
|
+++ b/kernel/ptrace.c
|
|
@@ -23,7 +23,317 @@
|
|
#include <linux/uaccess.h>
|
|
#include <linux/regset.h>
|
|
|
|
+int __ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
+{
|
|
+ const struct cred *cred = current_cred(), *tcred;
|
|
+
|
|
+ /* May we inspect the given task?
|
|
+ * This check is used both for attaching with ptrace
|
|
+ * and for allowing access to sensitive information in /proc.
|
|
+ *
|
|
+ * ptrace_attach denies several cases that /proc allows
|
|
+ * because setting up the necessary parent/child relationship
|
|
+ * or halting the specified task is impossible.
|
|
+ */
|
|
+ int dumpable = 0;
|
|
+ /* Don't let security modules deny introspection */
|
|
+ if (task == current)
|
|
+ return 0;
|
|
+ rcu_read_lock();
|
|
+ tcred = __task_cred(task);
|
|
+ if ((cred->uid != tcred->euid ||
|
|
+ cred->uid != tcred->suid ||
|
|
+ cred->uid != tcred->uid ||
|
|
+ cred->gid != tcred->egid ||
|
|
+ cred->gid != tcred->sgid ||
|
|
+ cred->gid != tcred->gid) &&
|
|
+ !capable(CAP_SYS_PTRACE)) {
|
|
+ rcu_read_unlock();
|
|
+ return -EPERM;
|
|
+ }
|
|
+ rcu_read_unlock();
|
|
+ smp_rmb();
|
|
+ if (task->mm)
|
|
+ dumpable = get_dumpable(task->mm);
|
|
+ if (!dumpable && !capable(CAP_SYS_PTRACE))
|
|
+ return -EPERM;
|
|
+
|
|
+ return security_ptrace_access_check(task, mode);
|
|
+}
|
|
+
|
|
+bool ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
+{
|
|
+ int err;
|
|
+ task_lock(task);
|
|
+ err = __ptrace_may_access(task, mode);
|
|
+ task_unlock(task);
|
|
+ return !err;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called with irqs disabled, returns true if childs should reap themselves.
|
|
+ */
|
|
+static int ignoring_children(struct sighand_struct *sigh)
|
|
+{
|
|
+ int ret;
|
|
+ spin_lock(&sigh->siglock);
|
|
+ ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
|
|
+ (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
|
|
+ spin_unlock(&sigh->siglock);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called with tasklist_lock held for writing.
|
|
+ * Unlink a traced task, and clean it up if it was a traced zombie.
|
|
+ * Return true if it needs to be reaped with release_task().
|
|
+ * (We can't call release_task() here because we already hold tasklist_lock.)
|
|
+ *
|
|
+ * If it's a zombie, our attachedness prevented normal parent notification
|
|
+ * or self-reaping. Do notification now if it would have happened earlier.
|
|
+ * If it should reap itself, return true.
|
|
+ *
|
|
+ * If it's our own child, there is no notification to do. But if our normal
|
|
+ * children self-reap, then this child was prevented by ptrace and we must
|
|
+ * reap it now, in that case we must also wake up sub-threads sleeping in
|
|
+ * do_wait().
|
|
+ */
|
|
+bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
|
|
+{
|
|
+ __ptrace_unlink(p);
|
|
+
|
|
+ if (p->exit_state == EXIT_ZOMBIE) {
|
|
+ if (!task_detached(p) && thread_group_empty(p)) {
|
|
+ if (!same_thread_group(p->real_parent, tracer))
|
|
+ do_notify_parent(p, p->exit_signal);
|
|
+ else if (ignoring_children(tracer->sighand)) {
|
|
+ __wake_up_parent(p, tracer);
|
|
+ p->exit_signal = -1;
|
|
+ }
|
|
+ }
|
|
+ if (task_detached(p)) {
|
|
+ /* Mark it as in the process of being reaped. */
|
|
+ p->exit_state = EXIT_DEAD;
|
|
+ return true;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return false;
|
|
+}
|
|
+
|
|
+int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
|
|
+{
|
|
+ int copied = 0;
|
|
+
|
|
+ while (len > 0) {
|
|
+ char buf[128];
|
|
+ int this_len, retval;
|
|
+
|
|
+ this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
+ retval = access_process_vm(tsk, src, buf, this_len, 0);
|
|
+ if (!retval) {
|
|
+ if (copied)
|
|
+ break;
|
|
+ return -EIO;
|
|
+ }
|
|
+ if (copy_to_user(dst, buf, retval))
|
|
+ return -EFAULT;
|
|
+ copied += retval;
|
|
+ src += retval;
|
|
+ dst += retval;
|
|
+ len -= retval;
|
|
+ }
|
|
+ return copied;
|
|
+}
|
|
+
|
|
+int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
|
|
+{
|
|
+ int copied = 0;
|
|
+
|
|
+ while (len > 0) {
|
|
+ char buf[128];
|
|
+ int this_len, retval;
|
|
+
|
|
+ this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
+ if (copy_from_user(buf, src, this_len))
|
|
+ return -EFAULT;
|
|
+ retval = access_process_vm(tsk, dst, buf, this_len, 1);
|
|
+ if (!retval) {
|
|
+ if (copied)
|
|
+ break;
|
|
+ return -EIO;
|
|
+ }
|
|
+ copied += retval;
|
|
+ src += retval;
|
|
+ dst += retval;
|
|
+ len -= retval;
|
|
+ }
|
|
+ return copied;
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
+
|
|
+static const struct user_regset *
|
|
+find_regset(const struct user_regset_view *view, unsigned int type)
|
|
+{
|
|
+ const struct user_regset *regset;
|
|
+ int n;
|
|
+
|
|
+ for (n = 0; n < view->n; ++n) {
|
|
+ regset = view->regsets + n;
|
|
+ if (regset->core_note_type == type)
|
|
+ return regset;
|
|
+ }
|
|
+
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+int ptrace_regset(struct task_struct *task, int req, unsigned int type,
|
|
+ struct iovec *kiov)
|
|
+{
|
|
+ const struct user_regset_view *view = task_user_regset_view(task);
|
|
+ const struct user_regset *regset = find_regset(view, type);
|
|
+ int regset_no;
|
|
+
|
|
+ if (!regset || (kiov->iov_len % regset->size) != 0)
|
|
+ return -EINVAL;
|
|
+
|
|
+ regset_no = regset - view->regsets;
|
|
+ kiov->iov_len = min(kiov->iov_len,
|
|
+ (__kernel_size_t) (regset->n * regset->size));
|
|
+
|
|
+ if (req == PTRACE_GETREGSET)
|
|
+ return copy_regset_to_user(task, view, regset_no, 0,
|
|
+ kiov->iov_len, kiov->iov_base);
|
|
+ else
|
|
+ return copy_regset_from_user(task, view, regset_no, 0,
|
|
+ kiov->iov_len, kiov->iov_base);
|
|
+}
|
|
+
|
|
+#endif
|
|
+
|
|
+static struct task_struct *ptrace_get_task_struct(pid_t pid)
|
|
+{
|
|
+ struct task_struct *child;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ child = find_task_by_vpid(pid);
|
|
+ if (child)
|
|
+ get_task_struct(child);
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ if (!child)
|
|
+ return ERR_PTR(-ESRCH);
|
|
+ return child;
|
|
+}
|
|
+
|
|
+#ifndef arch_ptrace_attach
|
|
+#define arch_ptrace_attach(child) do { } while (0)
|
|
+#endif
|
|
+
|
|
+SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data)
|
|
+{
|
|
+ struct task_struct *child;
|
|
+ long ret;
|
|
+
|
|
+ if (request == PTRACE_TRACEME) {
|
|
+ ret = ptrace_traceme();
|
|
+ if (!ret)
|
|
+ arch_ptrace_attach(current);
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ child = ptrace_get_task_struct(pid);
|
|
+ if (IS_ERR(child)) {
|
|
+ ret = PTR_ERR(child);
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ if (request == PTRACE_ATTACH) {
|
|
+ ret = ptrace_attach(child);
|
|
+ /*
|
|
+ * Some architectures need to do book-keeping after
|
|
+ * a ptrace attach.
|
|
+ */
|
|
+ if (!ret)
|
|
+ arch_ptrace_attach(child);
|
|
+ goto out_put_task_struct;
|
|
+ }
|
|
+
|
|
+ ret = ptrace_check_attach(child, request == PTRACE_KILL);
|
|
+ if (ret < 0)
|
|
+ goto out_put_task_struct;
|
|
+
|
|
+ ret = arch_ptrace(child, request, addr, data);
|
|
+
|
|
+ out_put_task_struct:
|
|
+ put_task_struct(child);
|
|
+ out:
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data)
|
|
+{
|
|
+ unsigned long tmp;
|
|
+ int copied;
|
|
+
|
|
+ copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
|
|
+ if (copied != sizeof(tmp))
|
|
+ return -EIO;
|
|
+ return put_user(tmp, (unsigned long __user *)data);
|
|
+}
|
|
+
|
|
+int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data)
|
|
+{
|
|
+ int copied;
|
|
+
|
|
+ copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
|
|
+ return (copied == sizeof(data)) ? 0 : -EIO;
|
|
+}
|
|
+
|
|
+#if defined CONFIG_COMPAT
|
|
+#include <linux/compat.h>
|
|
+
|
|
+asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
|
|
+ compat_long_t addr, compat_long_t data)
|
|
+{
|
|
+ struct task_struct *child;
|
|
+ long ret;
|
|
+
|
|
+ if (request == PTRACE_TRACEME) {
|
|
+ ret = ptrace_traceme();
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ child = ptrace_get_task_struct(pid);
|
|
+ if (IS_ERR(child)) {
|
|
+ ret = PTR_ERR(child);
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ if (request == PTRACE_ATTACH) {
|
|
+ ret = ptrace_attach(child);
|
|
+ /*
|
|
+ * Some architectures need to do book-keeping after
|
|
+ * a ptrace attach.
|
|
+ */
|
|
+ if (!ret)
|
|
+ arch_ptrace_attach(child);
|
|
+ goto out_put_task_struct;
|
|
+ }
|
|
+
|
|
+ ret = ptrace_check_attach(child, request == PTRACE_KILL);
|
|
+ if (!ret)
|
|
+ ret = compat_arch_ptrace(child, request, addr, data);
|
|
+
|
|
+ out_put_task_struct:
|
|
+ put_task_struct(child);
|
|
+ out:
|
|
+ return ret;
|
|
+}
|
|
+#endif /* CONFIG_COMPAT */
|
|
|
|
+#ifndef CONFIG_UTRACE
|
|
/*
|
|
* ptrace a task: make the debugger its new parent and
|
|
* move it to the ptrace list.
|
|
@@ -116,53 +426,6 @@ int ptrace_check_attach(struct task_struct *child, int kill)
|
|
return ret;
|
|
}
|
|
|
|
-int __ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
-{
|
|
- const struct cred *cred = current_cred(), *tcred;
|
|
-
|
|
- /* May we inspect the given task?
|
|
- * This check is used both for attaching with ptrace
|
|
- * and for allowing access to sensitive information in /proc.
|
|
- *
|
|
- * ptrace_attach denies several cases that /proc allows
|
|
- * because setting up the necessary parent/child relationship
|
|
- * or halting the specified task is impossible.
|
|
- */
|
|
- int dumpable = 0;
|
|
- /* Don't let security modules deny introspection */
|
|
- if (task == current)
|
|
- return 0;
|
|
- rcu_read_lock();
|
|
- tcred = __task_cred(task);
|
|
- if ((cred->uid != tcred->euid ||
|
|
- cred->uid != tcred->suid ||
|
|
- cred->uid != tcred->uid ||
|
|
- cred->gid != tcred->egid ||
|
|
- cred->gid != tcred->sgid ||
|
|
- cred->gid != tcred->gid) &&
|
|
- !capable(CAP_SYS_PTRACE)) {
|
|
- rcu_read_unlock();
|
|
- return -EPERM;
|
|
- }
|
|
- rcu_read_unlock();
|
|
- smp_rmb();
|
|
- if (task->mm)
|
|
- dumpable = get_dumpable(task->mm);
|
|
- if (!dumpable && !capable(CAP_SYS_PTRACE))
|
|
- return -EPERM;
|
|
-
|
|
- return security_ptrace_access_check(task, mode);
|
|
-}
|
|
-
|
|
-bool ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
-{
|
|
- int err;
|
|
- task_lock(task);
|
|
- err = __ptrace_may_access(task, mode);
|
|
- task_unlock(task);
|
|
- return !err;
|
|
-}
|
|
-
|
|
int ptrace_attach(struct task_struct *task)
|
|
{
|
|
int retval;
|
|
@@ -242,57 +505,6 @@ int ptrace_traceme(void)
|
|
return ret;
|
|
}
|
|
|
|
-/*
|
|
- * Called with irqs disabled, returns true if childs should reap themselves.
|
|
- */
|
|
-static int ignoring_children(struct sighand_struct *sigh)
|
|
-{
|
|
- int ret;
|
|
- spin_lock(&sigh->siglock);
|
|
- ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
|
|
- (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
|
|
- spin_unlock(&sigh->siglock);
|
|
- return ret;
|
|
-}
|
|
-
|
|
-/*
|
|
- * Called with tasklist_lock held for writing.
|
|
- * Unlink a traced task, and clean it up if it was a traced zombie.
|
|
- * Return true if it needs to be reaped with release_task().
|
|
- * (We can't call release_task() here because we already hold tasklist_lock.)
|
|
- *
|
|
- * If it's a zombie, our attachedness prevented normal parent notification
|
|
- * or self-reaping. Do notification now if it would have happened earlier.
|
|
- * If it should reap itself, return true.
|
|
- *
|
|
- * If it's our own child, there is no notification to do. But if our normal
|
|
- * children self-reap, then this child was prevented by ptrace and we must
|
|
- * reap it now, in that case we must also wake up sub-threads sleeping in
|
|
- * do_wait().
|
|
- */
|
|
-static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
|
|
-{
|
|
- __ptrace_unlink(p);
|
|
-
|
|
- if (p->exit_state == EXIT_ZOMBIE) {
|
|
- if (!task_detached(p) && thread_group_empty(p)) {
|
|
- if (!same_thread_group(p->real_parent, tracer))
|
|
- do_notify_parent(p, p->exit_signal);
|
|
- else if (ignoring_children(tracer->sighand)) {
|
|
- __wake_up_parent(p, tracer);
|
|
- p->exit_signal = -1;
|
|
- }
|
|
- }
|
|
- if (task_detached(p)) {
|
|
- /* Mark it as in the process of being reaped. */
|
|
- p->exit_state = EXIT_DEAD;
|
|
- return true;
|
|
- }
|
|
- }
|
|
-
|
|
- return false;
|
|
-}
|
|
-
|
|
int ptrace_detach(struct task_struct *child, unsigned int data)
|
|
{
|
|
bool dead = false;
|
|
@@ -346,56 +558,6 @@ void exit_ptrace(struct task_struct *tracer)
|
|
}
|
|
}
|
|
|
|
-int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
|
|
-{
|
|
- int copied = 0;
|
|
-
|
|
- while (len > 0) {
|
|
- char buf[128];
|
|
- int this_len, retval;
|
|
-
|
|
- this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
- retval = access_process_vm(tsk, src, buf, this_len, 0);
|
|
- if (!retval) {
|
|
- if (copied)
|
|
- break;
|
|
- return -EIO;
|
|
- }
|
|
- if (copy_to_user(dst, buf, retval))
|
|
- return -EFAULT;
|
|
- copied += retval;
|
|
- src += retval;
|
|
- dst += retval;
|
|
- len -= retval;
|
|
- }
|
|
- return copied;
|
|
-}
|
|
-
|
|
-int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
|
|
-{
|
|
- int copied = 0;
|
|
-
|
|
- while (len > 0) {
|
|
- char buf[128];
|
|
- int this_len, retval;
|
|
-
|
|
- this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
- if (copy_from_user(buf, src, this_len))
|
|
- return -EFAULT;
|
|
- retval = access_process_vm(tsk, dst, buf, this_len, 1);
|
|
- if (!retval) {
|
|
- if (copied)
|
|
- break;
|
|
- return -EIO;
|
|
- }
|
|
- copied += retval;
|
|
- src += retval;
|
|
- dst += retval;
|
|
- len -= retval;
|
|
- }
|
|
- return copied;
|
|
-}
|
|
-
|
|
static int ptrace_setoptions(struct task_struct *child, long data)
|
|
{
|
|
child->ptrace &= ~PT_TRACE_MASK;
|
|
@@ -456,7 +618,6 @@ static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
|
|
return error;
|
|
}
|
|
|
|
-
|
|
#ifdef PTRACE_SINGLESTEP
|
|
#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
|
|
#else
|
|
@@ -510,47 +671,6 @@ static int ptrace_resume(struct task_struct *child, long request, long data)
|
|
return 0;
|
|
}
|
|
|
|
-#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
-
|
|
-static const struct user_regset *
|
|
-find_regset(const struct user_regset_view *view, unsigned int type)
|
|
-{
|
|
- const struct user_regset *regset;
|
|
- int n;
|
|
-
|
|
- for (n = 0; n < view->n; ++n) {
|
|
- regset = view->regsets + n;
|
|
- if (regset->core_note_type == type)
|
|
- return regset;
|
|
- }
|
|
-
|
|
- return NULL;
|
|
-}
|
|
-
|
|
-static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
|
|
- struct iovec *kiov)
|
|
-{
|
|
- const struct user_regset_view *view = task_user_regset_view(task);
|
|
- const struct user_regset *regset = find_regset(view, type);
|
|
- int regset_no;
|
|
-
|
|
- if (!regset || (kiov->iov_len % regset->size) != 0)
|
|
- return -EINVAL;
|
|
-
|
|
- regset_no = regset - view->regsets;
|
|
- kiov->iov_len = min(kiov->iov_len,
|
|
- (__kernel_size_t) (regset->n * regset->size));
|
|
-
|
|
- if (req == PTRACE_GETREGSET)
|
|
- return copy_regset_to_user(task, view, regset_no, 0,
|
|
- kiov->iov_len, kiov->iov_base);
|
|
- else
|
|
- return copy_regset_from_user(task, view, regset_no, 0,
|
|
- kiov->iov_len, kiov->iov_base);
|
|
-}
|
|
-
|
|
-#endif
|
|
-
|
|
int ptrace_request(struct task_struct *child, long request,
|
|
long addr, long data)
|
|
{
|
|
@@ -666,88 +786,7 @@ int ptrace_request(struct task_struct *child, long request,
|
|
return ret;
|
|
}
|
|
|
|
-static struct task_struct *ptrace_get_task_struct(pid_t pid)
|
|
-{
|
|
- struct task_struct *child;
|
|
-
|
|
- rcu_read_lock();
|
|
- child = find_task_by_vpid(pid);
|
|
- if (child)
|
|
- get_task_struct(child);
|
|
- rcu_read_unlock();
|
|
-
|
|
- if (!child)
|
|
- return ERR_PTR(-ESRCH);
|
|
- return child;
|
|
-}
|
|
-
|
|
-#ifndef arch_ptrace_attach
|
|
-#define arch_ptrace_attach(child) do { } while (0)
|
|
-#endif
|
|
-
|
|
-SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data)
|
|
-{
|
|
- struct task_struct *child;
|
|
- long ret;
|
|
-
|
|
- if (request == PTRACE_TRACEME) {
|
|
- ret = ptrace_traceme();
|
|
- if (!ret)
|
|
- arch_ptrace_attach(current);
|
|
- goto out;
|
|
- }
|
|
-
|
|
- child = ptrace_get_task_struct(pid);
|
|
- if (IS_ERR(child)) {
|
|
- ret = PTR_ERR(child);
|
|
- goto out;
|
|
- }
|
|
-
|
|
- if (request == PTRACE_ATTACH) {
|
|
- ret = ptrace_attach(child);
|
|
- /*
|
|
- * Some architectures need to do book-keeping after
|
|
- * a ptrace attach.
|
|
- */
|
|
- if (!ret)
|
|
- arch_ptrace_attach(child);
|
|
- goto out_put_task_struct;
|
|
- }
|
|
-
|
|
- ret = ptrace_check_attach(child, request == PTRACE_KILL);
|
|
- if (ret < 0)
|
|
- goto out_put_task_struct;
|
|
-
|
|
- ret = arch_ptrace(child, request, addr, data);
|
|
-
|
|
- out_put_task_struct:
|
|
- put_task_struct(child);
|
|
- out:
|
|
- return ret;
|
|
-}
|
|
-
|
|
-int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data)
|
|
-{
|
|
- unsigned long tmp;
|
|
- int copied;
|
|
-
|
|
- copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
|
|
- if (copied != sizeof(tmp))
|
|
- return -EIO;
|
|
- return put_user(tmp, (unsigned long __user *)data);
|
|
-}
|
|
-
|
|
-int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data)
|
|
-{
|
|
- int copied;
|
|
-
|
|
- copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
|
|
- return (copied == sizeof(data)) ? 0 : -EIO;
|
|
-}
|
|
-
|
|
#if defined CONFIG_COMPAT
|
|
-#include <linux/compat.h>
|
|
-
|
|
int compat_ptrace_request(struct task_struct *child, compat_long_t request,
|
|
compat_ulong_t addr, compat_ulong_t data)
|
|
{
|
|
@@ -825,42 +864,5 @@ int compat_ptrace_request(struct task_struct *child, compat_long_t request,
|
|
|
|
return ret;
|
|
}
|
|
-
|
|
-asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
|
|
- compat_long_t addr, compat_long_t data)
|
|
-{
|
|
- struct task_struct *child;
|
|
- long ret;
|
|
-
|
|
- if (request == PTRACE_TRACEME) {
|
|
- ret = ptrace_traceme();
|
|
- goto out;
|
|
- }
|
|
-
|
|
- child = ptrace_get_task_struct(pid);
|
|
- if (IS_ERR(child)) {
|
|
- ret = PTR_ERR(child);
|
|
- goto out;
|
|
- }
|
|
-
|
|
- if (request == PTRACE_ATTACH) {
|
|
- ret = ptrace_attach(child);
|
|
- /*
|
|
- * Some architectures need to do book-keeping after
|
|
- * a ptrace attach.
|
|
- */
|
|
- if (!ret)
|
|
- arch_ptrace_attach(child);
|
|
- goto out_put_task_struct;
|
|
- }
|
|
-
|
|
- ret = ptrace_check_attach(child, request == PTRACE_KILL);
|
|
- if (!ret)
|
|
- ret = compat_arch_ptrace(child, request, addr, data);
|
|
-
|
|
- out_put_task_struct:
|
|
- put_task_struct(child);
|
|
- out:
|
|
- return ret;
|
|
-}
|
|
#endif /* CONFIG_COMPAT */
|
|
+#endif /* CONFIG_UTRACE */
|
|
diff --git a/kernel/signal.c b/kernel/signal.c
|
|
index 906ae5a..8087f13 100644
|
|
--- a/kernel/signal.c
|
|
+++ b/kernel/signal.c
|
|
@@ -1518,7 +1518,7 @@ int do_notify_parent(struct task_struct *tsk, int sig)
|
|
return ret;
|
|
}
|
|
|
|
-static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
|
|
+void do_notify_parent_cldstop(struct task_struct *tsk, int why)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
@@ -1788,7 +1788,7 @@ static int do_signal_stop(int signr)
|
|
static int ptrace_signal(int signr, siginfo_t *info,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
- if (!task_ptrace(current))
|
|
+ if (!(task_ptrace(current) & PT_PTRACED))
|
|
return signr;
|
|
|
|
ptrace_signal_deliver(regs, cookie);
|
|
diff --git a/kernel/utrace.c b/kernel/utrace.c
|
|
new file mode 100644
|
|
index 0000000..f5a9e2c
|
|
--- /dev/null
|
|
+++ b/kernel/utrace.c
|
|
@@ -0,0 +1,2452 @@
|
|
+/*
|
|
+ * utrace infrastructure interface for debugging user processes
|
|
+ *
|
|
+ * Copyright (C) 2006-2010 Red Hat, Inc. All rights reserved.
|
|
+ *
|
|
+ * This copyrighted material is made available to anyone wishing to use,
|
|
+ * modify, copy, or redistribute it subject to the terms and conditions
|
|
+ * of the GNU General Public License v.2.
|
|
+ *
|
|
+ * Red Hat Author: Roland McGrath.
|
|
+ */
|
|
+
|
|
+#include <linux/utrace.h>
|
|
+#include <linux/tracehook.h>
|
|
+#include <linux/regset.h>
|
|
+#include <asm/syscall.h>
|
|
+#include <linux/ptrace.h>
|
|
+#include <linux/err.h>
|
|
+#include <linux/sched.h>
|
|
+#include <linux/freezer.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/init.h>
|
|
+#include <linux/slab.h>
|
|
+#include <linux/seq_file.h>
|
|
+
|
|
+
|
|
+/*
|
|
+ * Per-thread structure private to utrace implementation.
|
|
+ * If task_struct.utrace_flags is nonzero, task_struct.utrace
|
|
+ * has always been allocated first. Once allocated, it is
|
|
+ * never freed until free_task().
|
|
+ *
|
|
+ * The common event reporting loops are done by the task making the
|
|
+ * report without ever taking any locks. To facilitate this, the two
|
|
+ * lists @attached and @attaching work together for smooth asynchronous
|
|
+ * attaching with low overhead. Modifying either list requires @lock.
|
|
+ * The @attaching list can be modified any time while holding @lock.
|
|
+ * New engines being attached always go on this list.
|
|
+ *
|
|
+ * The @attached list is what the task itself uses for its reporting
|
|
+ * loops. When the task itself is not quiescent, it can use the
|
|
+ * @attached list without taking any lock. Nobody may modify the list
|
|
+ * when the task is not quiescent. When it is quiescent, that means
|
|
+ * that it won't run again without taking @lock itself before using
|
|
+ * the list.
|
|
+ *
|
|
+ * At each place where we know the task is quiescent (or it's current),
|
|
+ * while holding @lock, we call splice_attaching(), below. This moves
|
|
+ * the @attaching list members on to the end of the @attached list.
|
|
+ * Since this happens at the start of any reporting pass, any new
|
|
+ * engines attached asynchronously go on the stable @attached list
|
|
+ * in time to have their callbacks seen.
|
|
+ */
|
|
+struct utrace {
|
|
+ spinlock_t lock;
|
|
+ struct list_head attached, attaching;
|
|
+
|
|
+ struct task_struct *cloning;
|
|
+
|
|
+ struct utrace_engine *reporting;
|
|
+
|
|
+ enum utrace_resume_action resume:UTRACE_RESUME_BITS;
|
|
+ unsigned int signal_handler:1;
|
|
+ unsigned int vfork_stop:1; /* need utrace_stop() before vfork wait */
|
|
+ unsigned int death:1; /* in utrace_report_death() now */
|
|
+ unsigned int reap:1; /* release_task() has run */
|
|
+ unsigned int pending_attach:1; /* need splice_attaching() */
|
|
+};
|
|
+
|
|
+static struct kmem_cache *utrace_cachep;
|
|
+static struct kmem_cache *utrace_engine_cachep;
|
|
+static const struct utrace_engine_ops utrace_detached_ops; /* forward decl */
|
|
+
|
|
+static int __init utrace_init(void)
|
|
+{
|
|
+ utrace_cachep = KMEM_CACHE(utrace, SLAB_PANIC);
|
|
+ utrace_engine_cachep = KMEM_CACHE(utrace_engine, SLAB_PANIC);
|
|
+ return 0;
|
|
+}
|
|
+module_init(utrace_init);
|
|
+
|
|
+/*
|
|
+ * Set up @task.utrace for the first time. We can have races
|
|
+ * between two utrace_attach_task() calls here. The task_lock()
|
|
+ * governs installing the new pointer. If another one got in first,
|
|
+ * we just punt the new one we allocated.
|
|
+ *
|
|
+ * This returns false only in case of a memory allocation failure.
|
|
+ */
|
|
+static bool utrace_task_alloc(struct task_struct *task)
|
|
+{
|
|
+ struct utrace *utrace = kmem_cache_zalloc(utrace_cachep, GFP_KERNEL);
|
|
+ if (unlikely(!utrace))
|
|
+ return false;
|
|
+ spin_lock_init(&utrace->lock);
|
|
+ INIT_LIST_HEAD(&utrace->attached);
|
|
+ INIT_LIST_HEAD(&utrace->attaching);
|
|
+ utrace->resume = UTRACE_RESUME;
|
|
+ task_lock(task);
|
|
+ if (likely(!task->utrace)) {
|
|
+ /*
|
|
+ * This barrier makes sure the initialization of the struct
|
|
+ * precedes the installation of the pointer. This pairs
|
|
+ * with smp_read_barrier_depends() in task_utrace_struct().
|
|
+ */
|
|
+ smp_wmb();
|
|
+ task->utrace = utrace;
|
|
+ }
|
|
+ task_unlock(task);
|
|
+
|
|
+ if (unlikely(task->utrace != utrace))
|
|
+ kmem_cache_free(utrace_cachep, utrace);
|
|
+ return true;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is called via tracehook_free_task() from free_task()
|
|
+ * when @task is being deallocated.
|
|
+ */
|
|
+void utrace_free_task(struct task_struct *task)
|
|
+{
|
|
+ kmem_cache_free(utrace_cachep, task->utrace);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is calledwhen the task is safely quiescent, i.e. it won't consult
|
|
+ * utrace->attached without the lock. Move any engines attached
|
|
+ * asynchronously from @utrace->attaching onto the @utrace->attached list.
|
|
+ */
|
|
+static void splice_attaching(struct utrace *utrace)
|
|
+{
|
|
+ lockdep_assert_held(&utrace->lock);
|
|
+ list_splice_tail_init(&utrace->attaching, &utrace->attached);
|
|
+ utrace->pending_attach = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is the exported function used by the utrace_engine_put() inline.
|
|
+ */
|
|
+void __utrace_engine_release(struct kref *kref)
|
|
+{
|
|
+ struct utrace_engine *engine = container_of(kref, struct utrace_engine,
|
|
+ kref);
|
|
+ BUG_ON(!list_empty(&engine->entry));
|
|
+ if (engine->release)
|
|
+ (*engine->release)(engine->data);
|
|
+ kmem_cache_free(utrace_engine_cachep, engine);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(__utrace_engine_release);
|
|
+
|
|
+static bool engine_matches(struct utrace_engine *engine, int flags,
|
|
+ const struct utrace_engine_ops *ops, void *data)
|
|
+{
|
|
+ if ((flags & UTRACE_ATTACH_MATCH_OPS) && engine->ops != ops)
|
|
+ return false;
|
|
+ if ((flags & UTRACE_ATTACH_MATCH_DATA) && engine->data != data)
|
|
+ return false;
|
|
+ return engine->ops && engine->ops != &utrace_detached_ops;
|
|
+}
|
|
+
|
|
+static struct utrace_engine *find_matching_engine(
|
|
+ struct utrace *utrace, int flags,
|
|
+ const struct utrace_engine_ops *ops, void *data)
|
|
+{
|
|
+ struct utrace_engine *engine;
|
|
+ list_for_each_entry(engine, &utrace->attached, entry)
|
|
+ if (engine_matches(engine, flags, ops, data))
|
|
+ return engine;
|
|
+ list_for_each_entry(engine, &utrace->attaching, entry)
|
|
+ if (engine_matches(engine, flags, ops, data))
|
|
+ return engine;
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Enqueue @engine, or maybe don't if UTRACE_ATTACH_EXCLUSIVE.
|
|
+ */
|
|
+static int utrace_add_engine(struct task_struct *target,
|
|
+ struct utrace *utrace,
|
|
+ struct utrace_engine *engine,
|
|
+ int flags,
|
|
+ const struct utrace_engine_ops *ops,
|
|
+ void *data)
|
|
+{
|
|
+ int ret;
|
|
+
|
|
+ spin_lock(&utrace->lock);
|
|
+
|
|
+ ret = -EEXIST;
|
|
+ if ((flags & UTRACE_ATTACH_EXCLUSIVE) &&
|
|
+ unlikely(find_matching_engine(utrace, flags, ops, data)))
|
|
+ goto unlock;
|
|
+
|
|
+ /*
|
|
+ * In case we had no engines before, make sure that
|
|
+ * utrace_flags is not zero. Since we did unlock+lock
|
|
+ * at least once after utrace_task_alloc() installed
|
|
+ * ->utrace, we have the necessary barrier which pairs
|
|
+ * with rmb() in task_utrace_struct().
|
|
+ */
|
|
+ ret = -ESRCH;
|
|
+ if (!target->utrace_flags) {
|
|
+ target->utrace_flags = UTRACE_EVENT(REAP);
|
|
+ /*
|
|
+ * If we race with tracehook_prepare_release_task()
|
|
+ * make sure that either it sees utrace_flags != 0
|
|
+ * or we see exit_state == EXIT_DEAD.
|
|
+ */
|
|
+ smp_mb();
|
|
+ if (unlikely(target->exit_state == EXIT_DEAD)) {
|
|
+ target->utrace_flags = 0;
|
|
+ goto unlock;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Put the new engine on the pending ->attaching list.
|
|
+ * Make sure it gets onto the ->attached list by the next
|
|
+ * time it's examined. Setting ->pending_attach ensures
|
|
+ * that start_report() takes the lock and splices the lists
|
|
+ * before the next new reporting pass.
|
|
+ *
|
|
+ * When target == current, it would be safe just to call
|
|
+ * splice_attaching() right here. But if we're inside a
|
|
+ * callback, that would mean the new engine also gets
|
|
+ * notified about the event that precipitated its own
|
|
+ * creation. This is not what the user wants.
|
|
+ */
|
|
+ list_add_tail(&engine->entry, &utrace->attaching);
|
|
+ utrace->pending_attach = 1;
|
|
+ ret = 0;
|
|
+unlock:
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_attach_task - attach new engine, or look up an attached engine
|
|
+ * @target: thread to attach to
|
|
+ * @flags: flag bits combined with OR, see below
|
|
+ * @ops: callback table for new engine
|
|
+ * @data: engine private data pointer
|
|
+ *
|
|
+ * The caller must ensure that the @target thread does not get freed,
|
|
+ * i.e. hold a ref or be its parent. It is always safe to call this
|
|
+ * on @current, or on the @child pointer in a @report_clone callback.
|
|
+ * For most other cases, it's easier to use utrace_attach_pid() instead.
|
|
+ *
|
|
+ * UTRACE_ATTACH_CREATE:
|
|
+ * Create a new engine. If %UTRACE_ATTACH_CREATE is not specified, you
|
|
+ * only look up an existing engine already attached to the thread.
|
|
+ *
|
|
+ * UTRACE_ATTACH_EXCLUSIVE:
|
|
+ * Attempting to attach a second (matching) engine fails with -%EEXIST.
|
|
+ *
|
|
+ * UTRACE_ATTACH_MATCH_OPS: Only consider engines matching @ops.
|
|
+ * UTRACE_ATTACH_MATCH_DATA: Only consider engines matching @data.
|
|
+ *
|
|
+ * Calls with neither %UTRACE_ATTACH_MATCH_OPS nor %UTRACE_ATTACH_MATCH_DATA
|
|
+ * match the first among any engines attached to @target. That means that
|
|
+ * %UTRACE_ATTACH_EXCLUSIVE in such a call fails with -%EEXIST if there
|
|
+ * are any engines on @target at all.
|
|
+ */
|
|
+struct utrace_engine *utrace_attach_task(
|
|
+ struct task_struct *target, int flags,
|
|
+ const struct utrace_engine_ops *ops, void *data)
|
|
+{
|
|
+ struct utrace *utrace = task_utrace_struct(target);
|
|
+ struct utrace_engine *engine;
|
|
+ int ret;
|
|
+
|
|
+ if (!(flags & UTRACE_ATTACH_CREATE)) {
|
|
+ if (unlikely(!utrace))
|
|
+ return ERR_PTR(-ENOENT);
|
|
+ spin_lock(&utrace->lock);
|
|
+ engine = find_matching_engine(utrace, flags, ops, data);
|
|
+ if (engine)
|
|
+ utrace_engine_get(engine);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return engine ?: ERR_PTR(-ENOENT);
|
|
+ }
|
|
+
|
|
+ if (unlikely(!ops) || unlikely(ops == &utrace_detached_ops))
|
|
+ return ERR_PTR(-EINVAL);
|
|
+
|
|
+ if (unlikely(target->flags & PF_KTHREAD))
|
|
+ /*
|
|
+ * Silly kernel, utrace is for users!
|
|
+ */
|
|
+ return ERR_PTR(-EPERM);
|
|
+
|
|
+ if (!utrace) {
|
|
+ if (unlikely(!utrace_task_alloc(target)))
|
|
+ return ERR_PTR(-ENOMEM);
|
|
+ utrace = task_utrace_struct(target);
|
|
+ }
|
|
+
|
|
+ engine = kmem_cache_alloc(utrace_engine_cachep, GFP_KERNEL);
|
|
+ if (unlikely(!engine))
|
|
+ return ERR_PTR(-ENOMEM);
|
|
+
|
|
+ /*
|
|
+ * Initialize the new engine structure. It starts out with two
|
|
+ * refs: one ref to return, and one ref for being attached.
|
|
+ */
|
|
+ kref_set(&engine->kref, 2);
|
|
+ engine->flags = 0;
|
|
+ engine->ops = ops;
|
|
+ engine->data = data;
|
|
+ engine->release = ops->release;
|
|
+
|
|
+ ret = utrace_add_engine(target, utrace, engine, flags, ops, data);
|
|
+
|
|
+ if (unlikely(ret)) {
|
|
+ kmem_cache_free(utrace_engine_cachep, engine);
|
|
+ engine = ERR_PTR(ret);
|
|
+ }
|
|
+
|
|
+ return engine;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_attach_task);
|
|
+
|
|
+/**
|
|
+ * utrace_attach_pid - attach new engine, or look up an attached engine
|
|
+ * @pid: &struct pid pointer representing thread to attach to
|
|
+ * @flags: flag bits combined with OR, see utrace_attach_task()
|
|
+ * @ops: callback table for new engine
|
|
+ * @data: engine private data pointer
|
|
+ *
|
|
+ * This is the same as utrace_attach_task(), but takes a &struct pid
|
|
+ * pointer rather than a &struct task_struct pointer. The caller must
|
|
+ * hold a ref on @pid, but does not need to worry about the task
|
|
+ * staying valid. If it's been reaped so that @pid points nowhere,
|
|
+ * then this call returns -%ESRCH.
|
|
+ */
|
|
+struct utrace_engine *utrace_attach_pid(
|
|
+ struct pid *pid, int flags,
|
|
+ const struct utrace_engine_ops *ops, void *data)
|
|
+{
|
|
+ struct utrace_engine *engine = ERR_PTR(-ESRCH);
|
|
+ struct task_struct *task = get_pid_task(pid, PIDTYPE_PID);
|
|
+ if (task) {
|
|
+ engine = utrace_attach_task(task, flags, ops, data);
|
|
+ put_task_struct(task);
|
|
+ }
|
|
+ return engine;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_attach_pid);
|
|
+
|
|
+/*
|
|
+ * When an engine is detached, the target thread may still see it and
|
|
+ * make callbacks until it quiesces. We install a special ops vector
|
|
+ * with these two callbacks. When the target thread quiesces, it can
|
|
+ * safely free the engine itself. For any event we will always get
|
|
+ * the report_quiesce() callback first, so we only need this one
|
|
+ * pointer to be set. The only exception is report_reap(), so we
|
|
+ * supply that callback too.
|
|
+ */
|
|
+static u32 utrace_detached_quiesce(u32 action, struct utrace_engine *engine,
|
|
+ unsigned long event)
|
|
+{
|
|
+ return UTRACE_DETACH;
|
|
+}
|
|
+
|
|
+static void utrace_detached_reap(struct utrace_engine *engine,
|
|
+ struct task_struct *task)
|
|
+{
|
|
+}
|
|
+
|
|
+static const struct utrace_engine_ops utrace_detached_ops = {
|
|
+ .report_quiesce = &utrace_detached_quiesce,
|
|
+ .report_reap = &utrace_detached_reap
|
|
+};
|
|
+
|
|
+/*
|
|
+ * The caller has to hold a ref on the engine. If the attached flag is
|
|
+ * true (all but utrace_barrier() calls), the engine is supposed to be
|
|
+ * attached. If the attached flag is false (utrace_barrier() only),
|
|
+ * then return -ERESTARTSYS for an engine marked for detach but not yet
|
|
+ * fully detached. The task pointer can be invalid if the engine is
|
|
+ * detached.
|
|
+ *
|
|
+ * Get the utrace lock for the target task.
|
|
+ * Returns the struct if locked, or ERR_PTR(-errno).
|
|
+ *
|
|
+ * This has to be robust against races with:
|
|
+ * utrace_control(target, UTRACE_DETACH) calls
|
|
+ * UTRACE_DETACH after reports
|
|
+ * utrace_report_death
|
|
+ * utrace_release_task
|
|
+ */
|
|
+static struct utrace *get_utrace_lock(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ bool attached)
|
|
+ __acquires(utrace->lock)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+
|
|
+ rcu_read_lock();
|
|
+
|
|
+ /*
|
|
+ * If this engine was already detached, bail out before we look at
|
|
+ * the task_struct pointer at all. If it's detached after this
|
|
+ * check, then RCU is still keeping this task_struct pointer valid.
|
|
+ *
|
|
+ * The ops pointer is NULL when the engine is fully detached.
|
|
+ * It's &utrace_detached_ops when it's marked detached but still
|
|
+ * on the list. In the latter case, utrace_barrier() still works,
|
|
+ * since the target might be in the middle of an old callback.
|
|
+ */
|
|
+ if (unlikely(!engine->ops)) {
|
|
+ rcu_read_unlock();
|
|
+ return ERR_PTR(-ESRCH);
|
|
+ }
|
|
+
|
|
+ if (unlikely(engine->ops == &utrace_detached_ops)) {
|
|
+ rcu_read_unlock();
|
|
+ return attached ? ERR_PTR(-ESRCH) : ERR_PTR(-ERESTARTSYS);
|
|
+ }
|
|
+
|
|
+ utrace = task_utrace_struct(target);
|
|
+ spin_lock(&utrace->lock);
|
|
+ if (unlikely(!engine->ops) ||
|
|
+ unlikely(engine->ops == &utrace_detached_ops)) {
|
|
+ /*
|
|
+ * By the time we got the utrace lock,
|
|
+ * it had been reaped or detached already.
|
|
+ */
|
|
+ spin_unlock(&utrace->lock);
|
|
+ utrace = ERR_PTR(-ESRCH);
|
|
+ if (!attached && engine->ops == &utrace_detached_ops)
|
|
+ utrace = ERR_PTR(-ERESTARTSYS);
|
|
+ }
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ return utrace;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Now that we don't hold any locks, run through any
|
|
+ * detached engines and free their references. Each
|
|
+ * engine had one implicit ref while it was attached.
|
|
+ */
|
|
+static void put_detached_list(struct list_head *list)
|
|
+{
|
|
+ struct utrace_engine *engine, *next;
|
|
+ list_for_each_entry_safe(engine, next, list, entry) {
|
|
+ list_del_init(&engine->entry);
|
|
+ utrace_engine_put(engine);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * We use an extra bit in utrace_engine.flags past the event bits,
|
|
+ * to record whether the engine is keeping the target thread stopped.
|
|
+ *
|
|
+ * This bit is set in task_struct.utrace_flags whenever it is set in any
|
|
+ * engine's flags. Only utrace_reset() resets it in utrace_flags.
|
|
+ */
|
|
+#define ENGINE_STOP (1UL << _UTRACE_NEVENTS)
|
|
+
|
|
+static void mark_engine_wants_stop(struct task_struct *task,
|
|
+ struct utrace_engine *engine)
|
|
+{
|
|
+ engine->flags |= ENGINE_STOP;
|
|
+ task->utrace_flags |= ENGINE_STOP;
|
|
+}
|
|
+
|
|
+static void clear_engine_wants_stop(struct utrace_engine *engine)
|
|
+{
|
|
+ engine->flags &= ~ENGINE_STOP;
|
|
+}
|
|
+
|
|
+static bool engine_wants_stop(struct utrace_engine *engine)
|
|
+{
|
|
+ return (engine->flags & ENGINE_STOP) != 0;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_set_events - choose which event reports a tracing engine gets
|
|
+ * @target: thread to affect
|
|
+ * @engine: attached engine to affect
|
|
+ * @events: new event mask
|
|
+ *
|
|
+ * This changes the set of events for which @engine wants callbacks made.
|
|
+ *
|
|
+ * This fails with -%EALREADY and does nothing if you try to clear
|
|
+ * %UTRACE_EVENT(%DEATH) when the @report_death callback may already have
|
|
+ * begun, if you try to clear %UTRACE_EVENT(%REAP) when the @report_reap
|
|
+ * callback may already have begun, or if you try to newly set
|
|
+ * %UTRACE_EVENT(%DEATH) or %UTRACE_EVENT(%QUIESCE) when @target is
|
|
+ * already dead or dying.
|
|
+ *
|
|
+ * This can fail with -%ESRCH when @target has already been detached,
|
|
+ * including forcible detach on reaping.
|
|
+ *
|
|
+ * If @target was stopped before the call, then after a successful call,
|
|
+ * no event callbacks not requested in @events will be made; if
|
|
+ * %UTRACE_EVENT(%QUIESCE) is included in @events, then a
|
|
+ * @report_quiesce callback will be made when @target resumes.
|
|
+ *
|
|
+ * If @target was not stopped and @events excludes some bits that were
|
|
+ * set before, this can return -%EINPROGRESS to indicate that @target
|
|
+ * may have been making some callback to @engine. When this returns
|
|
+ * zero, you can be sure that no event callbacks you've disabled in
|
|
+ * @events can be made. If @events only sets new bits that were not set
|
|
+ * before on @engine, then -%EINPROGRESS will never be returned.
|
|
+ *
|
|
+ * To synchronize after an -%EINPROGRESS return, see utrace_barrier().
|
|
+ *
|
|
+ * When @target is @current, -%EINPROGRESS is not returned. But note
|
|
+ * that a newly-created engine will not receive any callbacks related to
|
|
+ * an event notification already in progress. This call enables @events
|
|
+ * callbacks to be made as soon as @engine becomes eligible for any
|
|
+ * callbacks, see utrace_attach_task().
|
|
+ *
|
|
+ * These rules provide for coherent synchronization based on %UTRACE_STOP,
|
|
+ * even when %SIGKILL is breaking its normal simple rules.
|
|
+ */
|
|
+int utrace_set_events(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ unsigned long events)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+ unsigned long old_flags, old_utrace_flags;
|
|
+ int ret;
|
|
+
|
|
+ /*
|
|
+ * We just ignore the internal bit, so callers can use
|
|
+ * engine->flags to seed bitwise ops for our argument.
|
|
+ */
|
|
+ events &= ~ENGINE_STOP;
|
|
+
|
|
+ utrace = get_utrace_lock(target, engine, true);
|
|
+ if (unlikely(IS_ERR(utrace)))
|
|
+ return PTR_ERR(utrace);
|
|
+
|
|
+ old_utrace_flags = target->utrace_flags;
|
|
+ old_flags = engine->flags & ~ENGINE_STOP;
|
|
+
|
|
+ if (target->exit_state &&
|
|
+ (((events & ~old_flags) & _UTRACE_DEATH_EVENTS) ||
|
|
+ (utrace->death &&
|
|
+ ((old_flags & ~events) & _UTRACE_DEATH_EVENTS)) ||
|
|
+ (utrace->reap && ((old_flags & ~events) & UTRACE_EVENT(REAP))))) {
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return -EALREADY;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * When setting these flags, it's essential that we really
|
|
+ * synchronize with exit_notify(). They cannot be set after
|
|
+ * exit_notify() takes the tasklist_lock. By holding the read
|
|
+ * lock here while setting the flags, we ensure that the calls
|
|
+ * to tracehook_notify_death() and tracehook_report_death() will
|
|
+ * see the new flags. This ensures that utrace_release_task()
|
|
+ * knows positively that utrace_report_death() will be called or
|
|
+ * that it won't.
|
|
+ */
|
|
+ if ((events & ~old_utrace_flags) & _UTRACE_DEATH_EVENTS) {
|
|
+ read_lock(&tasklist_lock);
|
|
+ if (unlikely(target->exit_state)) {
|
|
+ read_unlock(&tasklist_lock);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return -EALREADY;
|
|
+ }
|
|
+ target->utrace_flags |= events;
|
|
+ read_unlock(&tasklist_lock);
|
|
+ }
|
|
+
|
|
+ engine->flags = events | (engine->flags & ENGINE_STOP);
|
|
+ target->utrace_flags |= events;
|
|
+
|
|
+ if ((events & UTRACE_EVENT_SYSCALL) &&
|
|
+ !(old_utrace_flags & UTRACE_EVENT_SYSCALL))
|
|
+ set_tsk_thread_flag(target, TIF_SYSCALL_TRACE);
|
|
+
|
|
+ ret = 0;
|
|
+ if ((old_flags & ~events) && target != current &&
|
|
+ !task_is_stopped_or_traced(target) && !target->exit_state) {
|
|
+ /*
|
|
+ * This barrier ensures that our engine->flags changes
|
|
+ * have hit before we examine utrace->reporting,
|
|
+ * pairing with the barrier in start_callback(). If
|
|
+ * @target has not yet hit finish_callback() to clear
|
|
+ * utrace->reporting, we might be in the middle of a
|
|
+ * callback to @engine.
|
|
+ */
|
|
+ smp_mb();
|
|
+ if (utrace->reporting == engine)
|
|
+ ret = -EINPROGRESS;
|
|
+ }
|
|
+
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_set_events);
|
|
+
|
|
+/*
|
|
+ * Asynchronously mark an engine as being detached.
|
|
+ *
|
|
+ * This must work while the target thread races with us doing
|
|
+ * start_callback(), defined below. It uses smp_rmb() between checking
|
|
+ * @engine->flags and using @engine->ops. Here we change @engine->ops
|
|
+ * first, then use smp_wmb() before changing @engine->flags. This ensures
|
|
+ * it can check the old flags before using the old ops, or check the old
|
|
+ * flags before using the new ops, or check the new flags before using the
|
|
+ * new ops, but can never check the new flags before using the old ops.
|
|
+ * Hence, utrace_detached_ops might be used with any old flags in place.
|
|
+ * It has report_quiesce() and report_reap() callbacks to handle all cases.
|
|
+ */
|
|
+static void mark_engine_detached(struct utrace_engine *engine)
|
|
+{
|
|
+ engine->ops = &utrace_detached_ops;
|
|
+ smp_wmb();
|
|
+ engine->flags = UTRACE_EVENT(QUIESCE);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Get @target to stop and return true if it is already stopped now.
|
|
+ * If we return false, it will make some event callback soonish.
|
|
+ * Called with @utrace locked.
|
|
+ */
|
|
+static bool utrace_do_stop(struct task_struct *target, struct utrace *utrace)
|
|
+{
|
|
+ if (task_is_stopped(target)) {
|
|
+ /*
|
|
+ * Stopped is considered quiescent; when it wakes up, it will
|
|
+ * go through utrace_finish_stop() before doing anything else.
|
|
+ */
|
|
+ spin_lock_irq(&target->sighand->siglock);
|
|
+ if (likely(task_is_stopped(target)))
|
|
+ __set_task_state(target, TASK_TRACED);
|
|
+ spin_unlock_irq(&target->sighand->siglock);
|
|
+ } else if (utrace->resume > UTRACE_REPORT) {
|
|
+ utrace->resume = UTRACE_REPORT;
|
|
+ set_notify_resume(target);
|
|
+ }
|
|
+
|
|
+ return task_is_traced(target);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * If the target is not dead it should not be in tracing
|
|
+ * stop any more. Wake it unless it's in job control stop.
|
|
+ */
|
|
+static void utrace_wakeup(struct task_struct *target, struct utrace *utrace)
|
|
+{
|
|
+ lockdep_assert_held(&utrace->lock);
|
|
+ spin_lock_irq(&target->sighand->siglock);
|
|
+ if (target->signal->flags & SIGNAL_STOP_STOPPED ||
|
|
+ target->signal->group_stop_count)
|
|
+ target->state = TASK_STOPPED;
|
|
+ else
|
|
+ wake_up_state(target, __TASK_TRACED);
|
|
+ spin_unlock_irq(&target->sighand->siglock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is called when there might be some detached engines on the list or
|
|
+ * some stale bits in @task->utrace_flags. Clean them up and recompute the
|
|
+ * flags. Returns true if we're now fully detached.
|
|
+ *
|
|
+ * Called with @utrace->lock held, returns with it released.
|
|
+ * After this returns, @utrace might be freed if everything detached.
|
|
+ */
|
|
+static bool utrace_reset(struct task_struct *task, struct utrace *utrace)
|
|
+ __releases(utrace->lock)
|
|
+{
|
|
+ struct utrace_engine *engine, *next;
|
|
+ unsigned long flags = 0;
|
|
+ LIST_HEAD(detached);
|
|
+
|
|
+ splice_attaching(utrace);
|
|
+
|
|
+ /*
|
|
+ * Update the set of events of interest from the union
|
|
+ * of the interests of the remaining tracing engines.
|
|
+ * For any engine marked detached, remove it from the list.
|
|
+ * We'll collect them on the detached list.
|
|
+ */
|
|
+ list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
|
|
+ if (engine->ops == &utrace_detached_ops) {
|
|
+ engine->ops = NULL;
|
|
+ list_move(&engine->entry, &detached);
|
|
+ } else {
|
|
+ flags |= engine->flags | UTRACE_EVENT(REAP);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (task->exit_state) {
|
|
+ /*
|
|
+ * Once it's already dead, we never install any flags
|
|
+ * except REAP. When ->exit_state is set and events
|
|
+ * like DEATH are not set, then they never can be set.
|
|
+ * This ensures that utrace_release_task() knows
|
|
+ * positively that utrace_report_death() can never run.
|
|
+ */
|
|
+ BUG_ON(utrace->death);
|
|
+ flags &= UTRACE_EVENT(REAP);
|
|
+ } else if (!(flags & UTRACE_EVENT_SYSCALL) &&
|
|
+ test_tsk_thread_flag(task, TIF_SYSCALL_TRACE)) {
|
|
+ clear_tsk_thread_flag(task, TIF_SYSCALL_TRACE);
|
|
+ }
|
|
+
|
|
+ if (!flags) {
|
|
+ /*
|
|
+ * No more engines, cleared out the utrace.
|
|
+ */
|
|
+ utrace->resume = UTRACE_RESUME;
|
|
+ utrace->signal_handler = 0;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * If no more engines want it stopped, wake it up.
|
|
+ */
|
|
+ if (task_is_traced(task) && !(flags & ENGINE_STOP))
|
|
+ utrace_wakeup(task, utrace);
|
|
+
|
|
+ /*
|
|
+ * In theory spin_lock() doesn't imply rcu_read_lock().
|
|
+ * Once we clear ->utrace_flags this task_struct can go away
|
|
+ * because tracehook_prepare_release_task() path does not take
|
|
+ * utrace->lock when ->utrace_flags == 0.
|
|
+ */
|
|
+ rcu_read_lock();
|
|
+ task->utrace_flags = flags;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ put_detached_list(&detached);
|
|
+
|
|
+ return !flags;
|
|
+}
|
|
+
|
|
+void utrace_finish_stop(void)
|
|
+{
|
|
+ /*
|
|
+ * If we were task_is_traced() and then SIGKILL'ed, make
|
|
+ * sure we do nothing until the tracer drops utrace->lock.
|
|
+ */
|
|
+ if (unlikely(__fatal_signal_pending(current))) {
|
|
+ struct utrace *utrace = task_utrace_struct(current);
|
|
+ spin_unlock_wait(&utrace->lock);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Perform %UTRACE_STOP, i.e. block in TASK_TRACED until woken up.
|
|
+ * @task == current, @utrace == current->utrace, which is not locked.
|
|
+ * Return true if we were woken up by SIGKILL even though some utrace
|
|
+ * engine may still want us to stay stopped.
|
|
+ */
|
|
+static void utrace_stop(struct task_struct *task, struct utrace *utrace,
|
|
+ enum utrace_resume_action action)
|
|
+{
|
|
+relock:
|
|
+ spin_lock(&utrace->lock);
|
|
+
|
|
+ if (action < utrace->resume) {
|
|
+ /*
|
|
+ * Ensure a reporting pass when we're resumed.
|
|
+ */
|
|
+ utrace->resume = action;
|
|
+ if (action == UTRACE_INTERRUPT)
|
|
+ set_thread_flag(TIF_SIGPENDING);
|
|
+ else
|
|
+ set_thread_flag(TIF_NOTIFY_RESUME);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * If the ENGINE_STOP bit is clear in utrace_flags, that means
|
|
+ * utrace_reset() ran after we processed some UTRACE_STOP return
|
|
+ * values from callbacks to get here. If all engines have detached
|
|
+ * or resumed us, we don't stop. This check doesn't require
|
|
+ * siglock, but it should follow the interrupt/report bookkeeping
|
|
+ * steps (this can matter for UTRACE_RESUME but not UTRACE_DETACH).
|
|
+ */
|
|
+ if (unlikely(!(task->utrace_flags & ENGINE_STOP))) {
|
|
+ utrace_reset(task, utrace);
|
|
+ if (task->utrace_flags & ENGINE_STOP)
|
|
+ goto relock;
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * The siglock protects us against signals. As well as SIGKILL
|
|
+ * waking us up, we must synchronize with the signal bookkeeping
|
|
+ * for stop signals and SIGCONT.
|
|
+ */
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+
|
|
+ if (unlikely(__fatal_signal_pending(task))) {
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ __set_current_state(TASK_TRACED);
|
|
+
|
|
+ /*
|
|
+ * If there is a group stop in progress,
|
|
+ * we must participate in the bookkeeping.
|
|
+ */
|
|
+ if (unlikely(task->signal->group_stop_count) &&
|
|
+ !--task->signal->group_stop_count)
|
|
+ task->signal->flags = SIGNAL_STOP_STOPPED;
|
|
+
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ /*
|
|
+ * If ptrace is among the reasons for this stop, do its
|
|
+ * notification now. This could not just be done in
|
|
+ * ptrace's own event report callbacks because it has to
|
|
+ * be done after we are in TASK_TRACED. This makes the
|
|
+ * synchronization with ptrace_do_wait() work right.
|
|
+ *
|
|
+ * It's only because of the bad old overloading of the do_wait()
|
|
+ * logic for handling ptrace stops that we need this special case
|
|
+ * here. One day we will clean up ptrace so it does not need to
|
|
+ * work this way. New things that are designed sensibly don't need
|
|
+ * a wakeup that synchronizes with tasklist_lock and ->state, so
|
|
+ * the proper utrace API does not try to support this weirdness.
|
|
+ */
|
|
+ ptrace_notify_stop(task);
|
|
+
|
|
+ schedule();
|
|
+
|
|
+ utrace_finish_stop();
|
|
+
|
|
+ /*
|
|
+ * While in TASK_TRACED, we were considered "frozen enough".
|
|
+ * Now that we woke up, it's crucial if we're supposed to be
|
|
+ * frozen that we freeze now before running anything substantial.
|
|
+ */
|
|
+ try_to_freeze();
|
|
+
|
|
+ /*
|
|
+ * While we were in TASK_TRACED, complete_signal() considered
|
|
+ * us "uninterested" in signal wakeups. Now make sure our
|
|
+ * TIF_SIGPENDING state is correct for normal running.
|
|
+ */
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+ recalc_sigpending();
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called by release_task() with @reap set to true.
|
|
+ * Called by utrace_report_death() with @reap set to false.
|
|
+ * On reap, make report_reap callbacks and clean out @utrace
|
|
+ * unless still making callbacks. On death, update bookkeeping
|
|
+ * and handle the reap work if release_task() came in first.
|
|
+ */
|
|
+void utrace_maybe_reap(struct task_struct *target, struct utrace *utrace,
|
|
+ bool reap)
|
|
+{
|
|
+ struct utrace_engine *engine, *next;
|
|
+ struct list_head attached;
|
|
+
|
|
+ spin_lock(&utrace->lock);
|
|
+
|
|
+ if (reap) {
|
|
+ /*
|
|
+ * If the target will do some final callbacks but hasn't
|
|
+ * finished them yet, we know because it clears these event
|
|
+ * bits after it's done. Instead of cleaning up here and
|
|
+ * requiring utrace_report_death() to cope with it, we
|
|
+ * delay the REAP report and the teardown until after the
|
|
+ * target finishes its death reports.
|
|
+ */
|
|
+ utrace->reap = 1;
|
|
+
|
|
+ if (target->utrace_flags & _UTRACE_DEATH_EVENTS) {
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return;
|
|
+ }
|
|
+ } else {
|
|
+ /*
|
|
+ * After we unlock with this flag clear, any competing
|
|
+ * utrace_control/utrace_set_events calls know that we've
|
|
+ * finished our callbacks and any detach bookkeeping.
|
|
+ */
|
|
+ utrace->death = 0;
|
|
+
|
|
+ if (!utrace->reap) {
|
|
+ /*
|
|
+ * We're just dead, not reaped yet. This will
|
|
+ * reset @target->utrace_flags so the later call
|
|
+ * with @reap set won't hit the check above.
|
|
+ */
|
|
+ utrace_reset(target, utrace);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * utrace_add_engine() checks ->utrace_flags != 0. Since
|
|
+ * @utrace->reap is set, nobody can set or clear UTRACE_EVENT(REAP)
|
|
+ * in @engine->flags or change @engine->ops and nobody can change
|
|
+ * @utrace->attached after we drop the lock.
|
|
+ */
|
|
+ target->utrace_flags = 0;
|
|
+
|
|
+ /*
|
|
+ * We clear out @utrace->attached before we drop the lock so
|
|
+ * that find_matching_engine() can't come across any old engine
|
|
+ * while we are busy tearing it down.
|
|
+ */
|
|
+ list_replace_init(&utrace->attached, &attached);
|
|
+ list_splice_tail_init(&utrace->attaching, &attached);
|
|
+
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ list_for_each_entry_safe(engine, next, &attached, entry) {
|
|
+ if (engine->flags & UTRACE_EVENT(REAP))
|
|
+ engine->ops->report_reap(engine, target);
|
|
+
|
|
+ engine->ops = NULL;
|
|
+ engine->flags = 0;
|
|
+ list_del_init(&engine->entry);
|
|
+
|
|
+ utrace_engine_put(engine);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * You can't do anything to a dead task but detach it.
|
|
+ * If release_task() has been called, you can't do that.
|
|
+ *
|
|
+ * On the exit path, DEATH and QUIESCE event bits are set only
|
|
+ * before utrace_report_death() has taken the lock. At that point,
|
|
+ * the death report will come soon, so disallow detach until it's
|
|
+ * done. This prevents us from racing with it detaching itself.
|
|
+ *
|
|
+ * Called only when @target->exit_state is nonzero.
|
|
+ */
|
|
+static inline int utrace_control_dead(struct task_struct *target,
|
|
+ struct utrace *utrace,
|
|
+ enum utrace_resume_action action)
|
|
+{
|
|
+ lockdep_assert_held(&utrace->lock);
|
|
+
|
|
+ if (action != UTRACE_DETACH || unlikely(utrace->reap))
|
|
+ return -ESRCH;
|
|
+
|
|
+ if (unlikely(utrace->death))
|
|
+ /*
|
|
+ * We have already started the death report. We can't
|
|
+ * prevent the report_death and report_reap callbacks,
|
|
+ * so tell the caller they will happen.
|
|
+ */
|
|
+ return -EALREADY;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_control - control a thread being traced by a tracing engine
|
|
+ * @target: thread to affect
|
|
+ * @engine: attached engine to affect
|
|
+ * @action: &enum utrace_resume_action for thread to do
|
|
+ *
|
|
+ * This is how a tracing engine asks a traced thread to do something.
|
|
+ * This call is controlled by the @action argument, which has the
|
|
+ * same meaning as the &enum utrace_resume_action value returned by
|
|
+ * event reporting callbacks.
|
|
+ *
|
|
+ * If @target is already dead (@target->exit_state nonzero),
|
|
+ * all actions except %UTRACE_DETACH fail with -%ESRCH.
|
|
+ *
|
|
+ * The following sections describe each option for the @action argument.
|
|
+ *
|
|
+ * UTRACE_DETACH:
|
|
+ *
|
|
+ * After this, the @engine data structure is no longer accessible,
|
|
+ * and the thread might be reaped. The thread will start running
|
|
+ * again if it was stopped and no longer has any attached engines
|
|
+ * that want it stopped.
|
|
+ *
|
|
+ * If the @report_reap callback may already have begun, this fails
|
|
+ * with -%ESRCH. If the @report_death callback may already have
|
|
+ * begun, this fails with -%EALREADY.
|
|
+ *
|
|
+ * If @target is not already stopped, then a callback to this engine
|
|
+ * might be in progress or about to start on another CPU. If so,
|
|
+ * then this returns -%EINPROGRESS; the detach happens as soon as
|
|
+ * the pending callback is finished. To synchronize after an
|
|
+ * -%EINPROGRESS return, see utrace_barrier().
|
|
+ *
|
|
+ * If @target is properly stopped before utrace_control() is called,
|
|
+ * then after successful return it's guaranteed that no more callbacks
|
|
+ * to the @engine->ops vector will be made.
|
|
+ *
|
|
+ * The only exception is %SIGKILL (and exec or group-exit by another
|
|
+ * thread in the group), which can cause asynchronous @report_death
|
|
+ * and/or @report_reap callbacks even when %UTRACE_STOP was used.
|
|
+ * (In that event, this fails with -%ESRCH or -%EALREADY, see above.)
|
|
+ *
|
|
+ * UTRACE_STOP:
|
|
+ *
|
|
+ * This asks that @target stop running. This returns 0 only if
|
|
+ * @target is already stopped, either for tracing or for job
|
|
+ * control. Then @target will remain stopped until another
|
|
+ * utrace_control() call is made on @engine; @target can be woken
|
|
+ * only by %SIGKILL (or equivalent, such as exec or termination by
|
|
+ * another thread in the same thread group).
|
|
+ *
|
|
+ * This returns -%EINPROGRESS if @target is not already stopped.
|
|
+ * Then the effect is like %UTRACE_REPORT. A @report_quiesce or
|
|
+ * @report_signal callback will be made soon. Your callback can
|
|
+ * then return %UTRACE_STOP to keep @target stopped.
|
|
+ *
|
|
+ * This does not interrupt system calls in progress, including ones
|
|
+ * that sleep for a long time. For that, use %UTRACE_INTERRUPT.
|
|
+ * To interrupt system calls and then keep @target stopped, your
|
|
+ * @report_signal callback can return %UTRACE_STOP.
|
|
+ *
|
|
+ * UTRACE_RESUME:
|
|
+ *
|
|
+ * Just let @target continue running normally, reversing the effect
|
|
+ * of a previous %UTRACE_STOP. If another engine is keeping @target
|
|
+ * stopped, then it remains stopped until all engines let it resume.
|
|
+ * If @target was not stopped, this has no effect.
|
|
+ *
|
|
+ * UTRACE_REPORT:
|
|
+ *
|
|
+ * This is like %UTRACE_RESUME, but also ensures that there will be
|
|
+ * a @report_quiesce or @report_signal callback made soon. If
|
|
+ * @target had been stopped, then there will be a callback before it
|
|
+ * resumes running normally. If another engine is keeping @target
|
|
+ * stopped, then there might be no callbacks until all engines let
|
|
+ * it resume.
|
|
+ *
|
|
+ * Since this is meaningless unless @report_quiesce callbacks will
|
|
+ * be made, it returns -%EINVAL if @engine lacks %UTRACE_EVENT(%QUIESCE).
|
|
+ *
|
|
+ * UTRACE_INTERRUPT:
|
|
+ *
|
|
+ * This is like %UTRACE_REPORT, but ensures that @target will make a
|
|
+ * @report_signal callback before it resumes or delivers signals.
|
|
+ * If @target was in a system call or about to enter one, work in
|
|
+ * progress will be interrupted as if by %SIGSTOP. If another
|
|
+ * engine is keeping @target stopped, then there might be no
|
|
+ * callbacks until all engines let it resume.
|
|
+ *
|
|
+ * This gives @engine an opportunity to introduce a forced signal
|
|
+ * disposition via its @report_signal callback.
|
|
+ *
|
|
+ * UTRACE_SINGLESTEP:
|
|
+ *
|
|
+ * It's invalid to use this unless arch_has_single_step() returned true.
|
|
+ * This is like %UTRACE_RESUME, but resumes for one user instruction only.
|
|
+ *
|
|
+ * Note that passing %UTRACE_SINGLESTEP or %UTRACE_BLOCKSTEP to
|
|
+ * utrace_control() or returning it from an event callback alone does
|
|
+ * not necessarily ensure that stepping will be enabled. If there are
|
|
+ * more callbacks made to any engine before returning to user mode,
|
|
+ * then the resume action is chosen only by the last set of callbacks.
|
|
+ * To be sure, enable %UTRACE_EVENT(%QUIESCE) and look for the
|
|
+ * @report_quiesce callback with a zero event mask, or the
|
|
+ * @report_signal callback with %UTRACE_SIGNAL_REPORT.
|
|
+ *
|
|
+ * Since this is not robust unless @report_quiesce callbacks will
|
|
+ * be made, it returns -%EINVAL if @engine lacks %UTRACE_EVENT(%QUIESCE).
|
|
+ *
|
|
+ * UTRACE_BLOCKSTEP:
|
|
+ *
|
|
+ * It's invalid to use this unless arch_has_block_step() returned true.
|
|
+ * This is like %UTRACE_SINGLESTEP, but resumes for one whole basic
|
|
+ * block of user instructions.
|
|
+ *
|
|
+ * Since this is not robust unless @report_quiesce callbacks will
|
|
+ * be made, it returns -%EINVAL if @engine lacks %UTRACE_EVENT(%QUIESCE).
|
|
+ *
|
|
+ * %UTRACE_BLOCKSTEP devolves to %UTRACE_SINGLESTEP when another
|
|
+ * tracing engine is using %UTRACE_SINGLESTEP at the same time.
|
|
+ */
|
|
+int utrace_control(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ enum utrace_resume_action action)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+ bool reset;
|
|
+ int ret;
|
|
+
|
|
+ if (unlikely(action >= UTRACE_RESUME_MAX)) {
|
|
+ WARN(1, "invalid action argument to utrace_control()!");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * This is a sanity check for a programming error in the caller.
|
|
+ * Their request can only work properly in all cases by relying on
|
|
+ * a follow-up callback, but they didn't set one up! This check
|
|
+ * doesn't do locking, but it shouldn't matter. The caller has to
|
|
+ * be synchronously sure the callback is set up to be operating the
|
|
+ * interface properly.
|
|
+ */
|
|
+ if (action >= UTRACE_REPORT && action < UTRACE_RESUME &&
|
|
+ unlikely(!(engine->flags & UTRACE_EVENT(QUIESCE)))) {
|
|
+ WARN(1, "utrace_control() with no QUIESCE callback in place!");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ utrace = get_utrace_lock(target, engine, true);
|
|
+ if (unlikely(IS_ERR(utrace)))
|
|
+ return PTR_ERR(utrace);
|
|
+
|
|
+ reset = task_is_traced(target);
|
|
+ ret = 0;
|
|
+
|
|
+ /*
|
|
+ * ->exit_state can change under us, this doesn't matter.
|
|
+ * We do not care about ->exit_state in fact, but we do
|
|
+ * care about ->reap and ->death. If either flag is set,
|
|
+ * we must also see ->exit_state != 0.
|
|
+ */
|
|
+ if (unlikely(target->exit_state)) {
|
|
+ ret = utrace_control_dead(target, utrace, action);
|
|
+ if (ret) {
|
|
+ spin_unlock(&utrace->lock);
|
|
+ return ret;
|
|
+ }
|
|
+ reset = true;
|
|
+ }
|
|
+
|
|
+ switch (action) {
|
|
+ case UTRACE_STOP:
|
|
+ mark_engine_wants_stop(target, engine);
|
|
+ if (!reset && !utrace_do_stop(target, utrace))
|
|
+ ret = -EINPROGRESS;
|
|
+ reset = false;
|
|
+ break;
|
|
+
|
|
+ case UTRACE_DETACH:
|
|
+ if (engine_wants_stop(engine))
|
|
+ target->utrace_flags &= ~ENGINE_STOP;
|
|
+ mark_engine_detached(engine);
|
|
+ reset = reset || utrace_do_stop(target, utrace);
|
|
+ if (!reset) {
|
|
+ /*
|
|
+ * As in utrace_set_events(), this barrier ensures
|
|
+ * that our engine->flags changes have hit before we
|
|
+ * examine utrace->reporting, pairing with the barrier
|
|
+ * in start_callback(). If @target has not yet hit
|
|
+ * finish_callback() to clear utrace->reporting, we
|
|
+ * might be in the middle of a callback to @engine.
|
|
+ */
|
|
+ smp_mb();
|
|
+ if (utrace->reporting == engine)
|
|
+ ret = -EINPROGRESS;
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ case UTRACE_RESUME:
|
|
+ /*
|
|
+ * This and all other cases imply resuming if stopped.
|
|
+ * There might not be another report before it just
|
|
+ * resumes, so make sure single-step is not left set.
|
|
+ */
|
|
+ clear_engine_wants_stop(engine);
|
|
+ if (likely(reset))
|
|
+ user_disable_single_step(target);
|
|
+ break;
|
|
+
|
|
+ case UTRACE_BLOCKSTEP:
|
|
+ /*
|
|
+ * Resume from stopped, step one block.
|
|
+ * We fall through to treat it like UTRACE_SINGLESTEP.
|
|
+ */
|
|
+ if (unlikely(!arch_has_block_step())) {
|
|
+ WARN(1, "UTRACE_BLOCKSTEP when !arch_has_block_step()");
|
|
+ action = UTRACE_SINGLESTEP;
|
|
+ }
|
|
+
|
|
+ case UTRACE_SINGLESTEP:
|
|
+ /*
|
|
+ * Resume from stopped, step one instruction.
|
|
+ * We fall through to the UTRACE_REPORT case.
|
|
+ */
|
|
+ if (unlikely(!arch_has_single_step())) {
|
|
+ WARN(1,
|
|
+ "UTRACE_SINGLESTEP when !arch_has_single_step()");
|
|
+ reset = false;
|
|
+ ret = -EOPNOTSUPP;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ case UTRACE_REPORT:
|
|
+ /*
|
|
+ * Make the thread call tracehook_notify_resume() soon.
|
|
+ * But don't bother if it's already been interrupted.
|
|
+ * In that case, utrace_get_signal() will be reporting soon.
|
|
+ */
|
|
+ clear_engine_wants_stop(engine);
|
|
+ if (action < utrace->resume) {
|
|
+ utrace->resume = action;
|
|
+ set_notify_resume(target);
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ case UTRACE_INTERRUPT:
|
|
+ /*
|
|
+ * Make the thread call tracehook_get_signal() soon.
|
|
+ */
|
|
+ clear_engine_wants_stop(engine);
|
|
+ if (utrace->resume == UTRACE_INTERRUPT)
|
|
+ break;
|
|
+ utrace->resume = UTRACE_INTERRUPT;
|
|
+
|
|
+ /*
|
|
+ * If it's not already stopped, interrupt it now. We need
|
|
+ * the siglock here in case it calls recalc_sigpending()
|
|
+ * and clears its own TIF_SIGPENDING. By taking the lock,
|
|
+ * we've serialized any later recalc_sigpending() after our
|
|
+ * setting of utrace->resume to force it on.
|
|
+ */
|
|
+ if (reset) {
|
|
+ /*
|
|
+ * This is really just to keep the invariant that
|
|
+ * TIF_SIGPENDING is set with UTRACE_INTERRUPT.
|
|
+ * When it's stopped, we know it's always going
|
|
+ * through utrace_get_signal() and will recalculate.
|
|
+ */
|
|
+ set_tsk_thread_flag(target, TIF_SIGPENDING);
|
|
+ } else {
|
|
+ struct sighand_struct *sighand;
|
|
+ unsigned long irqflags;
|
|
+ sighand = lock_task_sighand(target, &irqflags);
|
|
+ if (likely(sighand)) {
|
|
+ signal_wake_up(target, 0);
|
|
+ unlock_task_sighand(target, &irqflags);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ default:
|
|
+ BUG(); /* We checked it on entry. */
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Let the thread resume running. If it's not stopped now,
|
|
+ * there is nothing more we need to do.
|
|
+ */
|
|
+ if (reset)
|
|
+ utrace_reset(target, utrace);
|
|
+ else
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_control);
|
|
+
|
|
+/**
|
|
+ * utrace_barrier - synchronize with simultaneous tracing callbacks
|
|
+ * @target: thread to affect
|
|
+ * @engine: engine to affect (can be detached)
|
|
+ *
|
|
+ * This blocks while @target might be in the midst of making a callback to
|
|
+ * @engine. It can be interrupted by signals and will return -%ERESTARTSYS.
|
|
+ * A return value of zero means no callback from @target to @engine was
|
|
+ * in progress. Any effect of its return value (such as %UTRACE_STOP) has
|
|
+ * already been applied to @engine.
|
|
+ *
|
|
+ * It's not necessary to keep the @target pointer alive for this call.
|
|
+ * It's only necessary to hold a ref on @engine. This will return
|
|
+ * safely even if @target has been reaped and has no task refs.
|
|
+ *
|
|
+ * A successful return from utrace_barrier() guarantees its ordering
|
|
+ * with respect to utrace_set_events() and utrace_control() calls. If
|
|
+ * @target was not properly stopped, event callbacks just disabled might
|
|
+ * still be in progress; utrace_barrier() waits until there is no chance
|
|
+ * an unwanted callback can be in progress.
|
|
+ */
|
|
+int utrace_barrier(struct task_struct *target, struct utrace_engine *engine)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+ int ret = -ERESTARTSYS;
|
|
+
|
|
+ if (unlikely(target == current))
|
|
+ return 0;
|
|
+
|
|
+ do {
|
|
+ utrace = get_utrace_lock(target, engine, false);
|
|
+ if (unlikely(IS_ERR(utrace))) {
|
|
+ ret = PTR_ERR(utrace);
|
|
+ if (ret != -ERESTARTSYS)
|
|
+ break;
|
|
+ } else {
|
|
+ /*
|
|
+ * All engine state changes are done while
|
|
+ * holding the lock, i.e. before we get here.
|
|
+ * Since we have the lock, we only need to
|
|
+ * worry about @target making a callback.
|
|
+ * When it has entered start_callback() but
|
|
+ * not yet gotten to finish_callback(), we
|
|
+ * will see utrace->reporting == @engine.
|
|
+ * When @target doesn't take the lock, it uses
|
|
+ * barriers to order setting utrace->reporting
|
|
+ * before it examines the engine state.
|
|
+ */
|
|
+ if (utrace->reporting != engine)
|
|
+ ret = 0;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ if (!ret)
|
|
+ break;
|
|
+ }
|
|
+ schedule_timeout_interruptible(1);
|
|
+ } while (!signal_pending(current));
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_barrier);
|
|
+
|
|
+/*
|
|
+ * This is local state used for reporting loops, perhaps optimized away.
|
|
+ */
|
|
+struct utrace_report {
|
|
+ u32 result;
|
|
+ enum utrace_resume_action action;
|
|
+ enum utrace_resume_action resume_action;
|
|
+ bool detaches;
|
|
+ bool spurious;
|
|
+};
|
|
+
|
|
+#define INIT_REPORT(var) \
|
|
+ struct utrace_report var = { \
|
|
+ .action = UTRACE_RESUME, \
|
|
+ .resume_action = UTRACE_RESUME, \
|
|
+ .spurious = true \
|
|
+ }
|
|
+
|
|
+/*
|
|
+ * We are now making the report, so clear the flag saying we need one.
|
|
+ * When there is a new attach, ->pending_attach is set just so we will
|
|
+ * know to do splice_attaching() here before the callback loop.
|
|
+ */
|
|
+static enum utrace_resume_action start_report(struct utrace *utrace)
|
|
+{
|
|
+ enum utrace_resume_action resume = utrace->resume;
|
|
+ if (utrace->pending_attach ||
|
|
+ (resume > UTRACE_INTERRUPT && resume < UTRACE_RESUME)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ splice_attaching(utrace);
|
|
+ resume = utrace->resume;
|
|
+ if (resume > UTRACE_INTERRUPT)
|
|
+ utrace->resume = UTRACE_RESUME;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+ return resume;
|
|
+}
|
|
+
|
|
+static inline void finish_report_reset(struct task_struct *task,
|
|
+ struct utrace *utrace,
|
|
+ struct utrace_report *report)
|
|
+{
|
|
+ if (unlikely(report->spurious || report->detaches)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ if (utrace_reset(task, utrace))
|
|
+ report->action = UTRACE_RESUME;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Complete a normal reporting pass, pairing with a start_report() call.
|
|
+ * This handles any UTRACE_DETACH or UTRACE_REPORT or UTRACE_INTERRUPT
|
|
+ * returns from engine callbacks. If @will_not_stop is true and any
|
|
+ * engine's last callback used UTRACE_STOP, we do UTRACE_REPORT here to
|
|
+ * ensure we stop before user mode. If there were no callbacks made, it
|
|
+ * will recompute @task->utrace_flags to avoid another false-positive.
|
|
+ */
|
|
+static void finish_report(struct task_struct *task, struct utrace *utrace,
|
|
+ struct utrace_report *report, bool will_not_stop)
|
|
+{
|
|
+ enum utrace_resume_action resume = report->action;
|
|
+
|
|
+ if (resume == UTRACE_STOP)
|
|
+ resume = will_not_stop ? UTRACE_REPORT : UTRACE_RESUME;
|
|
+
|
|
+ if (resume < utrace->resume) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ utrace->resume = resume;
|
|
+ if (resume == UTRACE_INTERRUPT)
|
|
+ set_tsk_thread_flag(task, TIF_SIGPENDING);
|
|
+ else
|
|
+ set_tsk_thread_flag(task, TIF_NOTIFY_RESUME);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+
|
|
+ finish_report_reset(task, utrace, report);
|
|
+}
|
|
+
|
|
+static void finish_callback_report(struct task_struct *task,
|
|
+ struct utrace *utrace,
|
|
+ struct utrace_report *report,
|
|
+ struct utrace_engine *engine,
|
|
+ enum utrace_resume_action action)
|
|
+{
|
|
+ if (action == UTRACE_DETACH) {
|
|
+ /*
|
|
+ * By holding the lock here, we make sure that
|
|
+ * utrace_barrier() (really get_utrace_lock()) sees the
|
|
+ * effect of this detach. Otherwise utrace_barrier() could
|
|
+ * return 0 after this callback had returned UTRACE_DETACH.
|
|
+ * This way, a 0 return is an unambiguous indicator that any
|
|
+ * callback returning UTRACE_DETACH has indeed caused detach.
|
|
+ */
|
|
+ spin_lock(&utrace->lock);
|
|
+ engine->ops = &utrace_detached_ops;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * If utrace_control() was used, treat that like UTRACE_DETACH here.
|
|
+ */
|
|
+ if (engine->ops == &utrace_detached_ops) {
|
|
+ report->detaches = true;
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (action < report->action)
|
|
+ report->action = action;
|
|
+
|
|
+ if (action != UTRACE_STOP) {
|
|
+ if (action < report->resume_action)
|
|
+ report->resume_action = action;
|
|
+
|
|
+ if (engine_wants_stop(engine)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ clear_engine_wants_stop(engine);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (!engine_wants_stop(engine)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ /*
|
|
+ * If utrace_control() came in and detached us
|
|
+ * before we got the lock, we must not stop now.
|
|
+ */
|
|
+ if (unlikely(engine->ops == &utrace_detached_ops))
|
|
+ report->detaches = true;
|
|
+ else
|
|
+ mark_engine_wants_stop(task, engine);
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Apply the return value of one engine callback to @report.
|
|
+ * Returns true if @engine detached and should not get any more callbacks.
|
|
+ */
|
|
+static bool finish_callback(struct task_struct *task, struct utrace *utrace,
|
|
+ struct utrace_report *report,
|
|
+ struct utrace_engine *engine,
|
|
+ u32 ret)
|
|
+{
|
|
+ report->result = ret & ~UTRACE_RESUME_MASK;
|
|
+ finish_callback_report(task, utrace, report, engine,
|
|
+ utrace_resume_action(ret));
|
|
+
|
|
+ /*
|
|
+ * Now that we have applied the effect of the return value,
|
|
+ * clear this so that utrace_barrier() can stop waiting.
|
|
+ * A subsequent utrace_control() can stop or resume @engine
|
|
+ * and know this was ordered after its callback's action.
|
|
+ *
|
|
+ * We don't need any barriers here because utrace_barrier()
|
|
+ * takes utrace->lock. If we touched engine->flags above,
|
|
+ * the lock guaranteed this change was before utrace_barrier()
|
|
+ * examined utrace->reporting.
|
|
+ */
|
|
+ utrace->reporting = NULL;
|
|
+
|
|
+ /*
|
|
+ * We've just done an engine callback. These are allowed to sleep,
|
|
+ * though all well-behaved ones restrict that to blocking kalloc()
|
|
+ * or quickly-acquired mutex_lock() and the like. This is a good
|
|
+ * place to make sure tracing engines don't introduce too much
|
|
+ * latency under voluntary preemption.
|
|
+ */
|
|
+ might_sleep();
|
|
+
|
|
+ return engine->ops == &utrace_detached_ops;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Start the callbacks for @engine to consider @event (a bit mask).
|
|
+ * This makes the report_quiesce() callback first. If @engine wants
|
|
+ * a specific callback for @event, we return the ops vector to use.
|
|
+ * If not, we return NULL. The return value from the ops->callback
|
|
+ * function called should be passed to finish_callback().
|
|
+ */
|
|
+static const struct utrace_engine_ops *start_callback(
|
|
+ struct utrace *utrace, struct utrace_report *report,
|
|
+ struct utrace_engine *engine, struct task_struct *task,
|
|
+ unsigned long event)
|
|
+{
|
|
+ const struct utrace_engine_ops *ops;
|
|
+ unsigned long want;
|
|
+
|
|
+ /*
|
|
+ * This barrier ensures that we've set utrace->reporting before
|
|
+ * we examine engine->flags or engine->ops. utrace_barrier()
|
|
+ * relies on this ordering to indicate that the effect of any
|
|
+ * utrace_control() and utrace_set_events() calls is in place
|
|
+ * by the time utrace->reporting can be seen to be NULL.
|
|
+ */
|
|
+ utrace->reporting = engine;
|
|
+ smp_mb();
|
|
+
|
|
+ /*
|
|
+ * This pairs with the barrier in mark_engine_detached().
|
|
+ * It makes sure that we never see the old ops vector with
|
|
+ * the new flags, in case the original vector had no report_quiesce.
|
|
+ */
|
|
+ want = engine->flags;
|
|
+ smp_rmb();
|
|
+ ops = engine->ops;
|
|
+
|
|
+ if (want & UTRACE_EVENT(QUIESCE)) {
|
|
+ if (finish_callback(task, utrace, report, engine,
|
|
+ (*ops->report_quiesce)(report->action,
|
|
+ engine, event)))
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * finish_callback() reset utrace->reporting after the
|
|
+ * quiesce callback. Now we set it again (as above)
|
|
+ * before re-examining engine->flags, which could have
|
|
+ * been changed synchronously by ->report_quiesce or
|
|
+ * asynchronously by utrace_control() or utrace_set_events().
|
|
+ */
|
|
+ utrace->reporting = engine;
|
|
+ smp_mb();
|
|
+ want = engine->flags;
|
|
+ }
|
|
+
|
|
+ if (want & ENGINE_STOP)
|
|
+ report->action = UTRACE_STOP;
|
|
+
|
|
+ if (want & event) {
|
|
+ report->spurious = false;
|
|
+ return ops;
|
|
+ }
|
|
+
|
|
+ utrace->reporting = NULL;
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Do a normal reporting pass for engines interested in @event.
|
|
+ * @callback is the name of the member in the ops vector, and remaining
|
|
+ * args are the extras it takes after the standard three args.
|
|
+ */
|
|
+#define REPORT_CALLBACKS(rev, task, utrace, report, event, callback, ...) \
|
|
+ do { \
|
|
+ struct utrace_engine *engine; \
|
|
+ const struct utrace_engine_ops *ops; \
|
|
+ list_for_each_entry##rev(engine, &utrace->attached, entry) { \
|
|
+ ops = start_callback(utrace, report, engine, task, \
|
|
+ event); \
|
|
+ if (!ops) \
|
|
+ continue; \
|
|
+ finish_callback(task, utrace, report, engine, \
|
|
+ (*ops->callback)(__VA_ARGS__)); \
|
|
+ } \
|
|
+ } while (0)
|
|
+#define REPORT(task, utrace, report, event, callback, ...) \
|
|
+ do { \
|
|
+ start_report(utrace); \
|
|
+ REPORT_CALLBACKS(, task, utrace, report, event, callback, \
|
|
+ (report)->action, engine, ## __VA_ARGS__); \
|
|
+ finish_report(task, utrace, report, true); \
|
|
+ } while (0)
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(EXEC) flag is set.
|
|
+ */
|
|
+void utrace_report_exec(struct linux_binfmt *fmt, struct linux_binprm *bprm,
|
|
+ struct pt_regs *regs)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+
|
|
+ REPORT(task, utrace, &report, UTRACE_EVENT(EXEC),
|
|
+ report_exec, fmt, bprm, regs);
|
|
+}
|
|
+
|
|
+static u32 do_report_syscall_entry(struct pt_regs *regs,
|
|
+ struct task_struct *task,
|
|
+ struct utrace *utrace,
|
|
+ struct utrace_report *report,
|
|
+ u32 resume_report)
|
|
+{
|
|
+ start_report(utrace);
|
|
+ REPORT_CALLBACKS(_reverse, task, utrace, report,
|
|
+ UTRACE_EVENT(SYSCALL_ENTRY), report_syscall_entry,
|
|
+ resume_report | report->result | report->action,
|
|
+ engine, regs);
|
|
+ finish_report(task, utrace, report, false);
|
|
+
|
|
+ if (report->action != UTRACE_STOP)
|
|
+ return 0;
|
|
+
|
|
+ utrace_stop(task, utrace, report->resume_action);
|
|
+
|
|
+ if (fatal_signal_pending(task)) {
|
|
+ /*
|
|
+ * We are continuing despite UTRACE_STOP because of a
|
|
+ * SIGKILL. Don't let the system call actually proceed.
|
|
+ */
|
|
+ report->result = UTRACE_SYSCALL_ABORT;
|
|
+ } else if (utrace->resume <= UTRACE_REPORT) {
|
|
+ /*
|
|
+ * If we've been asked for another report after our stop,
|
|
+ * go back to report (and maybe stop) again before we run
|
|
+ * the system call. The second (and later) reports are
|
|
+ * marked with the UTRACE_SYSCALL_RESUMED flag so that
|
|
+ * engines know this is a second report at the same
|
|
+ * entry. This gives them the chance to examine the
|
|
+ * registers anew after they might have been changed
|
|
+ * while we were stopped.
|
|
+ */
|
|
+ report->detaches = false;
|
|
+ report->spurious = true;
|
|
+ report->action = report->resume_action = UTRACE_RESUME;
|
|
+ return UTRACE_SYSCALL_RESUMED;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(SYSCALL_ENTRY) flag is set.
|
|
+ * Return true to prevent the system call.
|
|
+ */
|
|
+bool utrace_report_syscall_entry(struct pt_regs *regs)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+ u32 resume_report = 0;
|
|
+
|
|
+ do {
|
|
+ resume_report = do_report_syscall_entry(regs, task, utrace,
|
|
+ &report, resume_report);
|
|
+ } while (resume_report);
|
|
+
|
|
+ return utrace_syscall_action(report.result) == UTRACE_SYSCALL_ABORT;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(SYSCALL_EXIT) flag is set.
|
|
+ */
|
|
+void utrace_report_syscall_exit(struct pt_regs *regs)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+
|
|
+ REPORT(task, utrace, &report, UTRACE_EVENT(SYSCALL_EXIT),
|
|
+ report_syscall_exit, regs);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(CLONE) flag is set.
|
|
+ * This notification call blocks the wake_up_new_task call on the child.
|
|
+ * So we must not quiesce here. tracehook_report_clone_complete will do
|
|
+ * a quiescence check momentarily.
|
|
+ */
|
|
+void utrace_report_clone(unsigned long clone_flags, struct task_struct *child)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+
|
|
+ /*
|
|
+ * We don't use the REPORT() macro here, because we need
|
|
+ * to clear utrace->cloning before finish_report().
|
|
+ * After finish_report(), utrace can be a stale pointer
|
|
+ * in cases when report.action is still UTRACE_RESUME.
|
|
+ */
|
|
+ start_report(utrace);
|
|
+ utrace->cloning = child;
|
|
+
|
|
+ REPORT_CALLBACKS(, task, utrace, &report,
|
|
+ UTRACE_EVENT(CLONE), report_clone,
|
|
+ report.action, engine, clone_flags, child);
|
|
+
|
|
+ utrace->cloning = NULL;
|
|
+ finish_report(task, utrace, &report, !(clone_flags & CLONE_VFORK));
|
|
+
|
|
+ /*
|
|
+ * For a vfork, we will go into an uninterruptible block waiting
|
|
+ * for the child. We need UTRACE_STOP to happen before this, not
|
|
+ * after. For CLONE_VFORK, utrace_finish_vfork() will be called.
|
|
+ */
|
|
+ if (report.action == UTRACE_STOP && (clone_flags & CLONE_VFORK)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ utrace->vfork_stop = 1;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * We're called after utrace_report_clone() for a CLONE_VFORK.
|
|
+ * If UTRACE_STOP was left from the clone report, we stop here.
|
|
+ * After this, we'll enter the uninterruptible wait_for_completion()
|
|
+ * waiting for the child.
|
|
+ */
|
|
+void utrace_finish_vfork(struct task_struct *task)
|
|
+{
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+
|
|
+ if (utrace->vfork_stop) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ utrace->vfork_stop = 0;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ utrace_stop(task, utrace, UTRACE_RESUME); /* XXX */
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(JCTL) flag is set.
|
|
+ *
|
|
+ * Called with siglock held.
|
|
+ */
|
|
+void utrace_report_jctl(int notify, int what)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+
|
|
+ REPORT(task, utrace, &report, UTRACE_EVENT(JCTL),
|
|
+ report_jctl, what, notify);
|
|
+
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(EXIT) flag is set.
|
|
+ */
|
|
+void utrace_report_exit(long *exit_code)
|
|
+{
|
|
+ struct task_struct *task = current;
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+ long orig_code = *exit_code;
|
|
+
|
|
+ REPORT(task, utrace, &report, UTRACE_EVENT(EXIT),
|
|
+ report_exit, orig_code, exit_code);
|
|
+
|
|
+ if (report.action == UTRACE_STOP)
|
|
+ utrace_stop(task, utrace, report.resume_action);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called iff UTRACE_EVENT(DEATH) or UTRACE_EVENT(QUIESCE) flag is set.
|
|
+ *
|
|
+ * It is always possible that we are racing with utrace_release_task here.
|
|
+ * For this reason, utrace_release_task checks for the event bits that get
|
|
+ * us here, and delays its cleanup for us to do.
|
|
+ */
|
|
+void utrace_report_death(struct task_struct *task, struct utrace *utrace,
|
|
+ bool group_dead, int signal)
|
|
+{
|
|
+ INIT_REPORT(report);
|
|
+
|
|
+ BUG_ON(!task->exit_state);
|
|
+
|
|
+ /*
|
|
+ * We are presently considered "quiescent"--which is accurate
|
|
+ * inasmuch as we won't run any more user instructions ever again.
|
|
+ * But for utrace_control and utrace_set_events to be robust, they
|
|
+ * must be sure whether or not we will run any more callbacks. If
|
|
+ * a call comes in before we do, taking the lock here synchronizes
|
|
+ * us so we don't run any callbacks just disabled. Calls that come
|
|
+ * in while we're running the callbacks will see the exit.death
|
|
+ * flag and know that we are not yet fully quiescent for purposes
|
|
+ * of detach bookkeeping.
|
|
+ */
|
|
+ spin_lock(&utrace->lock);
|
|
+ BUG_ON(utrace->death);
|
|
+ utrace->death = 1;
|
|
+ utrace->resume = UTRACE_RESUME;
|
|
+ splice_attaching(utrace);
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ REPORT_CALLBACKS(, task, utrace, &report, UTRACE_EVENT(DEATH),
|
|
+ report_death, engine, group_dead, signal);
|
|
+
|
|
+ utrace_maybe_reap(task, utrace, false);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Finish the last reporting pass before returning to user mode.
|
|
+ */
|
|
+static void finish_resume_report(struct task_struct *task,
|
|
+ struct utrace *utrace,
|
|
+ struct utrace_report *report)
|
|
+{
|
|
+ finish_report_reset(task, utrace, report);
|
|
+
|
|
+ switch (report->action) {
|
|
+ case UTRACE_STOP:
|
|
+ utrace_stop(task, utrace, report->resume_action);
|
|
+ break;
|
|
+
|
|
+ case UTRACE_INTERRUPT:
|
|
+ if (!signal_pending(task))
|
|
+ set_tsk_thread_flag(task, TIF_SIGPENDING);
|
|
+ break;
|
|
+
|
|
+ case UTRACE_BLOCKSTEP:
|
|
+ if (likely(arch_has_block_step())) {
|
|
+ user_enable_block_step(task);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * This means some callback is to blame for failing
|
|
+ * to check arch_has_block_step() itself. Warn and
|
|
+ * then fall through to treat it as SINGLESTEP.
|
|
+ */
|
|
+ WARN(1, "UTRACE_BLOCKSTEP when !arch_has_block_step()");
|
|
+
|
|
+ case UTRACE_SINGLESTEP:
|
|
+ if (likely(arch_has_single_step())) {
|
|
+ user_enable_single_step(task);
|
|
+ } else {
|
|
+ /*
|
|
+ * This means some callback is to blame for failing
|
|
+ * to check arch_has_single_step() itself. Spew
|
|
+ * about it so the loser will fix his module.
|
|
+ */
|
|
+ WARN(1,
|
|
+ "UTRACE_SINGLESTEP when !arch_has_single_step()");
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ case UTRACE_REPORT:
|
|
+ case UTRACE_RESUME:
|
|
+ default:
|
|
+ user_disable_single_step(task);
|
|
+ break;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is called when TIF_NOTIFY_RESUME had been set (and is now clear).
|
|
+ * We are close to user mode, and this is the place to report or stop.
|
|
+ * When we return, we're going to user mode or into the signals code.
|
|
+ */
|
|
+void utrace_resume(struct task_struct *task, struct pt_regs *regs)
|
|
+{
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+ INIT_REPORT(report);
|
|
+ struct utrace_engine *engine;
|
|
+
|
|
+ /*
|
|
+ * Some machines get here with interrupts disabled. The same arch
|
|
+ * code path leads to calling into get_signal_to_deliver(), which
|
|
+ * implicitly reenables them by virtue of spin_unlock_irq.
|
|
+ */
|
|
+ local_irq_enable();
|
|
+
|
|
+ /*
|
|
+ * If this flag is still set it's because there was a signal
|
|
+ * handler setup done but no report_signal following it. Clear
|
|
+ * the flag before we get to user so it doesn't confuse us later.
|
|
+ */
|
|
+ if (unlikely(utrace->signal_handler)) {
|
|
+ spin_lock(&utrace->lock);
|
|
+ utrace->signal_handler = 0;
|
|
+ spin_unlock(&utrace->lock);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Update our bookkeeping even if there are no callbacks made here.
|
|
+ */
|
|
+ report.action = start_report(utrace);
|
|
+
|
|
+ switch (report.action) {
|
|
+ case UTRACE_RESUME:
|
|
+ /*
|
|
+ * Anything we might have done was already handled by
|
|
+ * utrace_get_signal(), or this is an entirely spurious
|
|
+ * call. (The arch might use TIF_NOTIFY_RESUME for other
|
|
+ * purposes as well as calling us.)
|
|
+ */
|
|
+ return;
|
|
+ case UTRACE_REPORT:
|
|
+ if (unlikely(!(task->utrace_flags & UTRACE_EVENT(QUIESCE))))
|
|
+ break;
|
|
+ /*
|
|
+ * Do a simple reporting pass, with no specific
|
|
+ * callback after report_quiesce.
|
|
+ */
|
|
+ report.action = UTRACE_RESUME;
|
|
+ list_for_each_entry(engine, &utrace->attached, entry)
|
|
+ start_callback(utrace, &report, engine, task, 0);
|
|
+ break;
|
|
+ default:
|
|
+ /*
|
|
+ * Even if this report was truly spurious, there is no need
|
|
+ * for utrace_reset() now. TIF_NOTIFY_RESUME was already
|
|
+ * cleared--it doesn't stay spuriously set.
|
|
+ */
|
|
+ report.spurious = false;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Finish the report and either stop or get ready to resume.
|
|
+ * If utrace->resume was not UTRACE_REPORT, this applies its
|
|
+ * effect now (i.e. step or interrupt).
|
|
+ */
|
|
+ finish_resume_report(task, utrace, &report);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return true if current has forced signal_pending().
|
|
+ *
|
|
+ * This is called only when current->utrace_flags is nonzero, so we know
|
|
+ * that current->utrace must be set. It's not inlined in tracehook.h
|
|
+ * just so that struct utrace can stay opaque outside this file.
|
|
+ */
|
|
+bool utrace_interrupt_pending(void)
|
|
+{
|
|
+ return task_utrace_struct(current)->resume == UTRACE_INTERRUPT;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Take the siglock and push @info back on our queue.
|
|
+ * Returns with @task->sighand->siglock held.
|
|
+ */
|
|
+static void push_back_signal(struct task_struct *task, siginfo_t *info)
|
|
+ __acquires(task->sighand->siglock)
|
|
+{
|
|
+ struct sigqueue *q;
|
|
+
|
|
+ if (unlikely(!info->si_signo)) { /* Oh, a wise guy! */
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ q = sigqueue_alloc();
|
|
+ if (likely(q)) {
|
|
+ q->flags = 0;
|
|
+ copy_siginfo(&q->info, info);
|
|
+ }
|
|
+
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+
|
|
+ sigaddset(&task->pending.signal, info->si_signo);
|
|
+ if (likely(q))
|
|
+ list_add(&q->list, &task->pending.list);
|
|
+
|
|
+ set_tsk_thread_flag(task, TIF_SIGPENDING);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This is the hook from the signals code, called with the siglock held.
|
|
+ * Here is the ideal place to stop. We also dequeue and intercept signals.
|
|
+ */
|
|
+int utrace_get_signal(struct task_struct *task, struct pt_regs *regs,
|
|
+ siginfo_t *info, struct k_sigaction *return_ka)
|
|
+ __releases(task->sighand->siglock)
|
|
+ __acquires(task->sighand->siglock)
|
|
+{
|
|
+ struct utrace *utrace;
|
|
+ struct k_sigaction *ka;
|
|
+ INIT_REPORT(report);
|
|
+ struct utrace_engine *engine;
|
|
+ const struct utrace_engine_ops *ops;
|
|
+ unsigned long event, want;
|
|
+ u32 ret;
|
|
+ int signr;
|
|
+
|
|
+ utrace = task_utrace_struct(task);
|
|
+ if (utrace->resume < UTRACE_RESUME ||
|
|
+ utrace->pending_attach || utrace->signal_handler) {
|
|
+ enum utrace_resume_action resume;
|
|
+
|
|
+ /*
|
|
+ * We've been asked for an explicit report before we
|
|
+ * even check for pending signals.
|
|
+ */
|
|
+
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+
|
|
+ spin_lock(&utrace->lock);
|
|
+
|
|
+ splice_attaching(utrace);
|
|
+
|
|
+ report.result = utrace->signal_handler ?
|
|
+ UTRACE_SIGNAL_HANDLER : UTRACE_SIGNAL_REPORT;
|
|
+ utrace->signal_handler = 0;
|
|
+
|
|
+ resume = utrace->resume;
|
|
+ utrace->resume = UTRACE_RESUME;
|
|
+
|
|
+ spin_unlock(&utrace->lock);
|
|
+
|
|
+ /*
|
|
+ * Make sure signal_pending() only returns true
|
|
+ * if there are real signals pending.
|
|
+ */
|
|
+ if (signal_pending(task)) {
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+ recalc_sigpending();
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+ }
|
|
+
|
|
+ if (resume > UTRACE_REPORT) {
|
|
+ /*
|
|
+ * We only got here to process utrace->resume.
|
|
+ * Despite no callbacks, this report is not spurious.
|
|
+ */
|
|
+ report.action = resume;
|
|
+ report.spurious = false;
|
|
+ finish_resume_report(task, utrace, &report);
|
|
+ return -1;
|
|
+ } else if (!(task->utrace_flags & UTRACE_EVENT(QUIESCE))) {
|
|
+ /*
|
|
+ * We only got here to clear utrace->signal_handler.
|
|
+ */
|
|
+ return -1;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Do a reporting pass for no signal, just for EVENT(QUIESCE).
|
|
+ * The engine callbacks can fill in *info and *return_ka.
|
|
+ * We'll pass NULL for the @orig_ka argument to indicate
|
|
+ * that there was no original signal.
|
|
+ */
|
|
+ event = 0;
|
|
+ ka = NULL;
|
|
+ memset(return_ka, 0, sizeof *return_ka);
|
|
+ } else if (!(task->utrace_flags & UTRACE_EVENT_SIGNAL_ALL) ||
|
|
+ unlikely(task->signal->group_stop_count)) {
|
|
+ /*
|
|
+ * If no engine is interested in intercepting signals or
|
|
+ * we must stop, let the caller just dequeue them normally
|
|
+ * or participate in group-stop.
|
|
+ */
|
|
+ return 0;
|
|
+ } else {
|
|
+ /*
|
|
+ * Steal the next signal so we can let tracing engines
|
|
+ * examine it. From the signal number and sigaction,
|
|
+ * determine what normal delivery would do. If no
|
|
+ * engine perturbs it, we'll do that by returning the
|
|
+ * signal number after setting *return_ka.
|
|
+ */
|
|
+ signr = dequeue_signal(task, &task->blocked, info);
|
|
+ if (signr == 0)
|
|
+ return signr;
|
|
+ BUG_ON(signr != info->si_signo);
|
|
+
|
|
+ ka = &task->sighand->action[signr - 1];
|
|
+ *return_ka = *ka;
|
|
+
|
|
+ /*
|
|
+ * We are never allowed to interfere with SIGKILL.
|
|
+ * Just punt after filling in *return_ka for our caller.
|
|
+ */
|
|
+ if (signr == SIGKILL)
|
|
+ return signr;
|
|
+
|
|
+ if (ka->sa.sa_handler == SIG_IGN) {
|
|
+ event = UTRACE_EVENT(SIGNAL_IGN);
|
|
+ report.result = UTRACE_SIGNAL_IGN;
|
|
+ } else if (ka->sa.sa_handler != SIG_DFL) {
|
|
+ event = UTRACE_EVENT(SIGNAL);
|
|
+ report.result = UTRACE_SIGNAL_DELIVER;
|
|
+ } else if (sig_kernel_coredump(signr)) {
|
|
+ event = UTRACE_EVENT(SIGNAL_CORE);
|
|
+ report.result = UTRACE_SIGNAL_CORE;
|
|
+ } else if (sig_kernel_ignore(signr)) {
|
|
+ event = UTRACE_EVENT(SIGNAL_IGN);
|
|
+ report.result = UTRACE_SIGNAL_IGN;
|
|
+ } else if (signr == SIGSTOP) {
|
|
+ event = UTRACE_EVENT(SIGNAL_STOP);
|
|
+ report.result = UTRACE_SIGNAL_STOP;
|
|
+ } else if (sig_kernel_stop(signr)) {
|
|
+ event = UTRACE_EVENT(SIGNAL_STOP);
|
|
+ report.result = UTRACE_SIGNAL_TSTP;
|
|
+ } else {
|
|
+ event = UTRACE_EVENT(SIGNAL_TERM);
|
|
+ report.result = UTRACE_SIGNAL_TERM;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Now that we know what event type this signal is, we
|
|
+ * can short-circuit if no engines care about those.
|
|
+ */
|
|
+ if ((task->utrace_flags & (event | UTRACE_EVENT(QUIESCE))) == 0)
|
|
+ return signr;
|
|
+
|
|
+ /*
|
|
+ * We have some interested engines, so tell them about
|
|
+ * the signal and let them change its disposition.
|
|
+ */
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * This reporting pass chooses what signal disposition we'll act on.
|
|
+ */
|
|
+ list_for_each_entry(engine, &utrace->attached, entry) {
|
|
+ /*
|
|
+ * See start_callback() comment about this barrier.
|
|
+ */
|
|
+ utrace->reporting = engine;
|
|
+ smp_mb();
|
|
+
|
|
+ /*
|
|
+ * This pairs with the barrier in mark_engine_detached(),
|
|
+ * see start_callback() comments.
|
|
+ */
|
|
+ want = engine->flags;
|
|
+ smp_rmb();
|
|
+ ops = engine->ops;
|
|
+
|
|
+ if ((want & (event | UTRACE_EVENT(QUIESCE))) == 0) {
|
|
+ utrace->reporting = NULL;
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ if (ops->report_signal)
|
|
+ ret = (*ops->report_signal)(
|
|
+ report.result | report.action, engine,
|
|
+ regs, info, ka, return_ka);
|
|
+ else
|
|
+ ret = (report.result | (*ops->report_quiesce)(
|
|
+ report.action, engine, event));
|
|
+
|
|
+ /*
|
|
+ * Avoid a tight loop reporting again and again if some
|
|
+ * engine is too stupid.
|
|
+ */
|
|
+ switch (utrace_resume_action(ret)) {
|
|
+ default:
|
|
+ break;
|
|
+ case UTRACE_INTERRUPT:
|
|
+ case UTRACE_REPORT:
|
|
+ ret = (ret & ~UTRACE_RESUME_MASK) | UTRACE_RESUME;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ finish_callback(task, utrace, &report, engine, ret);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * We express the chosen action to the signals code in terms
|
|
+ * of a representative signal whose default action does it.
|
|
+ * Our caller uses our return value (signr) to decide what to
|
|
+ * do, but uses info->si_signo as the signal number to report.
|
|
+ */
|
|
+ switch (utrace_signal_action(report.result)) {
|
|
+ case UTRACE_SIGNAL_TERM:
|
|
+ signr = SIGTERM;
|
|
+ break;
|
|
+
|
|
+ case UTRACE_SIGNAL_CORE:
|
|
+ signr = SIGQUIT;
|
|
+ break;
|
|
+
|
|
+ case UTRACE_SIGNAL_STOP:
|
|
+ signr = SIGSTOP;
|
|
+ break;
|
|
+
|
|
+ case UTRACE_SIGNAL_TSTP:
|
|
+ signr = SIGTSTP;
|
|
+ break;
|
|
+
|
|
+ case UTRACE_SIGNAL_DELIVER:
|
|
+ signr = info->si_signo;
|
|
+
|
|
+ if (return_ka->sa.sa_handler == SIG_DFL) {
|
|
+ /*
|
|
+ * We'll do signr's normal default action.
|
|
+ * For ignore, we'll fall through below.
|
|
+ * For stop/death, break locks and returns it.
|
|
+ */
|
|
+ if (likely(signr) && !sig_kernel_ignore(signr))
|
|
+ break;
|
|
+ } else if (return_ka->sa.sa_handler != SIG_IGN &&
|
|
+ likely(signr)) {
|
|
+ /*
|
|
+ * Complete the bookkeeping after the report.
|
|
+ * The handler will run. If an engine wanted to
|
|
+ * stop or step, then make sure we do another
|
|
+ * report after signal handler setup.
|
|
+ */
|
|
+ if (report.action != UTRACE_RESUME)
|
|
+ report.action = UTRACE_INTERRUPT;
|
|
+ finish_report(task, utrace, &report, true);
|
|
+
|
|
+ if (unlikely(report.result & UTRACE_SIGNAL_HOLD))
|
|
+ push_back_signal(task, info);
|
|
+ else
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+
|
|
+ /*
|
|
+ * We do the SA_ONESHOT work here since the
|
|
+ * normal path will only touch *return_ka now.
|
|
+ */
|
|
+ if (unlikely(return_ka->sa.sa_flags & SA_ONESHOT)) {
|
|
+ return_ka->sa.sa_flags &= ~SA_ONESHOT;
|
|
+ if (likely(valid_signal(signr))) {
|
|
+ ka = &task->sighand->action[signr - 1];
|
|
+ ka->sa.sa_handler = SIG_DFL;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return signr;
|
|
+ }
|
|
+
|
|
+ /* Fall through for an ignored signal. */
|
|
+
|
|
+ case UTRACE_SIGNAL_IGN:
|
|
+ case UTRACE_SIGNAL_REPORT:
|
|
+ default:
|
|
+ /*
|
|
+ * If the signal is being ignored, then we are on the way
|
|
+ * directly back to user mode. We can stop here, or step,
|
|
+ * as in utrace_resume(), above. After we've dealt with that,
|
|
+ * our caller will relock and come back through here.
|
|
+ */
|
|
+ finish_resume_report(task, utrace, &report);
|
|
+
|
|
+ if (unlikely(fatal_signal_pending(task))) {
|
|
+ /*
|
|
+ * The only reason we woke up now was because of a
|
|
+ * SIGKILL. Don't do normal dequeuing in case it
|
|
+ * might get a signal other than SIGKILL. That would
|
|
+ * perturb the death state so it might differ from
|
|
+ * what the debugger would have allowed to happen.
|
|
+ * Instead, pluck out just the SIGKILL to be sure
|
|
+ * we'll die immediately with nothing else different
|
|
+ * from the quiescent state the debugger wanted us in.
|
|
+ */
|
|
+ sigset_t sigkill_only;
|
|
+ siginitsetinv(&sigkill_only, sigmask(SIGKILL));
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+ signr = dequeue_signal(task, &sigkill_only, info);
|
|
+ BUG_ON(signr != SIGKILL);
|
|
+ *return_ka = task->sighand->action[SIGKILL - 1];
|
|
+ return signr;
|
|
+ }
|
|
+
|
|
+ if (unlikely(report.result & UTRACE_SIGNAL_HOLD)) {
|
|
+ push_back_signal(task, info);
|
|
+ spin_unlock_irq(&task->sighand->siglock);
|
|
+ }
|
|
+
|
|
+ return -1;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Complete the bookkeeping after the report.
|
|
+ * This sets utrace->resume if UTRACE_STOP was used.
|
|
+ */
|
|
+ finish_report(task, utrace, &report, true);
|
|
+
|
|
+ return_ka->sa.sa_handler = SIG_DFL;
|
|
+
|
|
+ /*
|
|
+ * If this signal is fatal, si_signo gets through as exit_code.
|
|
+ * We can't allow a completely bogus value there or else core
|
|
+ * kernel code can freak out. (If an engine wants to control
|
|
+ * the exit_code value exactly, it can do so in report_exit.)
|
|
+ * We'll produce a big complaint in dmesg, but won't crash.
|
|
+ * That's nicer for debugging your utrace engine.
|
|
+ */
|
|
+ if (unlikely(info->si_signo & 0x80)) {
|
|
+ WARN(1, "utrace engine left bogus si_signo value!");
|
|
+ info->si_signo = SIGTRAP;
|
|
+ }
|
|
+
|
|
+ if (unlikely(report.result & UTRACE_SIGNAL_HOLD))
|
|
+ push_back_signal(task, info);
|
|
+ else
|
|
+ spin_lock_irq(&task->sighand->siglock);
|
|
+
|
|
+ if (sig_kernel_stop(signr))
|
|
+ task->signal->flags |= SIGNAL_STOP_DEQUEUED;
|
|
+
|
|
+ return signr;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This gets called after a signal handler has been set up.
|
|
+ * We set a flag so the next report knows it happened.
|
|
+ * If we're already stepping, make sure we do a report_signal.
|
|
+ * If not, make sure we get into utrace_resume() where we can
|
|
+ * clear the signal_handler flag before resuming.
|
|
+ */
|
|
+void utrace_signal_handler(struct task_struct *task, int stepping)
|
|
+{
|
|
+ struct utrace *utrace = task_utrace_struct(task);
|
|
+
|
|
+ spin_lock(&utrace->lock);
|
|
+
|
|
+ utrace->signal_handler = 1;
|
|
+ if (utrace->resume > UTRACE_INTERRUPT) {
|
|
+ if (stepping) {
|
|
+ utrace->resume = UTRACE_INTERRUPT;
|
|
+ set_tsk_thread_flag(task, TIF_SIGPENDING);
|
|
+ } else if (utrace->resume == UTRACE_RESUME) {
|
|
+ set_tsk_thread_flag(task, TIF_NOTIFY_RESUME);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ spin_unlock(&utrace->lock);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * utrace_prepare_examine - prepare to examine thread state
|
|
+ * @target: thread of interest, a &struct task_struct pointer
|
|
+ * @engine: engine pointer returned by utrace_attach_task()
|
|
+ * @exam: temporary state, a &struct utrace_examiner pointer
|
|
+ *
|
|
+ * This call prepares to safely examine the thread @target using
|
|
+ * &struct user_regset calls, or direct access to thread-synchronous fields.
|
|
+ *
|
|
+ * When @target is current, this call is superfluous. When @target is
|
|
+ * another thread, it must be held stopped via %UTRACE_STOP by @engine.
|
|
+ *
|
|
+ * This call may block the caller until @target stays stopped, so it must
|
|
+ * be called only after the caller is sure @target is about to unschedule.
|
|
+ * This means a zero return from a utrace_control() call on @engine giving
|
|
+ * %UTRACE_STOP, or a report_quiesce() or report_signal() callback to
|
|
+ * @engine that used %UTRACE_STOP in its return value.
|
|
+ *
|
|
+ * Returns -%ESRCH if @target is dead or -%EINVAL if %UTRACE_STOP was
|
|
+ * not used. If @target has started running again despite %UTRACE_STOP
|
|
+ * (for %SIGKILL or a spurious wakeup), this call returns -%EAGAIN.
|
|
+ *
|
|
+ * When this call returns zero, it's safe to use &struct user_regset
|
|
+ * calls and task_user_regset_view() on @target and to examine some of
|
|
+ * its fields directly. When the examination is complete, a
|
|
+ * utrace_finish_examine() call must follow to check whether it was
|
|
+ * completed safely.
|
|
+ */
|
|
+int utrace_prepare_examine(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ struct utrace_examiner *exam)
|
|
+{
|
|
+ int ret = 0;
|
|
+
|
|
+ if (unlikely(target == current))
|
|
+ return 0;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ if (unlikely(!engine_wants_stop(engine)))
|
|
+ ret = -EINVAL;
|
|
+ else if (unlikely(target->exit_state))
|
|
+ ret = -ESRCH;
|
|
+ else {
|
|
+ exam->state = target->state;
|
|
+ if (unlikely(exam->state == TASK_RUNNING))
|
|
+ ret = -EAGAIN;
|
|
+ else
|
|
+ get_task_struct(target);
|
|
+ }
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ if (likely(!ret)) {
|
|
+ exam->ncsw = wait_task_inactive(target, exam->state);
|
|
+ put_task_struct(target);
|
|
+ if (unlikely(!exam->ncsw))
|
|
+ ret = -EAGAIN;
|
|
+ }
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_prepare_examine);
|
|
+
|
|
+/**
|
|
+ * utrace_finish_examine - complete an examination of thread state
|
|
+ * @target: thread of interest, a &struct task_struct pointer
|
|
+ * @engine: engine pointer returned by utrace_attach_task()
|
|
+ * @exam: pointer passed to utrace_prepare_examine() call
|
|
+ *
|
|
+ * This call completes an examination on the thread @target begun by a
|
|
+ * paired utrace_prepare_examine() call with the same arguments that
|
|
+ * returned success (zero).
|
|
+ *
|
|
+ * When @target is current, this call is superfluous. When @target is
|
|
+ * another thread, this returns zero if @target has remained unscheduled
|
|
+ * since the paired utrace_prepare_examine() call returned zero.
|
|
+ *
|
|
+ * When this returns an error, any examination done since the paired
|
|
+ * utrace_prepare_examine() call is unreliable and the data extracted
|
|
+ * should be discarded. The error is -%EINVAL if @engine is not
|
|
+ * keeping @target stopped, or -%EAGAIN if @target woke up unexpectedly.
|
|
+ */
|
|
+int utrace_finish_examine(struct task_struct *target,
|
|
+ struct utrace_engine *engine,
|
|
+ struct utrace_examiner *exam)
|
|
+{
|
|
+ int ret = 0;
|
|
+
|
|
+ if (unlikely(target == current))
|
|
+ return 0;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ if (unlikely(!engine_wants_stop(engine)))
|
|
+ ret = -EINVAL;
|
|
+ else if (unlikely(target->state != exam->state))
|
|
+ ret = -EAGAIN;
|
|
+ else
|
|
+ get_task_struct(target);
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ if (likely(!ret)) {
|
|
+ unsigned long ncsw = wait_task_inactive(target, exam->state);
|
|
+ if (unlikely(ncsw != exam->ncsw))
|
|
+ ret = -EAGAIN;
|
|
+ put_task_struct(target);
|
|
+ }
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(utrace_finish_examine);
|
|
+
|
|
+/*
|
|
+ * This is declared in linux/regset.h and defined in machine-dependent
|
|
+ * code. We put the export here to ensure no machine forgets it.
|
|
+ */
|
|
+EXPORT_SYMBOL_GPL(task_user_regset_view);
|
|
+
|
|
+/*
|
|
+ * Called with rcu_read_lock() held.
|
|
+ */
|
|
+void task_utrace_proc_status(struct seq_file *m, struct task_struct *p)
|
|
+{
|
|
+ seq_printf(m, "Utrace:\t%lx\n", p->utrace_flags);
|
|
+}
|
|
--
|
|
1.7.0.1
|
|
|