gcc/gcc6-libgo-p224.patch
Jakub Jelinek cc2a83d686 6.0.0-0.5
2016-01-27 13:37:40 +01:00

1107 lines
30 KiB
Diff
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--- libgo/Makefile.am.jj 2014-01-08 13:53:06.000000000 +0100
+++ libgo/Makefile.am 2014-03-05 15:20:09.938466093 +0100
@@ -1133,7 +1133,6 @@ go_crypto_ecdsa_files = \
go/crypto/ecdsa/ecdsa.go
go_crypto_elliptic_files = \
go/crypto/elliptic/elliptic.go \
- go/crypto/elliptic/p224.go \
go/crypto/elliptic/p256.go
go_crypto_hmac_files = \
go/crypto/hmac/hmac.go
--- libgo/Makefile.in.jj 2014-01-08 13:53:06.000000000 +0100
+++ libgo/Makefile.in 2014-03-05 15:20:20.372465471 +0100
@@ -1291,7 +1291,6 @@ go_crypto_ecdsa_files = \
go_crypto_elliptic_files = \
go/crypto/elliptic/elliptic.go \
- go/crypto/elliptic/p224.go \
go/crypto/elliptic/p256.go
go_crypto_hmac_files = \
--- libgo/go/crypto/elliptic/elliptic.go.jj 2013-11-07 11:59:09.000000000 +0100
+++ libgo/go/crypto/elliptic/elliptic.go 2014-03-05 15:21:04.186462859 +0100
@@ -326,7 +326,6 @@ var p384 *CurveParams
var p521 *CurveParams
func initAll() {
- initP224()
initP256()
initP384()
initP521()
--- libgo/go/crypto/elliptic/elliptic_test.go.jj 2013-11-07 11:59:09.000000000 +0100
+++ libgo/go/crypto/elliptic/elliptic_test.go 2014-03-05 15:46:03.739373453 +0100
@@ -5,39 +5,16 @@
package elliptic
import (
- "crypto/rand"
- "encoding/hex"
- "fmt"
"math/big"
"testing"
)
-func TestOnCurve(t *testing.T) {
- p224 := P224()
- if !p224.IsOnCurve(p224.Params().Gx, p224.Params().Gy) {
- t.Errorf("FAIL")
- }
-}
-
-func TestOffCurve(t *testing.T) {
- p224 := P224()
- x, y := new(big.Int).SetInt64(1), new(big.Int).SetInt64(1)
- if p224.IsOnCurve(x, y) {
- t.Errorf("FAIL: point off curve is claimed to be on the curve")
- }
- b := Marshal(p224, x, y)
- x1, y1 := Unmarshal(p224, b)
- if x1 != nil || y1 != nil {
- t.Errorf("FAIL: unmarshalling a point not on the curve succeeded")
- }
-}
-
type baseMultTest struct {
k string
x, y string
}
-var p224BaseMultTests = []baseMultTest{
+var p256BaseMultTests = []baseMultTest{
{
"1",
"b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
@@ -300,47 +277,12 @@ var p224BaseMultTests = []baseMultTest{
},
}
-func TestBaseMult(t *testing.T) {
- p224 := P224()
- for i, e := range p224BaseMultTests {
- k, ok := new(big.Int).SetString(e.k, 10)
- if !ok {
- t.Errorf("%d: bad value for k: %s", i, e.k)
- }
- x, y := p224.ScalarBaseMult(k.Bytes())
- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y {
- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y)
- }
- if testing.Short() && i > 5 {
- break
- }
- }
-}
-
-func TestGenericBaseMult(t *testing.T) {
- // We use the P224 CurveParams directly in order to test the generic implementation.
- p224 := P224().Params()
- for i, e := range p224BaseMultTests {
- k, ok := new(big.Int).SetString(e.k, 10)
- if !ok {
- t.Errorf("%d: bad value for k: %s", i, e.k)
- }
- x, y := p224.ScalarBaseMult(k.Bytes())
- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y {
- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y)
- }
- if testing.Short() && i > 5 {
- break
- }
- }
-}
-
func TestP256BaseMult(t *testing.T) {
p256 := P256()
p256Generic := p256.Params()
- scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1)
- for _, e := range p224BaseMultTests {
+ scalars := make([]*big.Int, 0, len(p256BaseMultTests)+1)
+ for _, e := range p256BaseMultTests {
k, _ := new(big.Int).SetString(e.k, 10)
scalars = append(scalars, k)
}
@@ -365,7 +307,7 @@ func TestP256Mult(t *testing.T) {
p256 := P256()
p256Generic := p256.Params()
- for i, e := range p224BaseMultTests {
+ for i, e := range p256BaseMultTests {
x, _ := new(big.Int).SetString(e.x, 16)
y, _ := new(big.Int).SetString(e.y, 16)
k, _ := new(big.Int).SetString(e.k, 10)
@@ -386,7 +328,6 @@ func TestInfinity(t *testing.T) {
name string
curve Curve
}{
- {"p224", P224()},
{"p256", P256()},
}
@@ -419,53 +360,13 @@ func TestInfinity(t *testing.T) {
}
}
-func BenchmarkBaseMult(b *testing.B) {
- b.ResetTimer()
- p224 := P224()
- e := p224BaseMultTests[25]
- k, _ := new(big.Int).SetString(e.k, 10)
- b.StartTimer()
- for i := 0; i < b.N; i++ {
- p224.ScalarBaseMult(k.Bytes())
- }
-}
-
func BenchmarkBaseMultP256(b *testing.B) {
b.ResetTimer()
p256 := P256()
- e := p224BaseMultTests[25]
+ e := p256BaseMultTests[25]
k, _ := new(big.Int).SetString(e.k, 10)
b.StartTimer()
for i := 0; i < b.N; i++ {
p256.ScalarBaseMult(k.Bytes())
}
}
-
-func TestMarshal(t *testing.T) {
- p224 := P224()
- _, x, y, err := GenerateKey(p224, rand.Reader)
- if err != nil {
- t.Error(err)
- return
- }
- serialized := Marshal(p224, x, y)
- xx, yy := Unmarshal(p224, serialized)
- if xx == nil {
- t.Error("failed to unmarshal")
- return
- }
- if xx.Cmp(x) != 0 || yy.Cmp(y) != 0 {
- t.Error("unmarshal returned different values")
- return
- }
-}
-
-func TestP224Overflow(t *testing.T) {
- // This tests for a specific bug in the P224 implementation.
- p224 := P224()
- pointData, _ := hex.DecodeString("049B535B45FB0A2072398A6831834624C7E32CCFD5A4B933BCEAF77F1DD945E08BBE5178F5EDF5E733388F196D2A631D2E075BB16CBFEEA15B")
- x, y := Unmarshal(p224, pointData)
- if !p224.IsOnCurve(x, y) {
- t.Error("P224 failed to validate a correct point")
- }
-}
--- libgo/go/crypto/ecdsa/ecdsa_test.go.jj 2012-11-15 18:26:56.000000000 +0100
+++ libgo/go/crypto/ecdsa/ecdsa_test.go 2014-03-05 15:26:38.461442929 +0100
@@ -33,7 +33,6 @@ func testKeyGeneration(t *testing.T, c e
}
func TestKeyGeneration(t *testing.T) {
- testKeyGeneration(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
@@ -63,7 +62,6 @@ func testSignAndVerify(t *testing.T, c e
}
func TestSignAndVerify(t *testing.T) {
- testSignAndVerify(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
@@ -129,8 +127,6 @@ func TestVectors(t *testing.T) {
parts := strings.SplitN(line, ",", 2)
switch parts[0] {
- case "P-224":
- pub.Curve = elliptic.P224()
case "P-256":
pub.Curve = elliptic.P256()
case "P-384":
--- libgo/go/crypto/x509/x509.go.jj 2013-11-07 11:59:09.000000000 +0100
+++ libgo/go/crypto/x509/x509.go 2014-03-05 15:27:37.022439437 +0100
@@ -308,9 +308,6 @@ func getPublicKeyAlgorithmFromOID(oid as
// RFC 5480, 2.1.1.1. Named Curve
//
-// secp224r1 OBJECT IDENTIFIER ::= {
-// iso(1) identified-organization(3) certicom(132) curve(0) 33 }
-//
// secp256r1 OBJECT IDENTIFIER ::= {
// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
// prime(1) 7 }
@@ -323,7 +320,6 @@ func getPublicKeyAlgorithmFromOID(oid as
//
// NB: secp256r1 is equivalent to prime256v1
var (
- oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
@@ -331,8 +327,6 @@ var (
func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve {
switch {
- case oid.Equal(oidNamedCurveP224):
- return elliptic.P224()
case oid.Equal(oidNamedCurveP256):
return elliptic.P256()
case oid.Equal(oidNamedCurveP384):
@@ -345,8 +339,6 @@ func namedCurveFromOID(oid asn1.ObjectId
func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
switch curve {
- case elliptic.P224():
- return oidNamedCurveP224, true
case elliptic.P256():
return oidNamedCurveP256, true
case elliptic.P384():
@@ -1466,7 +1458,7 @@ func signingParamsForPublicKey(pub inter
pubType = ECDSA
switch pub.Curve {
- case elliptic.P224(), elliptic.P256():
+ case elliptic.P256():
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
case elliptic.P384():
--- libgo/go/crypto/elliptic/p224.go.jj 2012-11-15 18:26:57.000000000 +0100
+++ libgo/go/crypto/elliptic/p224.go 2014-03-05 15:30:01.189430842 +0100
@@ -1,765 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package elliptic
-
-// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
-// section D.2.2.
-//
-// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
-
-import (
- "math/big"
-)
-
-var p224 p224Curve
-
-type p224Curve struct {
- *CurveParams
- gx, gy, b p224FieldElement
-}
-
-func initP224() {
- // See FIPS 186-3, section D.2.2
- p224.CurveParams = &CurveParams{Name: "P-224"}
- p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
- p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
- p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
- p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
- p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
- p224.BitSize = 224
-
- p224FromBig(&p224.gx, p224.Gx)
- p224FromBig(&p224.gy, p224.Gy)
- p224FromBig(&p224.b, p224.B)
-}
-
-// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
-func P224() Curve {
- initonce.Do(initAll)
- return p224
-}
-
-func (curve p224Curve) Params() *CurveParams {
- return curve.CurveParams
-}
-
-func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
- var x, y p224FieldElement
- p224FromBig(&x, bigX)
- p224FromBig(&y, bigY)
-
- // y² = x³ - 3x + b
- var tmp p224LargeFieldElement
- var x3 p224FieldElement
- p224Square(&x3, &x, &tmp)
- p224Mul(&x3, &x3, &x, &tmp)
-
- for i := 0; i < 8; i++ {
- x[i] *= 3
- }
- p224Sub(&x3, &x3, &x)
- p224Reduce(&x3)
- p224Add(&x3, &x3, &curve.b)
- p224Contract(&x3, &x3)
-
- p224Square(&y, &y, &tmp)
- p224Contract(&y, &y)
-
- for i := 0; i < 8; i++ {
- if y[i] != x3[i] {
- return false
- }
- }
- return true
-}
-
-func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
- var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
-
- p224FromBig(&x1, bigX1)
- p224FromBig(&y1, bigY1)
- if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
- z1[0] = 1
- }
- p224FromBig(&x2, bigX2)
- p224FromBig(&y2, bigY2)
- if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
- z2[0] = 1
- }
-
- p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
- return p224ToAffine(&x3, &y3, &z3)
-}
-
-func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
- var x1, y1, z1, x2, y2, z2 p224FieldElement
-
- p224FromBig(&x1, bigX1)
- p224FromBig(&y1, bigY1)
- z1[0] = 1
-
- p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
- return p224ToAffine(&x2, &y2, &z2)
-}
-
-func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
- var x1, y1, z1, x2, y2, z2 p224FieldElement
-
- p224FromBig(&x1, bigX1)
- p224FromBig(&y1, bigY1)
- z1[0] = 1
-
- p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
- return p224ToAffine(&x2, &y2, &z2)
-}
-
-func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
- var z1, x2, y2, z2 p224FieldElement
-
- z1[0] = 1
- p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
- return p224ToAffine(&x2, &y2, &z2)
-}
-
-// Field element functions.
-//
-// The field that we're dealing with is /p where p = 2**224 - 2**96 + 1.
-//
-// Field elements are represented by a FieldElement, which is a typedef to an
-// array of 8 uint32's. The value of a FieldElement, a, is:
-// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
-//
-// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
-// than we would really like. But it has the useful feature that we hit 2**224
-// exactly, making the reflections during a reduce much nicer.
-type p224FieldElement [8]uint32
-
-// p224P is the order of the field, represented as a p224FieldElement.
-var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
-
-// p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
-//
-// a[i] < 2**29
-func p224IsZero(a *p224FieldElement) uint32 {
- // Since a p224FieldElement contains 224 bits there are two possible
- // representations of 0: 0 and p.
- var minimal p224FieldElement
- p224Contract(&minimal, a)
-
- var isZero, isP uint32
- for i, v := range minimal {
- isZero |= v
- isP |= v - p224P[i]
- }
-
- // If either isZero or isP is 0, then we should return 1.
- isZero |= isZero >> 16
- isZero |= isZero >> 8
- isZero |= isZero >> 4
- isZero |= isZero >> 2
- isZero |= isZero >> 1
-
- isP |= isP >> 16
- isP |= isP >> 8
- isP |= isP >> 4
- isP |= isP >> 2
- isP |= isP >> 1
-
- // For isZero and isP, the LSB is 0 iff all the bits are zero.
- result := isZero & isP
- result = (^result) & 1
-
- return result
-}
-
-// p224Add computes *out = a+b
-//
-// a[i] + b[i] < 2**32
-func p224Add(out, a, b *p224FieldElement) {
- for i := 0; i < 8; i++ {
- out[i] = a[i] + b[i]
- }
-}
-
-const two31p3 = 1<<31 + 1<<3
-const two31m3 = 1<<31 - 1<<3
-const two31m15m3 = 1<<31 - 1<<15 - 1<<3
-
-// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
-// subtract smaller amounts without underflow. See the section "Subtraction" in
-// [1] for reasoning.
-var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
-
-// p224Sub computes *out = a-b
-//
-// a[i], b[i] < 2**30
-// out[i] < 2**32
-func p224Sub(out, a, b *p224FieldElement) {
- for i := 0; i < 8; i++ {
- out[i] = a[i] + p224ZeroModP31[i] - b[i]
- }
-}
-
-// LargeFieldElement also represents an element of the field. The limbs are
-// still spaced 28-bits apart and in little-endian order. So the limbs are at
-// 0, 28, 56, ..., 392 bits, each 64-bits wide.
-type p224LargeFieldElement [15]uint64
-
-const two63p35 = 1<<63 + 1<<35
-const two63m35 = 1<<63 - 1<<35
-const two63m35m19 = 1<<63 - 1<<35 - 1<<19
-
-// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
-// "Subtraction" in [1] for why.
-var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
-
-const bottom12Bits = 0xfff
-const bottom28Bits = 0xfffffff
-
-// p224Mul computes *out = a*b
-//
-// a[i] < 2**29, b[i] < 2**30 (or vice versa)
-// out[i] < 2**29
-func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
- for i := 0; i < 15; i++ {
- tmp[i] = 0
- }
-
- for i := 0; i < 8; i++ {
- for j := 0; j < 8; j++ {
- tmp[i+j] += uint64(a[i]) * uint64(b[j])
- }
- }
-
- p224ReduceLarge(out, tmp)
-}
-
-// Square computes *out = a*a
-//
-// a[i] < 2**29
-// out[i] < 2**29
-func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
- for i := 0; i < 15; i++ {
- tmp[i] = 0
- }
-
- for i := 0; i < 8; i++ {
- for j := 0; j <= i; j++ {
- r := uint64(a[i]) * uint64(a[j])
- if i == j {
- tmp[i+j] += r
- } else {
- tmp[i+j] += r << 1
- }
- }
- }
-
- p224ReduceLarge(out, tmp)
-}
-
-// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
-//
-// in[i] < 2**62
-func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
- for i := 0; i < 8; i++ {
- in[i] += p224ZeroModP63[i]
- }
-
- // Eliminate the coefficients at 2**224 and greater.
- for i := 14; i >= 8; i-- {
- in[i-8] -= in[i]
- in[i-5] += (in[i] & 0xffff) << 12
- in[i-4] += in[i] >> 16
- }
- in[8] = 0
- // in[0..8] < 2**64
-
- // As the values become small enough, we start to store them in |out|
- // and use 32-bit operations.
- for i := 1; i < 8; i++ {
- in[i+1] += in[i] >> 28
- out[i] = uint32(in[i] & bottom28Bits)
- }
- in[0] -= in[8]
- out[3] += uint32(in[8]&0xffff) << 12
- out[4] += uint32(in[8] >> 16)
- // in[0] < 2**64
- // out[3] < 2**29
- // out[4] < 2**29
- // out[1,2,5..7] < 2**28
-
- out[0] = uint32(in[0] & bottom28Bits)
- out[1] += uint32((in[0] >> 28) & bottom28Bits)
- out[2] += uint32(in[0] >> 56)
- // out[0] < 2**28
- // out[1..4] < 2**29
- // out[5..7] < 2**28
-}
-
-// Reduce reduces the coefficients of a to smaller bounds.
-//
-// On entry: a[i] < 2**31 + 2**30
-// On exit: a[i] < 2**29
-func p224Reduce(a *p224FieldElement) {
- for i := 0; i < 7; i++ {
- a[i+1] += a[i] >> 28
- a[i] &= bottom28Bits
- }
- top := a[7] >> 28
- a[7] &= bottom28Bits
-
- // top < 2**4
- mask := top
- mask |= mask >> 2
- mask |= mask >> 1
- mask <<= 31
- mask = uint32(int32(mask) >> 31)
- // Mask is all ones if top != 0, all zero otherwise
-
- a[0] -= top
- a[3] += top << 12
-
- // We may have just made a[0] negative but, if we did, then we must
- // have added something to a[3], this it's > 2**12. Therefore we can
- // carry down to a[0].
- a[3] -= 1 & mask
- a[2] += mask & (1<<28 - 1)
- a[1] += mask & (1<<28 - 1)
- a[0] += mask & (1 << 28)
-}
-
-// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
-// i.e. Fermat's little theorem.
-func p224Invert(out, in *p224FieldElement) {
- var f1, f2, f3, f4 p224FieldElement
- var c p224LargeFieldElement
-
- p224Square(&f1, in, &c) // 2
- p224Mul(&f1, &f1, in, &c) // 2**2 - 1
- p224Square(&f1, &f1, &c) // 2**3 - 2
- p224Mul(&f1, &f1, in, &c) // 2**3 - 1
- p224Square(&f2, &f1, &c) // 2**4 - 2
- p224Square(&f2, &f2, &c) // 2**5 - 4
- p224Square(&f2, &f2, &c) // 2**6 - 8
- p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
- p224Square(&f2, &f1, &c) // 2**7 - 2
- for i := 0; i < 5; i++ { // 2**12 - 2**6
- p224Square(&f2, &f2, &c)
- }
- p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
- p224Square(&f3, &f2, &c) // 2**13 - 2
- for i := 0; i < 11; i++ { // 2**24 - 2**12
- p224Square(&f3, &f3, &c)
- }
- p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
- p224Square(&f3, &f2, &c) // 2**25 - 2
- for i := 0; i < 23; i++ { // 2**48 - 2**24
- p224Square(&f3, &f3, &c)
- }
- p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
- p224Square(&f4, &f3, &c) // 2**49 - 2
- for i := 0; i < 47; i++ { // 2**96 - 2**48
- p224Square(&f4, &f4, &c)
- }
- p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
- p224Square(&f4, &f3, &c) // 2**97 - 2
- for i := 0; i < 23; i++ { // 2**120 - 2**24
- p224Square(&f4, &f4, &c)
- }
- p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
- for i := 0; i < 6; i++ { // 2**126 - 2**6
- p224Square(&f2, &f2, &c)
- }
- p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
- p224Square(&f1, &f1, &c) // 2**127 - 2
- p224Mul(&f1, &f1, in, &c) // 2**127 - 1
- for i := 0; i < 97; i++ { // 2**224 - 2**97
- p224Square(&f1, &f1, &c)
- }
- p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
-}
-
-// p224Contract converts a FieldElement to its unique, minimal form.
-//
-// On entry, in[i] < 2**29
-// On exit, in[i] < 2**28
-func p224Contract(out, in *p224FieldElement) {
- copy(out[:], in[:])
-
- for i := 0; i < 7; i++ {
- out[i+1] += out[i] >> 28
- out[i] &= bottom28Bits
- }
- top := out[7] >> 28
- out[7] &= bottom28Bits
-
- out[0] -= top
- out[3] += top << 12
-
- // We may just have made out[i] negative. So we carry down. If we made
- // out[0] negative then we know that out[3] is sufficiently positive
- // because we just added to it.
- for i := 0; i < 3; i++ {
- mask := uint32(int32(out[i]) >> 31)
- out[i] += (1 << 28) & mask
- out[i+1] -= 1 & mask
- }
-
- // We might have pushed out[3] over 2**28 so we perform another, partial,
- // carry chain.
- for i := 3; i < 7; i++ {
- out[i+1] += out[i] >> 28
- out[i] &= bottom28Bits
- }
- top = out[7] >> 28
- out[7] &= bottom28Bits
-
- // Eliminate top while maintaining the same value mod p.
- out[0] -= top
- out[3] += top << 12
-
- // There are two cases to consider for out[3]:
- // 1) The first time that we eliminated top, we didn't push out[3] over
- // 2**28. In this case, the partial carry chain didn't change any values
- // and top is zero.
- // 2) We did push out[3] over 2**28 the first time that we eliminated top.
- // The first value of top was in [0..16), therefore, prior to eliminating
- // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
- // overflowing and being reduced by the second carry chain, out[3] <=
- // 0xf000. Thus it cannot have overflowed when we eliminated top for the
- // second time.
-
- // Again, we may just have made out[0] negative, so do the same carry down.
- // As before, if we made out[0] negative then we know that out[3] is
- // sufficiently positive.
- for i := 0; i < 3; i++ {
- mask := uint32(int32(out[i]) >> 31)
- out[i] += (1 << 28) & mask
- out[i+1] -= 1 & mask
- }
-
- // Now we see if the value is >= p and, if so, subtract p.
-
- // First we build a mask from the top four limbs, which must all be
- // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
- // ends up with any zero bits in the bottom 28 bits, then this wasn't
- // true.
- top4AllOnes := uint32(0xffffffff)
- for i := 4; i < 8; i++ {
- top4AllOnes &= out[i]
- }
- top4AllOnes |= 0xf0000000
- // Now we replicate any zero bits to all the bits in top4AllOnes.
- top4AllOnes &= top4AllOnes >> 16
- top4AllOnes &= top4AllOnes >> 8
- top4AllOnes &= top4AllOnes >> 4
- top4AllOnes &= top4AllOnes >> 2
- top4AllOnes &= top4AllOnes >> 1
- top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
-
- // Now we test whether the bottom three limbs are non-zero.
- bottom3NonZero := out[0] | out[1] | out[2]
- bottom3NonZero |= bottom3NonZero >> 16
- bottom3NonZero |= bottom3NonZero >> 8
- bottom3NonZero |= bottom3NonZero >> 4
- bottom3NonZero |= bottom3NonZero >> 2
- bottom3NonZero |= bottom3NonZero >> 1
- bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
-
- // Everything depends on the value of out[3].
- // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
- // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
- // then the whole value is >= p
- // If it's < 0xffff000, then the whole value is < p
- n := out[3] - 0xffff000
- out3Equal := n
- out3Equal |= out3Equal >> 16
- out3Equal |= out3Equal >> 8
- out3Equal |= out3Equal >> 4
- out3Equal |= out3Equal >> 2
- out3Equal |= out3Equal >> 1
- out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
-
- // If out[3] > 0xffff000 then n's MSB will be zero.
- out3GT := ^uint32(int32(n) >> 31)
-
- mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
- out[0] -= 1 & mask
- out[3] -= 0xffff000 & mask
- out[4] -= 0xfffffff & mask
- out[5] -= 0xfffffff & mask
- out[6] -= 0xfffffff & mask
- out[7] -= 0xfffffff & mask
-}
-
-// Group element functions.
-//
-// These functions deal with group elements. The group is an elliptic curve
-// group with a = -3 defined in FIPS 186-3, section D.2.2.
-
-// p224AddJacobian computes *out = a+b where a != b.
-func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
- var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
- var c p224LargeFieldElement
-
- z1IsZero := p224IsZero(z1)
- z2IsZero := p224IsZero(z2)
-
- // Z1Z1 = Z1²
- p224Square(&z1z1, z1, &c)
- // Z2Z2 = Z2²
- p224Square(&z2z2, z2, &c)
- // U1 = X1*Z2Z2
- p224Mul(&u1, x1, &z2z2, &c)
- // U2 = X2*Z1Z1
- p224Mul(&u2, x2, &z1z1, &c)
- // S1 = Y1*Z2*Z2Z2
- p224Mul(&s1, z2, &z2z2, &c)
- p224Mul(&s1, y1, &s1, &c)
- // S2 = Y2*Z1*Z1Z1
- p224Mul(&s2, z1, &z1z1, &c)
- p224Mul(&s2, y2, &s2, &c)
- // H = U2-U1
- p224Sub(&h, &u2, &u1)
- p224Reduce(&h)
- xEqual := p224IsZero(&h)
- // I = (2*H)²
- for j := 0; j < 8; j++ {
- i[j] = h[j] << 1
- }
- p224Reduce(&i)
- p224Square(&i, &i, &c)
- // J = H*I
- p224Mul(&j, &h, &i, &c)
- // r = 2*(S2-S1)
- p224Sub(&r, &s2, &s1)
- p224Reduce(&r)
- yEqual := p224IsZero(&r)
- if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
- p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
- return
- }
- for i := 0; i < 8; i++ {
- r[i] <<= 1
- }
- p224Reduce(&r)
- // V = U1*I
- p224Mul(&v, &u1, &i, &c)
- // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
- p224Add(&z1z1, &z1z1, &z2z2)
- p224Add(&z2z2, z1, z2)
- p224Reduce(&z2z2)
- p224Square(&z2z2, &z2z2, &c)
- p224Sub(z3, &z2z2, &z1z1)
- p224Reduce(z3)
- p224Mul(z3, z3, &h, &c)
- // X3 = r²-J-2*V
- for i := 0; i < 8; i++ {
- z1z1[i] = v[i] << 1
- }
- p224Add(&z1z1, &j, &z1z1)
- p224Reduce(&z1z1)
- p224Square(x3, &r, &c)
- p224Sub(x3, x3, &z1z1)
- p224Reduce(x3)
- // Y3 = r*(V-X3)-2*S1*J
- for i := 0; i < 8; i++ {
- s1[i] <<= 1
- }
- p224Mul(&s1, &s1, &j, &c)
- p224Sub(&z1z1, &v, x3)
- p224Reduce(&z1z1)
- p224Mul(&z1z1, &z1z1, &r, &c)
- p224Sub(y3, &z1z1, &s1)
- p224Reduce(y3)
-
- p224CopyConditional(x3, x2, z1IsZero)
- p224CopyConditional(x3, x1, z2IsZero)
- p224CopyConditional(y3, y2, z1IsZero)
- p224CopyConditional(y3, y1, z2IsZero)
- p224CopyConditional(z3, z2, z1IsZero)
- p224CopyConditional(z3, z1, z2IsZero)
-}
-
-// p224DoubleJacobian computes *out = a+a.
-func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
- var delta, gamma, beta, alpha, t p224FieldElement
- var c p224LargeFieldElement
-
- p224Square(&delta, z1, &c)
- p224Square(&gamma, y1, &c)
- p224Mul(&beta, x1, &gamma, &c)
-
- // alpha = 3*(X1-delta)*(X1+delta)
- p224Add(&t, x1, &delta)
- for i := 0; i < 8; i++ {
- t[i] += t[i] << 1
- }
- p224Reduce(&t)
- p224Sub(&alpha, x1, &delta)
- p224Reduce(&alpha)
- p224Mul(&alpha, &alpha, &t, &c)
-
- // Z3 = (Y1+Z1)²-gamma-delta
- p224Add(z3, y1, z1)
- p224Reduce(z3)
- p224Square(z3, z3, &c)
- p224Sub(z3, z3, &gamma)
- p224Reduce(z3)
- p224Sub(z3, z3, &delta)
- p224Reduce(z3)
-
- // X3 = alpha²-8*beta
- for i := 0; i < 8; i++ {
- delta[i] = beta[i] << 3
- }
- p224Reduce(&delta)
- p224Square(x3, &alpha, &c)
- p224Sub(x3, x3, &delta)
- p224Reduce(x3)
-
- // Y3 = alpha*(4*beta-X3)-8*gamma²
- for i := 0; i < 8; i++ {
- beta[i] <<= 2
- }
- p224Sub(&beta, &beta, x3)
- p224Reduce(&beta)
- p224Square(&gamma, &gamma, &c)
- for i := 0; i < 8; i++ {
- gamma[i] <<= 3
- }
- p224Reduce(&gamma)
- p224Mul(y3, &alpha, &beta, &c)
- p224Sub(y3, y3, &gamma)
- p224Reduce(y3)
-}
-
-// p224CopyConditional sets *out = *in iff the least-significant-bit of control
-// is true, and it runs in constant time.
-func p224CopyConditional(out, in *p224FieldElement, control uint32) {
- control <<= 31
- control = uint32(int32(control) >> 31)
-
- for i := 0; i < 8; i++ {
- out[i] ^= (out[i] ^ in[i]) & control
- }
-}
-
-func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
- var xx, yy, zz p224FieldElement
- for i := 0; i < 8; i++ {
- outX[i] = 0
- outY[i] = 0
- outZ[i] = 0
- }
-
- for _, byte := range scalar {
- for bitNum := uint(0); bitNum < 8; bitNum++ {
- p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
- bit := uint32((byte >> (7 - bitNum)) & 1)
- p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
- p224CopyConditional(outX, &xx, bit)
- p224CopyConditional(outY, &yy, bit)
- p224CopyConditional(outZ, &zz, bit)
- }
- }
-}
-
-// p224ToAffine converts from Jacobian to affine form.
-func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
- var zinv, zinvsq, outx, outy p224FieldElement
- var tmp p224LargeFieldElement
-
- if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
- return new(big.Int), new(big.Int)
- }
-
- p224Invert(&zinv, z)
- p224Square(&zinvsq, &zinv, &tmp)
- p224Mul(x, x, &zinvsq, &tmp)
- p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
- p224Mul(y, y, &zinvsq, &tmp)
-
- p224Contract(&outx, x)
- p224Contract(&outy, y)
- return p224ToBig(&outx), p224ToBig(&outy)
-}
-
-// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
-// where buf is interpreted as a big-endian number.
-func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
- var ret uint32
-
- for i := uint(0); i < 4; i++ {
- var b byte
- if l := len(buf); l > 0 {
- b = buf[l-1]
- // We don't remove the byte if we're about to return and we're not
- // reading all of it.
- if i != 3 || shift == 4 {
- buf = buf[:l-1]
- }
- }
- ret |= uint32(b) << (8 * i) >> shift
- }
- ret &= bottom28Bits
- return ret, buf
-}
-
-// p224FromBig sets *out = *in.
-func p224FromBig(out *p224FieldElement, in *big.Int) {
- bytes := in.Bytes()
- out[0], bytes = get28BitsFromEnd(bytes, 0)
- out[1], bytes = get28BitsFromEnd(bytes, 4)
- out[2], bytes = get28BitsFromEnd(bytes, 0)
- out[3], bytes = get28BitsFromEnd(bytes, 4)
- out[4], bytes = get28BitsFromEnd(bytes, 0)
- out[5], bytes = get28BitsFromEnd(bytes, 4)
- out[6], bytes = get28BitsFromEnd(bytes, 0)
- out[7], bytes = get28BitsFromEnd(bytes, 4)
-}
-
-// p224ToBig returns in as a big.Int.
-func p224ToBig(in *p224FieldElement) *big.Int {
- var buf [28]byte
- buf[27] = byte(in[0])
- buf[26] = byte(in[0] >> 8)
- buf[25] = byte(in[0] >> 16)
- buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
-
- buf[23] = byte(in[1] >> 4)
- buf[22] = byte(in[1] >> 12)
- buf[21] = byte(in[1] >> 20)
-
- buf[20] = byte(in[2])
- buf[19] = byte(in[2] >> 8)
- buf[18] = byte(in[2] >> 16)
- buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
-
- buf[16] = byte(in[3] >> 4)
- buf[15] = byte(in[3] >> 12)
- buf[14] = byte(in[3] >> 20)
-
- buf[13] = byte(in[4])
- buf[12] = byte(in[4] >> 8)
- buf[11] = byte(in[4] >> 16)
- buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
-
- buf[9] = byte(in[5] >> 4)
- buf[8] = byte(in[5] >> 12)
- buf[7] = byte(in[5] >> 20)
-
- buf[6] = byte(in[6])
- buf[5] = byte(in[6] >> 8)
- buf[4] = byte(in[6] >> 16)
- buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
-
- buf[2] = byte(in[7] >> 4)
- buf[1] = byte(in[7] >> 12)
- buf[0] = byte(in[7] >> 20)
-
- return new(big.Int).SetBytes(buf[:])
-}
--- libgo/go/crypto/elliptic/p224_test.go.jj 2012-11-15 18:26:57.000000000 +0100
+++ libgo/go/crypto/elliptic/p224_test.go 2014-03-05 15:29:58.743430988 +0100
@@ -1,47 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package elliptic
-
-import (
- "math/big"
- "testing"
-)
-
-var toFromBigTests = []string{
- "0",
- "1",
- "23",
- "b70e0cb46bb4bf7f321390b94a03c1d356c01122343280d6105c1d21",
- "706a46d476dcb76798e6046d89474788d164c18032d268fd10704fa6",
-}
-
-func p224AlternativeToBig(in *p224FieldElement) *big.Int {
- ret := new(big.Int)
- tmp := new(big.Int)
-
- for i := uint(0); i < 8; i++ {
- tmp.SetInt64(int64(in[i]))
- tmp.Lsh(tmp, 28*i)
- ret.Add(ret, tmp)
- }
- ret.Mod(ret, p224.P)
- return ret
-}
-
-func TestToFromBig(t *testing.T) {
- for i, test := range toFromBigTests {
- n, _ := new(big.Int).SetString(test, 16)
- var x p224FieldElement
- p224FromBig(&x, n)
- m := p224ToBig(&x)
- if n.Cmp(m) != 0 {
- t.Errorf("#%d: %x != %x", i, n, m)
- }
- q := p224AlternativeToBig(&x)
- if n.Cmp(q) != 0 {
- t.Errorf("#%d: %x != %x (alternative)", i, n, m)
- }
- }
-}
--- libgo/go/crypto/elliptic/p256.go.jj 2013-11-07 11:59:09.000000000 +0100
+++ libgo/go/crypto/elliptic/p256.go 2014-03-05 15:34:31.910414701 +0100
@@ -233,6 +233,8 @@ func p256ReduceCarry(inout *[p256Limbs]u
inout[7] += carry << 25
}
+const bottom28Bits = 0xfffffff
+
// p256Sum sets out = in+in2.
//
// On entry, in[i]+in2[i] must not overflow a 32-bit word.
@@ -265,6 +267,7 @@ const (
two31m2 = 1<<31 - 1<<2
two31p24m2 = 1<<31 + 1<<24 - 1<<2
two30m27m2 = 1<<30 - 1<<27 - 1<<2
+ two31m3 = 1<<31 - 1<<3
)
// p256Zero31 is 0 mod p.