dotnet8.0/SHAHashProvider.Browser.cs

1185 lines
47 KiB
C#

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System;
using System.IO;
using System.Diagnostics;
using System.Numerics;
using System.Security.Cryptography;
namespace Internal.Cryptography
{
internal sealed class SHAHashProvider : HashProvider
{
private int hashSizeInBytes;
private SHAManagedImplementationBase impl;
private MemoryStream buffer;
public SHAHashProvider(string hashAlgorithmId)
{
switch (hashAlgorithmId)
{
case HashAlgorithmNames.SHA1:
impl = new SHA1ManagedImplementation();
hashSizeInBytes = 20;
break;
case HashAlgorithmNames.SHA256:
impl = new SHA256ManagedImplementation();
hashSizeInBytes = 32;
break;
case HashAlgorithmNames.SHA384:
impl = new SHA384ManagedImplementation();
hashSizeInBytes = 48;
break;
case HashAlgorithmNames.SHA512:
impl = new SHA512ManagedImplementation();
hashSizeInBytes = 64;
break;
default:
throw new CryptographicException(SR.Format(SR.Cryptography_UnknownHashAlgorithm, hashAlgorithmId));
}
}
public override void AppendHashData(ReadOnlySpan<byte> data)
{
if (buffer == null)
{
buffer = new MemoryStream(1000);
}
buffer.Write(data);
}
public override int FinalizeHashAndReset(Span<byte> destination)
{
GetCurrentHash(destination);
buffer = null;
return hashSizeInBytes;
}
public override int GetCurrentHash(Span<byte> destination)
{
Debug.Assert(destination.Length >= hashSizeInBytes);
impl.Initialize();
if (buffer != null)
{
impl.HashCore(buffer.GetBuffer(), 0, (int)buffer.Length);
}
impl.HashFinal().CopyTo(destination);
return hashSizeInBytes;
}
public override int HashSizeInBytes => hashSizeInBytes;
public override void Dispose(bool disposing)
{
}
private abstract class SHAManagedImplementationBase
{
public abstract void Initialize();
public abstract void HashCore(byte[] partIn, int ibStart, int cbSize);
public abstract byte[] HashFinal();
}
// Ported from src/libraries/System.Private.CoreLib/src/System/Diagnostics/Tracing/EventSource.cs.
// n.b. It's ok to use a "non-secret purposes" hashing implementation here, as this is only
// used in wasm scenarios, and as of the current release we don't make any security guarantees
// about our crypto primitives in wasm environments.
private class SHA1ManagedImplementation : SHAManagedImplementationBase
{
private Sha1ForNonSecretPurposes _state; // mutable struct - don't make readonly
public override void Initialize()
{
_state = default;
_state.Start();
}
public override void HashCore(byte[] partIn, int ibStart, int cbSize)
{
_state.Append(partIn.AsSpan(ibStart, cbSize));
}
public override byte[] HashFinal()
{
byte[] output = new byte[20];
_state.Finish(output);
return output;
}
/// <summary>
/// Implements the SHA1 hashing algorithm. Note that this
/// implementation is for hashing public information. Do not
/// use this code to hash private data, as this implementation does
/// not take any steps to avoid information disclosure.
/// </summary>
private struct Sha1ForNonSecretPurposes
{
private long length; // Total message length in bits
private uint[] w; // Workspace
private int pos; // Length of current chunk in bytes
/// <summary>
/// Call Start() to initialize the hash object.
/// </summary>
public void Start()
{
this.w ??= new uint[85];
this.length = 0;
this.pos = 0;
this.w[80] = 0x67452301;
this.w[81] = 0xEFCDAB89;
this.w[82] = 0x98BADCFE;
this.w[83] = 0x10325476;
this.w[84] = 0xC3D2E1F0;
}
/// <summary>
/// Adds an input byte to the hash.
/// </summary>
/// <param name="input">Data to include in the hash.</param>
public void Append(byte input)
{
this.w[this.pos / 4] = (this.w[this.pos / 4] << 8) | input;
if (64 == ++this.pos)
{
this.Drain();
}
}
/// <summary>
/// Adds input bytes to the hash.
/// </summary>
/// <param name="input">
/// Data to include in the hash. Must not be null.
/// </param>
public void Append(ReadOnlySpan<byte> input)
{
foreach (byte b in input)
{
this.Append(b);
}
}
/// <summary>
/// Retrieves the hash value.
/// Note that after calling this function, the hash object should
/// be considered uninitialized. Subsequent calls to Append or
/// Finish will produce useless results. Call Start() to
/// reinitialize.
/// </summary>
/// <param name="output">
/// Buffer to receive the hash value. Must not be null.
/// Up to 20 bytes of hash will be written to the output buffer.
/// If the buffer is smaller than 20 bytes, the remaining hash
/// bytes will be lost. If the buffer is larger than 20 bytes, the
/// rest of the buffer is left unmodified.
/// </param>
public void Finish(byte[] output)
{
long l = this.length + 8 * this.pos;
this.Append(0x80);
while (this.pos != 56)
{
this.Append(0x00);
}
unchecked
{
this.Append((byte)(l >> 56));
this.Append((byte)(l >> 48));
this.Append((byte)(l >> 40));
this.Append((byte)(l >> 32));
this.Append((byte)(l >> 24));
this.Append((byte)(l >> 16));
this.Append((byte)(l >> 8));
this.Append((byte)l);
int end = output.Length < 20 ? output.Length : 20;
for (int i = 0; i != end; i++)
{
uint temp = this.w[80 + i / 4];
output[i] = (byte)(temp >> 24);
this.w[80 + i / 4] = temp << 8;
}
}
}
/// <summary>
/// Called when this.pos reaches 64.
/// </summary>
private void Drain()
{
for (int i = 16; i != 80; i++)
{
this.w[i] = BitOperations.RotateLeft(this.w[i - 3] ^ this.w[i - 8] ^ this.w[i - 14] ^ this.w[i - 16], 1);
}
unchecked
{
uint a = this.w[80];
uint b = this.w[81];
uint c = this.w[82];
uint d = this.w[83];
uint e = this.w[84];
for (int i = 0; i != 20; i++)
{
const uint k = 0x5A827999;
uint f = (b & c) | ((~b) & d);
uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
}
for (int i = 20; i != 40; i++)
{
uint f = b ^ c ^ d;
const uint k = 0x6ED9EBA1;
uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
}
for (int i = 40; i != 60; i++)
{
uint f = (b & c) | (b & d) | (c & d);
const uint k = 0x8F1BBCDC;
uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
}
for (int i = 60; i != 80; i++)
{
uint f = b ^ c ^ d;
const uint k = 0xCA62C1D6;
uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
}
this.w[80] += a;
this.w[81] += b;
this.w[82] += c;
this.w[83] += d;
this.w[84] += e;
}
this.length += 512; // 64 bytes == 512 bits
this.pos = 0;
}
}
}
// ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha256managed.cs
private class SHA256ManagedImplementation : SHAManagedImplementationBase
{
private byte[] _buffer;
private long _count; // Number of bytes in the hashed message
private uint[] _stateSHA256;
private uint[] _W;
public SHA256ManagedImplementation()
{
_stateSHA256 = new uint[8];
_buffer = new byte[64];
_W = new uint[64];
InitializeState();
}
public override void Initialize()
{
InitializeState();
// Zeroize potentially sensitive information.
Array.Clear(_buffer, 0, _buffer.Length);
Array.Clear(_W, 0, _W.Length);
}
private void InitializeState()
{
_count = 0;
_stateSHA256[0] = 0x6a09e667;
_stateSHA256[1] = 0xbb67ae85;
_stateSHA256[2] = 0x3c6ef372;
_stateSHA256[3] = 0xa54ff53a;
_stateSHA256[4] = 0x510e527f;
_stateSHA256[5] = 0x9b05688c;
_stateSHA256[6] = 0x1f83d9ab;
_stateSHA256[7] = 0x5be0cd19;
}
/* SHA256 block update operation. Continues an SHA message-digest
operation, processing another message block, and updating the
context.
*/
public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize)
{
int bufferLen;
int partInLen = cbSize;
int partInBase = ibStart;
/* Compute length of buffer */
bufferLen = (int)(_count & 0x3f);
/* Update number of bytes */
_count += partInLen;
fixed (uint* stateSHA256 = _stateSHA256)
{
fixed (byte* buffer = _buffer)
{
fixed (uint* expandedBuffer = _W)
{
if ((bufferLen > 0) && (bufferLen + partInLen >= 64))
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 64 - bufferLen);
partInBase += (64 - bufferLen);
partInLen -= (64 - bufferLen);
SHATransform(expandedBuffer, stateSHA256, buffer);
bufferLen = 0;
}
/* Copy input to temporary buffer and hash */
while (partInLen >= 64)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 64);
partInBase += 64;
partInLen -= 64;
SHATransform(expandedBuffer, stateSHA256, buffer);
}
if (partInLen > 0)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen);
}
}
}
}
}
/* SHA256 finalization. Ends an SHA256 message-digest operation, writing
the message digest.
*/
public override byte[] HashFinal()
{
byte[] pad;
int padLen;
long bitCount;
byte[] hash = new byte[32]; // HashSizeValue = 256
/* Compute padding: 80 00 00 ... 00 00 <bit count>
*/
padLen = 64 - (int)(_count & 0x3f);
if (padLen <= 8)
padLen += 64;
pad = new byte[padLen];
pad[0] = 0x80;
// Convert count to bit count
bitCount = _count * 8;
pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff);
pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff);
pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff);
pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff);
pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff);
pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff);
pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff);
pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff);
/* Digest padding */
HashCore(pad, 0, pad.Length);
/* Store digest */
SHAUtils.DWORDToBigEndian(hash, _stateSHA256, 8);
return hash;
}
private static readonly uint[] _K = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
private static unsafe void SHATransform(uint* expandedBuffer, uint* state, byte* block)
{
uint a, b, c, d, e, f, h, g;
uint aa, bb, cc, dd, ee, ff, hh, gg;
uint T1;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
// fill in the first 16 bytes of W.
SHAUtils.DWORDFromBigEndian(expandedBuffer, 16, block);
SHA256Expand(expandedBuffer);
/* Apply the SHA256 compression function */
// We are trying to be smart here and avoid as many copies as we can
// The perf gain with this method over the straightforward modify and shift
// forward is >= 20%, so it's worth the pain
for (int j = 0; j < 64;)
{
T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j];
ee = d + T1;
aa = T1 + Sigma_0(a) + Maj(a, b, c);
j++;
T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j];
ff = c + T1;
bb = T1 + Sigma_0(aa) + Maj(aa, a, b);
j++;
T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j];
gg = b + T1;
cc = T1 + Sigma_0(bb) + Maj(bb, aa, a);
j++;
T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j];
hh = a + T1;
dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa);
j++;
T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j];
h = aa + T1;
d = T1 + Sigma_0(dd) + Maj(dd, cc, bb);
j++;
T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j];
g = bb + T1;
c = T1 + Sigma_0(d) + Maj(d, dd, cc);
j++;
T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j];
f = cc + T1;
b = T1 + Sigma_0(c) + Maj(c, d, dd);
j++;
T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j];
e = dd + T1;
a = T1 + Sigma_0(b) + Maj(b, c, d);
j++;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
private static uint RotateRight(uint x, int n)
{
return (((x) >> (n)) | ((x) << (32 - (n))));
}
private static uint Ch(uint x, uint y, uint z)
{
return ((x & y) ^ ((x ^ 0xffffffff) & z));
}
private static uint Maj(uint x, uint y, uint z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
private static uint sigma_0(uint x)
{
return (RotateRight(x, 7) ^ RotateRight(x, 18) ^ (x >> 3));
}
private static uint sigma_1(uint x)
{
return (RotateRight(x, 17) ^ RotateRight(x, 19) ^ (x >> 10));
}
private static uint Sigma_0(uint x)
{
return (RotateRight(x, 2) ^ RotateRight(x, 13) ^ RotateRight(x, 22));
}
private static uint Sigma_1(uint x)
{
return (RotateRight(x, 6) ^ RotateRight(x, 11) ^ RotateRight(x, 25));
}
/* This function creates W_16,...,W_63 according to the formula
W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16};
*/
private static unsafe void SHA256Expand(uint* x)
{
for (int i = 16; i < 64; i++)
{
x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16];
}
}
}
// ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha384managed.cs
private class SHA384ManagedImplementation : SHAManagedImplementationBase
{
private byte[] _buffer;
private ulong _count; // Number of bytes in the hashed message
private ulong[] _stateSHA384;
private ulong[] _W;
public SHA384ManagedImplementation()
{
_stateSHA384 = new ulong[8];
_buffer = new byte[128];
_W = new ulong[80];
InitializeState();
}
public override void Initialize()
{
InitializeState();
// Zeroize potentially sensitive information.
Array.Clear(_buffer, 0, _buffer.Length);
Array.Clear(_W, 0, _W.Length);
}
private void InitializeState()
{
_count = 0;
_stateSHA384[0] = 0xcbbb9d5dc1059ed8;
_stateSHA384[1] = 0x629a292a367cd507;
_stateSHA384[2] = 0x9159015a3070dd17;
_stateSHA384[3] = 0x152fecd8f70e5939;
_stateSHA384[4] = 0x67332667ffc00b31;
_stateSHA384[5] = 0x8eb44a8768581511;
_stateSHA384[6] = 0xdb0c2e0d64f98fa7;
_stateSHA384[7] = 0x47b5481dbefa4fa4;
}
/* SHA384 block update operation. Continues an SHA message-digest
operation, processing another message block, and updating the
context.
*/
public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize)
{
int bufferLen;
int partInLen = cbSize;
int partInBase = ibStart;
/* Compute length of buffer */
bufferLen = (int)(_count & 0x7f);
/* Update number of bytes */
_count += (ulong)partInLen;
fixed (ulong* stateSHA384 = _stateSHA384)
{
fixed (byte* buffer = _buffer)
{
fixed (ulong* expandedBuffer = _W)
{
if ((bufferLen > 0) && (bufferLen + partInLen >= 128))
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 128 - bufferLen);
partInBase += (128 - bufferLen);
partInLen -= (128 - bufferLen);
SHATransform(expandedBuffer, stateSHA384, buffer);
bufferLen = 0;
}
/* Copy input to temporary buffer and hash */
while (partInLen >= 128)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 128);
partInBase += 128;
partInLen -= 128;
SHATransform(expandedBuffer, stateSHA384, buffer);
}
if (partInLen > 0)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen);
}
}
}
}
}
/* SHA384 finalization. Ends an SHA384 message-digest operation, writing
the message digest.
*/
public override byte[] HashFinal()
{
byte[] pad;
int padLen;
ulong bitCount;
byte[] hash = new byte[48]; // HashSizeValue = 384
/* Compute padding: 80 00 00 ... 00 00 <bit count>
*/
padLen = 128 - (int)(_count & 0x7f);
if (padLen <= 16)
padLen += 128;
pad = new byte[padLen];
pad[0] = 0x80;
// Convert count to bit count
bitCount = _count * 8;
// bitCount is at most 8 * 128 = 1024. Its representation as a 128-bit number has all bits set to zero
// except eventually the 11 lower bits
//pad[padLen-16] = (byte) ((bitCount >> 120) & 0xff);
//pad[padLen-15] = (byte) ((bitCount >> 112) & 0xff);
//pad[padLen-14] = (byte) ((bitCount >> 104) & 0xff);
//pad[padLen-13] = (byte) ((bitCount >> 96) & 0xff);
//pad[padLen-12] = (byte) ((bitCount >> 88) & 0xff);
//pad[padLen-11] = (byte) ((bitCount >> 80) & 0xff);
//pad[padLen-10] = (byte) ((bitCount >> 72) & 0xff);
//pad[padLen-9] = (byte) ((bitCount >> 64) & 0xff);
pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff);
pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff);
pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff);
pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff);
pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff);
pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff);
pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff);
pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff);
/* Digest padding */
HashCore(pad, 0, pad.Length);
/* Store digest */
SHAUtils.QuadWordToBigEndian(hash, _stateSHA384, 6);
return hash;
}
private static readonly ulong[] _K = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
};
private static unsafe void SHATransform(ulong* expandedBuffer, ulong* state, byte* block)
{
ulong a, b, c, d, e, f, g, h;
ulong aa, bb, cc, dd, ee, ff, hh, gg;
ulong T1;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
// fill in the first 16 blocks of W.
SHAUtils.QuadWordFromBigEndian(expandedBuffer, 16, block);
SHA384Expand(expandedBuffer);
/* Apply the SHA384 compression function */
// We are trying to be smart here and avoid as many copies as we can
// The perf gain with this method over the straightforward modify and shift
// forward is >= 20%, so it's worth the pain
for (int j = 0; j < 80;)
{
T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j];
ee = d + T1;
aa = T1 + Sigma_0(a) + Maj(a, b, c);
j++;
T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j];
ff = c + T1;
bb = T1 + Sigma_0(aa) + Maj(aa, a, b);
j++;
T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j];
gg = b + T1;
cc = T1 + Sigma_0(bb) + Maj(bb, aa, a);
j++;
T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j];
hh = a + T1;
dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa);
j++;
T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j];
h = aa + T1;
d = T1 + Sigma_0(dd) + Maj(dd, cc, bb);
j++;
T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j];
g = bb + T1;
c = T1 + Sigma_0(d) + Maj(d, dd, cc);
j++;
T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j];
f = cc + T1;
b = T1 + Sigma_0(c) + Maj(c, d, dd);
j++;
T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j];
e = dd + T1;
a = T1 + Sigma_0(b) + Maj(b, c, d);
j++;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
private static ulong RotateRight(ulong x, int n)
{
return (((x) >> (n)) | ((x) << (64 - (n))));
}
private static ulong Ch(ulong x, ulong y, ulong z)
{
return ((x & y) ^ ((x ^ 0xffffffffffffffff) & z));
}
private static ulong Maj(ulong x, ulong y, ulong z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
private static ulong Sigma_0(ulong x)
{
return (RotateRight(x, 28) ^ RotateRight(x, 34) ^ RotateRight(x, 39));
}
private static ulong Sigma_1(ulong x)
{
return (RotateRight(x, 14) ^ RotateRight(x, 18) ^ RotateRight(x, 41));
}
private static ulong sigma_0(ulong x)
{
return (RotateRight(x, 1) ^ RotateRight(x, 8) ^ (x >> 7));
}
private static ulong sigma_1(ulong x)
{
return (RotateRight(x, 19) ^ RotateRight(x, 61) ^ (x >> 6));
}
/* This function creates W_16,...,W_79 according to the formula
W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16};
*/
private static unsafe void SHA384Expand(ulong* x)
{
for (int i = 16; i < 80; i++)
{
x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16];
}
}
}
// ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha512managed.cs
private class SHA512ManagedImplementation : SHAManagedImplementationBase
{
private byte[] _buffer;
private ulong _count; // Number of bytes in the hashed message
private ulong[] _stateSHA512;
private ulong[] _W;
public SHA512ManagedImplementation()
{
_stateSHA512 = new ulong[8];
_buffer = new byte[128];
_W = new ulong[80];
InitializeState();
}
public override void Initialize()
{
InitializeState();
// Zeroize potentially sensitive information.
Array.Clear(_buffer, 0, _buffer.Length);
Array.Clear(_W, 0, _W.Length);
}
private void InitializeState()
{
_count = 0;
_stateSHA512[0] = 0x6a09e667f3bcc908;
_stateSHA512[1] = 0xbb67ae8584caa73b;
_stateSHA512[2] = 0x3c6ef372fe94f82b;
_stateSHA512[3] = 0xa54ff53a5f1d36f1;
_stateSHA512[4] = 0x510e527fade682d1;
_stateSHA512[5] = 0x9b05688c2b3e6c1f;
_stateSHA512[6] = 0x1f83d9abfb41bd6b;
_stateSHA512[7] = 0x5be0cd19137e2179;
}
/* SHA512 block update operation. Continues an SHA message-digest
operation, processing another message block, and updating the
context.
*/
public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize)
{
int bufferLen;
int partInLen = cbSize;
int partInBase = ibStart;
/* Compute length of buffer */
bufferLen = (int)(_count & 0x7f);
/* Update number of bytes */
_count += (ulong)partInLen;
fixed (ulong* stateSHA512 = _stateSHA512)
{
fixed (byte* buffer = _buffer)
{
fixed (ulong* expandedBuffer = _W)
{
if ((bufferLen > 0) && (bufferLen + partInLen >= 128))
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 128 - bufferLen);
partInBase += (128 - bufferLen);
partInLen -= (128 - bufferLen);
SHATransform(expandedBuffer, stateSHA512, buffer);
bufferLen = 0;
}
/* Copy input to temporary buffer and hash */
while (partInLen >= 128)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 128);
partInBase += 128;
partInLen -= 128;
SHATransform(expandedBuffer, stateSHA512, buffer);
}
if (partInLen > 0)
{
Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen);
}
}
}
}
}
/* SHA512 finalization. Ends an SHA512 message-digest operation, writing
the message digest.
*/
public override byte[] HashFinal()
{
byte[] pad;
int padLen;
ulong bitCount;
byte[] hash = new byte[64]; // HashSizeValue = 512
/* Compute padding: 80 00 00 ... 00 00 <bit count>
*/
padLen = 128 - (int)(_count & 0x7f);
if (padLen <= 16)
padLen += 128;
pad = new byte[padLen];
pad[0] = 0x80;
// Convert count to bit count
bitCount = _count * 8;
// If we ever have UInt128 for bitCount, then these need to be uncommented.
// Note that C# only looks at the low 6 bits of the shift value for ulongs,
// so >>0 and >>64 are equal!
//pad[padLen-16] = (byte) ((bitCount >> 120) & 0xff);
//pad[padLen-15] = (byte) ((bitCount >> 112) & 0xff);
//pad[padLen-14] = (byte) ((bitCount >> 104) & 0xff);
//pad[padLen-13] = (byte) ((bitCount >> 96) & 0xff);
//pad[padLen-12] = (byte) ((bitCount >> 88) & 0xff);
//pad[padLen-11] = (byte) ((bitCount >> 80) & 0xff);
//pad[padLen-10] = (byte) ((bitCount >> 72) & 0xff);
//pad[padLen-9] = (byte) ((bitCount >> 64) & 0xff);
pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff);
pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff);
pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff);
pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff);
pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff);
pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff);
pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff);
pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff);
/* Digest padding */
HashCore(pad, 0, pad.Length);
/* Store digest */
SHAUtils.QuadWordToBigEndian(hash, _stateSHA512, 8);
return hash;
}
private static readonly ulong[] _K = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
};
private static unsafe void SHATransform(ulong* expandedBuffer, ulong* state, byte* block)
{
ulong a, b, c, d, e, f, g, h;
ulong aa, bb, cc, dd, ee, ff, hh, gg;
ulong T1;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
// fill in the first 16 blocks of W.
SHAUtils.QuadWordFromBigEndian(expandedBuffer, 16, block);
SHA512Expand(expandedBuffer);
/* Apply the SHA512 compression function */
// We are trying to be smart here and avoid as many copies as we can
// The perf gain with this method over the straightforward modify and shift
// forward is >= 20%, so it's worth the pain
for (int j = 0; j < 80;)
{
T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j];
ee = d + T1;
aa = T1 + Sigma_0(a) + Maj(a, b, c);
j++;
T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j];
ff = c + T1;
bb = T1 + Sigma_0(aa) + Maj(aa, a, b);
j++;
T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j];
gg = b + T1;
cc = T1 + Sigma_0(bb) + Maj(bb, aa, a);
j++;
T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j];
hh = a + T1;
dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa);
j++;
T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j];
h = aa + T1;
d = T1 + Sigma_0(dd) + Maj(dd, cc, bb);
j++;
T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j];
g = bb + T1;
c = T1 + Sigma_0(d) + Maj(d, dd, cc);
j++;
T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j];
f = cc + T1;
b = T1 + Sigma_0(c) + Maj(c, d, dd);
j++;
T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j];
e = dd + T1;
a = T1 + Sigma_0(b) + Maj(b, c, d);
j++;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
private static ulong RotateRight(ulong x, int n)
{
return (((x) >> (n)) | ((x) << (64 - (n))));
}
private static ulong Ch(ulong x, ulong y, ulong z)
{
return ((x & y) ^ ((x ^ 0xffffffffffffffff) & z));
}
private static ulong Maj(ulong x, ulong y, ulong z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
private static ulong Sigma_0(ulong x)
{
return (RotateRight(x, 28) ^ RotateRight(x, 34) ^ RotateRight(x, 39));
}
private static ulong Sigma_1(ulong x)
{
return (RotateRight(x, 14) ^ RotateRight(x, 18) ^ RotateRight(x, 41));
}
private static ulong sigma_0(ulong x)
{
return (RotateRight(x, 1) ^ RotateRight(x, 8) ^ (x >> 7));
}
private static ulong sigma_1(ulong x)
{
return (RotateRight(x, 19) ^ RotateRight(x, 61) ^ (x >> 6));
}
/* This function creates W_16,...,W_79 according to the formula
W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16};
*/
private static unsafe void SHA512Expand(ulong* x)
{
for (int i = 16; i < 80; i++)
{
x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16];
}
}
}
// ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/utils.cs
private class SHAUtils
{
// digits == number of DWORDs
public static unsafe void DWORDFromBigEndian(uint* x, int digits, byte* block)
{
int i;
int j;
for (i = 0, j = 0; i < digits; i++, j += 4)
x[i] = (uint)((block[j] << 24) | (block[j + 1] << 16) | (block[j + 2] << 8) | block[j + 3]);
}
// encodes x (DWORD) into block (unsigned char), most significant byte first.
// digits == number of DWORDs
public static void DWORDToBigEndian(byte[] block, uint[] x, int digits)
{
int i;
int j;
for (i = 0, j = 0; i < digits; i++, j += 4)
{
block[j] = (byte)((x[i] >> 24) & 0xff);
block[j + 1] = (byte)((x[i] >> 16) & 0xff);
block[j + 2] = (byte)((x[i] >> 8) & 0xff);
block[j + 3] = (byte)(x[i] & 0xff);
}
}
// digits == number of QWORDs
public static unsafe void QuadWordFromBigEndian(ulong* x, int digits, byte* block)
{
int i;
int j;
for (i = 0, j = 0; i < digits; i++, j += 8)
x[i] = (
(((ulong)block[j]) << 56) | (((ulong)block[j + 1]) << 48) |
(((ulong)block[j + 2]) << 40) | (((ulong)block[j + 3]) << 32) |
(((ulong)block[j + 4]) << 24) | (((ulong)block[j + 5]) << 16) |
(((ulong)block[j + 6]) << 8) | ((ulong)block[j + 7])
);
}
// encodes x (DWORD) into block (unsigned char), most significant byte first.
// digits = number of QWORDS
public static void QuadWordToBigEndian(byte[] block, ulong[] x, int digits)
{
int i;
int j;
for (i = 0, j = 0; i < digits; i++, j += 8)
{
block[j] = (byte)((x[i] >> 56) & 0xff);
block[j + 1] = (byte)((x[i] >> 48) & 0xff);
block[j + 2] = (byte)((x[i] >> 40) & 0xff);
block[j + 3] = (byte)((x[i] >> 32) & 0xff);
block[j + 4] = (byte)((x[i] >> 24) & 0xff);
block[j + 5] = (byte)((x[i] >> 16) & 0xff);
block[j + 6] = (byte)((x[i] >> 8) & 0xff);
block[j + 7] = (byte)(x[i] & 0xff);
}
}
}
}
}