// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. using System; using System.IO; using System.Diagnostics; using System.Numerics; using System.Security.Cryptography; namespace Internal.Cryptography { internal sealed class SHAHashProvider : HashProvider { private int hashSizeInBytes; private SHAManagedImplementationBase impl; private MemoryStream buffer; public SHAHashProvider(string hashAlgorithmId) { switch (hashAlgorithmId) { case HashAlgorithmNames.SHA1: impl = new SHA1ManagedImplementation(); hashSizeInBytes = 20; break; case HashAlgorithmNames.SHA256: impl = new SHA256ManagedImplementation(); hashSizeInBytes = 32; break; case HashAlgorithmNames.SHA384: impl = new SHA384ManagedImplementation(); hashSizeInBytes = 48; break; case HashAlgorithmNames.SHA512: impl = new SHA512ManagedImplementation(); hashSizeInBytes = 64; break; default: throw new CryptographicException(SR.Format(SR.Cryptography_UnknownHashAlgorithm, hashAlgorithmId)); } } public override void AppendHashData(ReadOnlySpan data) { if (buffer == null) { buffer = new MemoryStream(1000); } buffer.Write(data); } public override int FinalizeHashAndReset(Span destination) { GetCurrentHash(destination); buffer = null; return hashSizeInBytes; } public override int GetCurrentHash(Span destination) { Debug.Assert(destination.Length >= hashSizeInBytes); impl.Initialize(); if (buffer != null) { impl.HashCore(buffer.GetBuffer(), 0, (int)buffer.Length); } impl.HashFinal().CopyTo(destination); return hashSizeInBytes; } public override int HashSizeInBytes => hashSizeInBytes; public override void Dispose(bool disposing) { } private abstract class SHAManagedImplementationBase { public abstract void Initialize(); public abstract void HashCore(byte[] partIn, int ibStart, int cbSize); public abstract byte[] HashFinal(); } // Ported from src/libraries/System.Private.CoreLib/src/System/Diagnostics/Tracing/EventSource.cs. // n.b. It's ok to use a "non-secret purposes" hashing implementation here, as this is only // used in wasm scenarios, and as of the current release we don't make any security guarantees // about our crypto primitives in wasm environments. private class SHA1ManagedImplementation : SHAManagedImplementationBase { private Sha1ForNonSecretPurposes _state; // mutable struct - don't make readonly public override void Initialize() { _state = default; _state.Start(); } public override void HashCore(byte[] partIn, int ibStart, int cbSize) { _state.Append(partIn.AsSpan(ibStart, cbSize)); } public override byte[] HashFinal() { byte[] output = new byte[20]; _state.Finish(output); return output; } /// /// Implements the SHA1 hashing algorithm. Note that this /// implementation is for hashing public information. Do not /// use this code to hash private data, as this implementation does /// not take any steps to avoid information disclosure. /// private struct Sha1ForNonSecretPurposes { private long length; // Total message length in bits private uint[] w; // Workspace private int pos; // Length of current chunk in bytes /// /// Call Start() to initialize the hash object. /// public void Start() { this.w ??= new uint[85]; this.length = 0; this.pos = 0; this.w[80] = 0x67452301; this.w[81] = 0xEFCDAB89; this.w[82] = 0x98BADCFE; this.w[83] = 0x10325476; this.w[84] = 0xC3D2E1F0; } /// /// Adds an input byte to the hash. /// /// Data to include in the hash. public void Append(byte input) { this.w[this.pos / 4] = (this.w[this.pos / 4] << 8) | input; if (64 == ++this.pos) { this.Drain(); } } /// /// Adds input bytes to the hash. /// /// /// Data to include in the hash. Must not be null. /// public void Append(ReadOnlySpan input) { foreach (byte b in input) { this.Append(b); } } /// /// Retrieves the hash value. /// Note that after calling this function, the hash object should /// be considered uninitialized. Subsequent calls to Append or /// Finish will produce useless results. Call Start() to /// reinitialize. /// /// /// Buffer to receive the hash value. Must not be null. /// Up to 20 bytes of hash will be written to the output buffer. /// If the buffer is smaller than 20 bytes, the remaining hash /// bytes will be lost. If the buffer is larger than 20 bytes, the /// rest of the buffer is left unmodified. /// public void Finish(byte[] output) { long l = this.length + 8 * this.pos; this.Append(0x80); while (this.pos != 56) { this.Append(0x00); } unchecked { this.Append((byte)(l >> 56)); this.Append((byte)(l >> 48)); this.Append((byte)(l >> 40)); this.Append((byte)(l >> 32)); this.Append((byte)(l >> 24)); this.Append((byte)(l >> 16)); this.Append((byte)(l >> 8)); this.Append((byte)l); int end = output.Length < 20 ? output.Length : 20; for (int i = 0; i != end; i++) { uint temp = this.w[80 + i / 4]; output[i] = (byte)(temp >> 24); this.w[80 + i / 4] = temp << 8; } } } /// /// Called when this.pos reaches 64. /// private void Drain() { for (int i = 16; i != 80; i++) { this.w[i] = BitOperations.RotateLeft(this.w[i - 3] ^ this.w[i - 8] ^ this.w[i - 14] ^ this.w[i - 16], 1); } unchecked { uint a = this.w[80]; uint b = this.w[81]; uint c = this.w[82]; uint d = this.w[83]; uint e = this.w[84]; for (int i = 0; i != 20; i++) { const uint k = 0x5A827999; uint f = (b & c) | ((~b) & d); uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp; } for (int i = 20; i != 40; i++) { uint f = b ^ c ^ d; const uint k = 0x6ED9EBA1; uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp; } for (int i = 40; i != 60; i++) { uint f = (b & c) | (b & d) | (c & d); const uint k = 0x8F1BBCDC; uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp; } for (int i = 60; i != 80; i++) { uint f = b ^ c ^ d; const uint k = 0xCA62C1D6; uint temp = BitOperations.RotateLeft(a, 5) + f + e + k + this.w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp; } this.w[80] += a; this.w[81] += b; this.w[82] += c; this.w[83] += d; this.w[84] += e; } this.length += 512; // 64 bytes == 512 bits this.pos = 0; } } } // ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha256managed.cs private class SHA256ManagedImplementation : SHAManagedImplementationBase { private byte[] _buffer; private long _count; // Number of bytes in the hashed message private uint[] _stateSHA256; private uint[] _W; public SHA256ManagedImplementation() { _stateSHA256 = new uint[8]; _buffer = new byte[64]; _W = new uint[64]; InitializeState(); } public override void Initialize() { InitializeState(); // Zeroize potentially sensitive information. Array.Clear(_buffer, 0, _buffer.Length); Array.Clear(_W, 0, _W.Length); } private void InitializeState() { _count = 0; _stateSHA256[0] = 0x6a09e667; _stateSHA256[1] = 0xbb67ae85; _stateSHA256[2] = 0x3c6ef372; _stateSHA256[3] = 0xa54ff53a; _stateSHA256[4] = 0x510e527f; _stateSHA256[5] = 0x9b05688c; _stateSHA256[6] = 0x1f83d9ab; _stateSHA256[7] = 0x5be0cd19; } /* SHA256 block update operation. Continues an SHA message-digest operation, processing another message block, and updating the context. */ public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize) { int bufferLen; int partInLen = cbSize; int partInBase = ibStart; /* Compute length of buffer */ bufferLen = (int)(_count & 0x3f); /* Update number of bytes */ _count += partInLen; fixed (uint* stateSHA256 = _stateSHA256) { fixed (byte* buffer = _buffer) { fixed (uint* expandedBuffer = _W) { if ((bufferLen > 0) && (bufferLen + partInLen >= 64)) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 64 - bufferLen); partInBase += (64 - bufferLen); partInLen -= (64 - bufferLen); SHATransform(expandedBuffer, stateSHA256, buffer); bufferLen = 0; } /* Copy input to temporary buffer and hash */ while (partInLen >= 64) { Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 64); partInBase += 64; partInLen -= 64; SHATransform(expandedBuffer, stateSHA256, buffer); } if (partInLen > 0) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen); } } } } } /* SHA256 finalization. Ends an SHA256 message-digest operation, writing the message digest. */ public override byte[] HashFinal() { byte[] pad; int padLen; long bitCount; byte[] hash = new byte[32]; // HashSizeValue = 256 /* Compute padding: 80 00 00 ... 00 00 */ padLen = 64 - (int)(_count & 0x3f); if (padLen <= 8) padLen += 64; pad = new byte[padLen]; pad[0] = 0x80; // Convert count to bit count bitCount = _count * 8; pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff); pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff); pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff); pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff); pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff); pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff); pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff); pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff); /* Digest padding */ HashCore(pad, 0, pad.Length); /* Store digest */ SHAUtils.DWORDToBigEndian(hash, _stateSHA256, 8); return hash; } private static readonly uint[] _K = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; private static unsafe void SHATransform(uint* expandedBuffer, uint* state, byte* block) { uint a, b, c, d, e, f, h, g; uint aa, bb, cc, dd, ee, ff, hh, gg; uint T1; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; // fill in the first 16 bytes of W. SHAUtils.DWORDFromBigEndian(expandedBuffer, 16, block); SHA256Expand(expandedBuffer); /* Apply the SHA256 compression function */ // We are trying to be smart here and avoid as many copies as we can // The perf gain with this method over the straightforward modify and shift // forward is >= 20%, so it's worth the pain for (int j = 0; j < 64;) { T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j]; ee = d + T1; aa = T1 + Sigma_0(a) + Maj(a, b, c); j++; T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j]; ff = c + T1; bb = T1 + Sigma_0(aa) + Maj(aa, a, b); j++; T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j]; gg = b + T1; cc = T1 + Sigma_0(bb) + Maj(bb, aa, a); j++; T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j]; hh = a + T1; dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa); j++; T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j]; h = aa + T1; d = T1 + Sigma_0(dd) + Maj(dd, cc, bb); j++; T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j]; g = bb + T1; c = T1 + Sigma_0(d) + Maj(d, dd, cc); j++; T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j]; f = cc + T1; b = T1 + Sigma_0(c) + Maj(c, d, dd); j++; T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j]; e = dd + T1; a = T1 + Sigma_0(b) + Maj(b, c, d); j++; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } private static uint RotateRight(uint x, int n) { return (((x) >> (n)) | ((x) << (32 - (n)))); } private static uint Ch(uint x, uint y, uint z) { return ((x & y) ^ ((x ^ 0xffffffff) & z)); } private static uint Maj(uint x, uint y, uint z) { return ((x & y) ^ (x & z) ^ (y & z)); } private static uint sigma_0(uint x) { return (RotateRight(x, 7) ^ RotateRight(x, 18) ^ (x >> 3)); } private static uint sigma_1(uint x) { return (RotateRight(x, 17) ^ RotateRight(x, 19) ^ (x >> 10)); } private static uint Sigma_0(uint x) { return (RotateRight(x, 2) ^ RotateRight(x, 13) ^ RotateRight(x, 22)); } private static uint Sigma_1(uint x) { return (RotateRight(x, 6) ^ RotateRight(x, 11) ^ RotateRight(x, 25)); } /* This function creates W_16,...,W_63 according to the formula W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16}; */ private static unsafe void SHA256Expand(uint* x) { for (int i = 16; i < 64; i++) { x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16]; } } } // ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha384managed.cs private class SHA384ManagedImplementation : SHAManagedImplementationBase { private byte[] _buffer; private ulong _count; // Number of bytes in the hashed message private ulong[] _stateSHA384; private ulong[] _W; public SHA384ManagedImplementation() { _stateSHA384 = new ulong[8]; _buffer = new byte[128]; _W = new ulong[80]; InitializeState(); } public override void Initialize() { InitializeState(); // Zeroize potentially sensitive information. Array.Clear(_buffer, 0, _buffer.Length); Array.Clear(_W, 0, _W.Length); } private void InitializeState() { _count = 0; _stateSHA384[0] = 0xcbbb9d5dc1059ed8; _stateSHA384[1] = 0x629a292a367cd507; _stateSHA384[2] = 0x9159015a3070dd17; _stateSHA384[3] = 0x152fecd8f70e5939; _stateSHA384[4] = 0x67332667ffc00b31; _stateSHA384[5] = 0x8eb44a8768581511; _stateSHA384[6] = 0xdb0c2e0d64f98fa7; _stateSHA384[7] = 0x47b5481dbefa4fa4; } /* SHA384 block update operation. Continues an SHA message-digest operation, processing another message block, and updating the context. */ public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize) { int bufferLen; int partInLen = cbSize; int partInBase = ibStart; /* Compute length of buffer */ bufferLen = (int)(_count & 0x7f); /* Update number of bytes */ _count += (ulong)partInLen; fixed (ulong* stateSHA384 = _stateSHA384) { fixed (byte* buffer = _buffer) { fixed (ulong* expandedBuffer = _W) { if ((bufferLen > 0) && (bufferLen + partInLen >= 128)) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 128 - bufferLen); partInBase += (128 - bufferLen); partInLen -= (128 - bufferLen); SHATransform(expandedBuffer, stateSHA384, buffer); bufferLen = 0; } /* Copy input to temporary buffer and hash */ while (partInLen >= 128) { Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 128); partInBase += 128; partInLen -= 128; SHATransform(expandedBuffer, stateSHA384, buffer); } if (partInLen > 0) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen); } } } } } /* SHA384 finalization. Ends an SHA384 message-digest operation, writing the message digest. */ public override byte[] HashFinal() { byte[] pad; int padLen; ulong bitCount; byte[] hash = new byte[48]; // HashSizeValue = 384 /* Compute padding: 80 00 00 ... 00 00 */ padLen = 128 - (int)(_count & 0x7f); if (padLen <= 16) padLen += 128; pad = new byte[padLen]; pad[0] = 0x80; // Convert count to bit count bitCount = _count * 8; // bitCount is at most 8 * 128 = 1024. Its representation as a 128-bit number has all bits set to zero // except eventually the 11 lower bits //pad[padLen-16] = (byte) ((bitCount >> 120) & 0xff); //pad[padLen-15] = (byte) ((bitCount >> 112) & 0xff); //pad[padLen-14] = (byte) ((bitCount >> 104) & 0xff); //pad[padLen-13] = (byte) ((bitCount >> 96) & 0xff); //pad[padLen-12] = (byte) ((bitCount >> 88) & 0xff); //pad[padLen-11] = (byte) ((bitCount >> 80) & 0xff); //pad[padLen-10] = (byte) ((bitCount >> 72) & 0xff); //pad[padLen-9] = (byte) ((bitCount >> 64) & 0xff); pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff); pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff); pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff); pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff); pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff); pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff); pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff); pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff); /* Digest padding */ HashCore(pad, 0, pad.Length); /* Store digest */ SHAUtils.QuadWordToBigEndian(hash, _stateSHA384, 6); return hash; } private static readonly ulong[] _K = { 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817, }; private static unsafe void SHATransform(ulong* expandedBuffer, ulong* state, byte* block) { ulong a, b, c, d, e, f, g, h; ulong aa, bb, cc, dd, ee, ff, hh, gg; ulong T1; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; // fill in the first 16 blocks of W. SHAUtils.QuadWordFromBigEndian(expandedBuffer, 16, block); SHA384Expand(expandedBuffer); /* Apply the SHA384 compression function */ // We are trying to be smart here and avoid as many copies as we can // The perf gain with this method over the straightforward modify and shift // forward is >= 20%, so it's worth the pain for (int j = 0; j < 80;) { T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j]; ee = d + T1; aa = T1 + Sigma_0(a) + Maj(a, b, c); j++; T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j]; ff = c + T1; bb = T1 + Sigma_0(aa) + Maj(aa, a, b); j++; T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j]; gg = b + T1; cc = T1 + Sigma_0(bb) + Maj(bb, aa, a); j++; T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j]; hh = a + T1; dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa); j++; T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j]; h = aa + T1; d = T1 + Sigma_0(dd) + Maj(dd, cc, bb); j++; T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j]; g = bb + T1; c = T1 + Sigma_0(d) + Maj(d, dd, cc); j++; T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j]; f = cc + T1; b = T1 + Sigma_0(c) + Maj(c, d, dd); j++; T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j]; e = dd + T1; a = T1 + Sigma_0(b) + Maj(b, c, d); j++; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } private static ulong RotateRight(ulong x, int n) { return (((x) >> (n)) | ((x) << (64 - (n)))); } private static ulong Ch(ulong x, ulong y, ulong z) { return ((x & y) ^ ((x ^ 0xffffffffffffffff) & z)); } private static ulong Maj(ulong x, ulong y, ulong z) { return ((x & y) ^ (x & z) ^ (y & z)); } private static ulong Sigma_0(ulong x) { return (RotateRight(x, 28) ^ RotateRight(x, 34) ^ RotateRight(x, 39)); } private static ulong Sigma_1(ulong x) { return (RotateRight(x, 14) ^ RotateRight(x, 18) ^ RotateRight(x, 41)); } private static ulong sigma_0(ulong x) { return (RotateRight(x, 1) ^ RotateRight(x, 8) ^ (x >> 7)); } private static ulong sigma_1(ulong x) { return (RotateRight(x, 19) ^ RotateRight(x, 61) ^ (x >> 6)); } /* This function creates W_16,...,W_79 according to the formula W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16}; */ private static unsafe void SHA384Expand(ulong* x) { for (int i = 16; i < 80; i++) { x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16]; } } } // ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/sha512managed.cs private class SHA512ManagedImplementation : SHAManagedImplementationBase { private byte[] _buffer; private ulong _count; // Number of bytes in the hashed message private ulong[] _stateSHA512; private ulong[] _W; public SHA512ManagedImplementation() { _stateSHA512 = new ulong[8]; _buffer = new byte[128]; _W = new ulong[80]; InitializeState(); } public override void Initialize() { InitializeState(); // Zeroize potentially sensitive information. Array.Clear(_buffer, 0, _buffer.Length); Array.Clear(_W, 0, _W.Length); } private void InitializeState() { _count = 0; _stateSHA512[0] = 0x6a09e667f3bcc908; _stateSHA512[1] = 0xbb67ae8584caa73b; _stateSHA512[2] = 0x3c6ef372fe94f82b; _stateSHA512[3] = 0xa54ff53a5f1d36f1; _stateSHA512[4] = 0x510e527fade682d1; _stateSHA512[5] = 0x9b05688c2b3e6c1f; _stateSHA512[6] = 0x1f83d9abfb41bd6b; _stateSHA512[7] = 0x5be0cd19137e2179; } /* SHA512 block update operation. Continues an SHA message-digest operation, processing another message block, and updating the context. */ public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize) { int bufferLen; int partInLen = cbSize; int partInBase = ibStart; /* Compute length of buffer */ bufferLen = (int)(_count & 0x7f); /* Update number of bytes */ _count += (ulong)partInLen; fixed (ulong* stateSHA512 = _stateSHA512) { fixed (byte* buffer = _buffer) { fixed (ulong* expandedBuffer = _W) { if ((bufferLen > 0) && (bufferLen + partInLen >= 128)) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 128 - bufferLen); partInBase += (128 - bufferLen); partInLen -= (128 - bufferLen); SHATransform(expandedBuffer, stateSHA512, buffer); bufferLen = 0; } /* Copy input to temporary buffer and hash */ while (partInLen >= 128) { Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 128); partInBase += 128; partInLen -= 128; SHATransform(expandedBuffer, stateSHA512, buffer); } if (partInLen > 0) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen); } } } } } /* SHA512 finalization. Ends an SHA512 message-digest operation, writing the message digest. */ public override byte[] HashFinal() { byte[] pad; int padLen; ulong bitCount; byte[] hash = new byte[64]; // HashSizeValue = 512 /* Compute padding: 80 00 00 ... 00 00 */ padLen = 128 - (int)(_count & 0x7f); if (padLen <= 16) padLen += 128; pad = new byte[padLen]; pad[0] = 0x80; // Convert count to bit count bitCount = _count * 8; // If we ever have UInt128 for bitCount, then these need to be uncommented. // Note that C# only looks at the low 6 bits of the shift value for ulongs, // so >>0 and >>64 are equal! //pad[padLen-16] = (byte) ((bitCount >> 120) & 0xff); //pad[padLen-15] = (byte) ((bitCount >> 112) & 0xff); //pad[padLen-14] = (byte) ((bitCount >> 104) & 0xff); //pad[padLen-13] = (byte) ((bitCount >> 96) & 0xff); //pad[padLen-12] = (byte) ((bitCount >> 88) & 0xff); //pad[padLen-11] = (byte) ((bitCount >> 80) & 0xff); //pad[padLen-10] = (byte) ((bitCount >> 72) & 0xff); //pad[padLen-9] = (byte) ((bitCount >> 64) & 0xff); pad[padLen - 8] = (byte)((bitCount >> 56) & 0xff); pad[padLen - 7] = (byte)((bitCount >> 48) & 0xff); pad[padLen - 6] = (byte)((bitCount >> 40) & 0xff); pad[padLen - 5] = (byte)((bitCount >> 32) & 0xff); pad[padLen - 4] = (byte)((bitCount >> 24) & 0xff); pad[padLen - 3] = (byte)((bitCount >> 16) & 0xff); pad[padLen - 2] = (byte)((bitCount >> 8) & 0xff); pad[padLen - 1] = (byte)((bitCount >> 0) & 0xff); /* Digest padding */ HashCore(pad, 0, pad.Length); /* Store digest */ SHAUtils.QuadWordToBigEndian(hash, _stateSHA512, 8); return hash; } private static readonly ulong[] _K = { 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817, }; private static unsafe void SHATransform(ulong* expandedBuffer, ulong* state, byte* block) { ulong a, b, c, d, e, f, g, h; ulong aa, bb, cc, dd, ee, ff, hh, gg; ulong T1; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; // fill in the first 16 blocks of W. SHAUtils.QuadWordFromBigEndian(expandedBuffer, 16, block); SHA512Expand(expandedBuffer); /* Apply the SHA512 compression function */ // We are trying to be smart here and avoid as many copies as we can // The perf gain with this method over the straightforward modify and shift // forward is >= 20%, so it's worth the pain for (int j = 0; j < 80;) { T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j]; ee = d + T1; aa = T1 + Sigma_0(a) + Maj(a, b, c); j++; T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j]; ff = c + T1; bb = T1 + Sigma_0(aa) + Maj(aa, a, b); j++; T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j]; gg = b + T1; cc = T1 + Sigma_0(bb) + Maj(bb, aa, a); j++; T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j]; hh = a + T1; dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa); j++; T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j]; h = aa + T1; d = T1 + Sigma_0(dd) + Maj(dd, cc, bb); j++; T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j]; g = bb + T1; c = T1 + Sigma_0(d) + Maj(d, dd, cc); j++; T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j]; f = cc + T1; b = T1 + Sigma_0(c) + Maj(c, d, dd); j++; T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j]; e = dd + T1; a = T1 + Sigma_0(b) + Maj(b, c, d); j++; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } private static ulong RotateRight(ulong x, int n) { return (((x) >> (n)) | ((x) << (64 - (n)))); } private static ulong Ch(ulong x, ulong y, ulong z) { return ((x & y) ^ ((x ^ 0xffffffffffffffff) & z)); } private static ulong Maj(ulong x, ulong y, ulong z) { return ((x & y) ^ (x & z) ^ (y & z)); } private static ulong Sigma_0(ulong x) { return (RotateRight(x, 28) ^ RotateRight(x, 34) ^ RotateRight(x, 39)); } private static ulong Sigma_1(ulong x) { return (RotateRight(x, 14) ^ RotateRight(x, 18) ^ RotateRight(x, 41)); } private static ulong sigma_0(ulong x) { return (RotateRight(x, 1) ^ RotateRight(x, 8) ^ (x >> 7)); } private static ulong sigma_1(ulong x) { return (RotateRight(x, 19) ^ RotateRight(x, 61) ^ (x >> 6)); } /* This function creates W_16,...,W_79 according to the formula W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16}; */ private static unsafe void SHA512Expand(ulong* x) { for (int i = 16; i < 80; i++) { x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16]; } } } // ported from https://github.com/microsoft/referencesource/blob/a48449cb48a9a693903668a71449ac719b76867c/mscorlib/system/security/cryptography/utils.cs private class SHAUtils { // digits == number of DWORDs public static unsafe void DWORDFromBigEndian(uint* x, int digits, byte* block) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 4) x[i] = (uint)((block[j] << 24) | (block[j + 1] << 16) | (block[j + 2] << 8) | block[j + 3]); } // encodes x (DWORD) into block (unsigned char), most significant byte first. // digits == number of DWORDs public static void DWORDToBigEndian(byte[] block, uint[] x, int digits) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 4) { block[j] = (byte)((x[i] >> 24) & 0xff); block[j + 1] = (byte)((x[i] >> 16) & 0xff); block[j + 2] = (byte)((x[i] >> 8) & 0xff); block[j + 3] = (byte)(x[i] & 0xff); } } // digits == number of QWORDs public static unsafe void QuadWordFromBigEndian(ulong* x, int digits, byte* block) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 8) x[i] = ( (((ulong)block[j]) << 56) | (((ulong)block[j + 1]) << 48) | (((ulong)block[j + 2]) << 40) | (((ulong)block[j + 3]) << 32) | (((ulong)block[j + 4]) << 24) | (((ulong)block[j + 5]) << 16) | (((ulong)block[j + 6]) << 8) | ((ulong)block[j + 7]) ); } // encodes x (DWORD) into block (unsigned char), most significant byte first. // digits = number of QWORDS public static void QuadWordToBigEndian(byte[] block, ulong[] x, int digits) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 8) { block[j] = (byte)((x[i] >> 56) & 0xff); block[j + 1] = (byte)((x[i] >> 48) & 0xff); block[j + 2] = (byte)((x[i] >> 40) & 0xff); block[j + 3] = (byte)((x[i] >> 32) & 0xff); block[j + 4] = (byte)((x[i] >> 24) & 0xff); block[j + 5] = (byte)((x[i] >> 16) & 0xff); block[j + 6] = (byte)((x[i] >> 8) & 0xff); block[j + 7] = (byte)(x[i] & 0xff); } } } } }