456 lines
15 KiB
Diff
456 lines
15 KiB
Diff
From 367e79caf76bda5fdb974420b72c6ddabdcd664e Mon Sep 17 00:00:00 2001
|
|
From: Ilya Leoshkevich <iii@linux.ibm.com>
|
|
Date: Thu, 19 Mar 2020 11:52:03 +0100
|
|
Subject: [PATCH] s390x: vectorize crc32
|
|
|
|
Use vector extensions when compiling for s390x and binutils knows
|
|
about them. At runtime, check whether kernel supports vector
|
|
extensions (it has to be not just the CPU, but also the kernel) and
|
|
choose between the regular and the vectorized implementations.
|
|
---
|
|
Makefile.in | 8 ++
|
|
configure | 16 +++
|
|
contrib/s390/crc32le-vx.S | 273 ++++++++++++++++++++++++++++++++++++++
|
|
crc32.c | 66 ++++++++-
|
|
4 files changed, 361 insertions(+), 2 deletions(-)
|
|
create mode 100644 contrib/s390/crc32le-vx.S
|
|
|
|
diff --git a/Makefile.in b/Makefile.in
|
|
index 6070dcc..23e8694 100644
|
|
--- a/Makefile.in
|
|
+++ b/Makefile.in
|
|
@@ -179,6 +179,9 @@ crc32_power8.o: $(SRCDIR)contrib/power8-crc/vec_crc32.c
|
|
crc32.o: $(SRCDIR)crc32.c
|
|
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)crc32.c
|
|
|
|
+crc32le-vx.o: $(SRCDIR)contrib/s390/crc32le-vx.S
|
|
+ $(CC) $(CFLAGS) -march=z13 $(ZINC) -c -o $@ $(SRCDIR)contrib/s390/crc32le-vx.S
|
|
+
|
|
deflate.o: $(SRCDIR)deflate.c
|
|
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)deflate.c
|
|
|
|
@@ -234,6 +237,11 @@ crc32.lo: $(SRCDIR)crc32.c
|
|
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/crc32.o $(SRCDIR)crc32.c
|
|
-@mv objs/crc32.o $@
|
|
|
|
+crc32le-vx.lo: $(SRCDIR)contrib/s390/crc32le-vx.S
|
|
+ -@mkdir objs 2>/dev/null || test -d objs
|
|
+ $(CC) $(SFLAGS) -march=z13 $(ZINC) -DPIC -c -o objs/crc32le-vx.o $(SRCDIR)contrib/s390/crc32le-vx.S
|
|
+ -@mv objs/crc32le-vx.o $@
|
|
+
|
|
deflate.lo: $(SRCDIR)deflate.c
|
|
-@mkdir objs 2>/dev/null || test -d objs
|
|
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/deflate.o $(SRCDIR)deflate.c
|
|
diff --git a/configure b/configure
|
|
index 70ed86b..e658039 100755
|
|
--- a/configure
|
|
+++ b/configure
|
|
@@ -923,6 +923,22 @@ EOF
|
|
fi
|
|
fi
|
|
|
|
+# check if we are compiling for s390 and binutils support vector extensions
|
|
+cat > $test.c <<EOF
|
|
+#ifndef __s390__
|
|
+#error
|
|
+#endif
|
|
+EOF
|
|
+if try $CC -c $CFLAGS -march=z13 $test.c; then
|
|
+ CFLAGS="$CFLAGS -DHAVE_S390X_VX"
|
|
+ SFLAGS="$SFLAGS -DHAVE_S390X_VX"
|
|
+ OBJC="$OBJC crc32le-vx.o"
|
|
+ PIC_OBJC="$PIC_OBJC crc32le-vx.lo"
|
|
+ echo "Checking for s390 vector extensions... Yes." | tee -a configure.log
|
|
+else
|
|
+ echo "Checking for s390 vector extensions... No." | tee -a configure.log
|
|
+fi
|
|
+
|
|
# show the results in the log
|
|
echo >> configure.log
|
|
echo ALL = $ALL >> configure.log
|
|
diff --git a/contrib/s390/crc32le-vx.S b/contrib/s390/crc32le-vx.S
|
|
new file mode 100644
|
|
index 0000000..029cfff
|
|
--- /dev/null
|
|
+++ b/contrib/s390/crc32le-vx.S
|
|
@@ -0,0 +1,273 @@
|
|
+/*
|
|
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
|
|
+ *
|
|
+ * Use the z/Architecture Vector Extension Facility to accelerate the
|
|
+ * computing of bitreflected CRC-32 checksums.
|
|
+ *
|
|
+ * This CRC-32 implementation algorithm is bitreflected and processes
|
|
+ * the least-significant bit first (Little-Endian).
|
|
+ *
|
|
+ * This code has been originally written by Hendrik Brueckner
|
|
+ * <brueckner@linux.vnet.ibm.com> and included in the Linux kernel:
|
|
+ *
|
|
+ * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/s390/crypto/crc32le-vx.S?h=v5.5
|
|
+ *
|
|
+ * Hendrik Brueckner has allowed reusing it under zlib license.
|
|
+ *
|
|
+ * The following adjustments were made:
|
|
+ *
|
|
+ * - Reformatted in order to match the zlib code style.
|
|
+ * - Changed the vector register numbers in order to avoid clobbering the call-saved %v8-%v16.
|
|
+ * - Fixed clang compatibility.
|
|
+ * - Added 31-bit compatibility.
|
|
+ */
|
|
+
|
|
+#ifndef __clang__
|
|
+.machinemode zarch
|
|
+#endif
|
|
+
|
|
+#define PART1 %v16
|
|
+#define PART2 %v17
|
|
+#define PART3 %v18
|
|
+#define PART4 %v19
|
|
+#define SHIFTS %v20
|
|
+
|
|
+/* Vector register range containing CRC-32 constants */
|
|
+#define CONST_PERM_LE2BE %v21
|
|
+#define CONST_R2R1 %v22
|
|
+#define CONST_R4R3 %v23
|
|
+#define CONST_R5 %v24
|
|
+#define CONST_RU_POLY %v25
|
|
+#define CONST_CRC_POLY %v26
|
|
+
|
|
+#if defined(__s390x__)
|
|
+#define AGHI aghi
|
|
+#define CGHI cghi
|
|
+#else
|
|
+#define AGHI ahi
|
|
+#define CGHI chi
|
|
+#endif
|
|
+
|
|
+.data
|
|
+.align 8
|
|
+
|
|
+/*
|
|
+ * The CRC-32 constant block contains reduction constants to fold and
|
|
+ * process particular chunks of the input data stream in parallel.
|
|
+ *
|
|
+ * For the CRC-32 variants, the constants are precomputed according to
|
|
+ * these definitions:
|
|
+ *
|
|
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
|
|
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
|
|
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
|
|
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
|
|
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
|
|
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
|
|
+ *
|
|
+ * The bitreflected Barret reduction constant, u', is defined as
|
|
+ * the bit reversal of floor(x**64 / P(x)).
|
|
+ *
|
|
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
|
|
+ * polynomial in the reversed (bitreflected) domain.
|
|
+ *
|
|
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
|
|
+ *
|
|
+ * P(x) = 0x04C11DB7
|
|
+ * P'(x) = 0xEDB88320
|
|
+ */
|
|
+
|
|
+.Lconstants_CRC_32_LE:
|
|
+ .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
|
|
+ .quad 0x1c6e41596, 0x154442bd4 # R2, R1
|
|
+ .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
|
|
+ .octa 0x163cd6124 # R5
|
|
+ .octa 0x1F7011641 # u'
|
|
+ .octa 0x1DB710641 # P'(x) << 1
|
|
+
|
|
+.text
|
|
+
|
|
+/*
|
|
+ * The CRC-32 functions use these calling conventions:
|
|
+ *
|
|
+ * Parameters:
|
|
+ *
|
|
+ * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
|
|
+ * %r3: Input buffer pointer, performance might be improved if the
|
|
+ * buffer is on a doubleword boundary.
|
|
+ * %r4: Length of the buffer, must be 64 bytes or greater.
|
|
+ *
|
|
+ * Register usage:
|
|
+ *
|
|
+ * %r5: CRC-32 constant pool base pointer.
|
|
+ * V0: Initial CRC value and intermediate constants and results.
|
|
+ * V1..V4: Data for CRC computation.
|
|
+ * V16..V19: Next data chunks that are fetched from the input buffer.
|
|
+ * V20: Constant for BE->LE conversion and shift operations
|
|
+ *
|
|
+ * V21..V26: CRC-32 constants.
|
|
+ */
|
|
+
|
|
+ .globl crc32_le_vgfm_16
|
|
+ .align 4, 0x07
|
|
+crc32_le_vgfm_16:
|
|
+ /* Load CRC-32 constants */
|
|
+ larl %r5,.Lconstants_CRC_32_LE
|
|
+ VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0(%r5)
|
|
+
|
|
+ /*
|
|
+ * Load the initial CRC value.
|
|
+ *
|
|
+ * The CRC value is loaded into the rightmost word of the
|
|
+ * vector register and is later XORed with the LSB portion
|
|
+ * of the loaded input data.
|
|
+ */
|
|
+ VZERO %v0 /* Clear V0 */
|
|
+ VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
|
|
+
|
|
+ /* Load a 64-byte data chunk and XOR with CRC */
|
|
+ VLM %v1,%v4,0(%r3) /* 64-bytes into V1..V4 */
|
|
+ VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
|
|
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
|
|
+ VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
|
|
+ VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
|
|
+
|
|
+ VX %v1,%v0,%v1 /* V1 ^= CRC */
|
|
+ AGHI %r3,64 /* BUF = BUF + 64 */
|
|
+ AGHI %r4,-64 /* LEN = LEN - 64 */
|
|
+
|
|
+ CGHI %r4,64
|
|
+ jl .Lless_than_64bytes
|
|
+
|
|
+.Lfold_64bytes_loop:
|
|
+ /* Load the next 64-byte data chunk into PART1 to PART4 */
|
|
+ VLM PART1,PART4,0(%r3)
|
|
+ VPERM PART1,PART1,PART1,CONST_PERM_LE2BE
|
|
+ VPERM PART2,PART2,PART2,CONST_PERM_LE2BE
|
|
+ VPERM PART3,PART3,PART3,CONST_PERM_LE2BE
|
|
+ VPERM PART4,PART4,PART4,CONST_PERM_LE2BE
|
|
+
|
|
+ /*
|
|
+ * Perform a GF(2) multiplication of the doublewords in V1 with
|
|
+ * the R1 and R2 reduction constants in V0. The intermediate result
|
|
+ * is then folded (accumulated) with the next data chunk in PART1 and
|
|
+ * stored in V1. Repeat this step for the register contents
|
|
+ * in V2, V3, and V4 respectively.
|
|
+ */
|
|
+ VGFMAG %v1,CONST_R2R1,%v1,PART1
|
|
+ VGFMAG %v2,CONST_R2R1,%v2,PART2
|
|
+ VGFMAG %v3,CONST_R2R1,%v3,PART3
|
|
+ VGFMAG %v4,CONST_R2R1,%v4,PART4
|
|
+
|
|
+ AGHI %r3,64 /* BUF = BUF + 64 */
|
|
+ AGHI %r4,-64 /* LEN = LEN - 64 */
|
|
+
|
|
+ CGHI %r4,64
|
|
+ jnl .Lfold_64bytes_loop
|
|
+
|
|
+.Lless_than_64bytes:
|
|
+ /*
|
|
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
|
|
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
|
|
+ * value remains.
|
|
+ */
|
|
+ VGFMAG %v1,CONST_R4R3,%v1,%v2
|
|
+ VGFMAG %v1,CONST_R4R3,%v1,%v3
|
|
+ VGFMAG %v1,CONST_R4R3,%v1,%v4
|
|
+
|
|
+ CGHI %r4,16
|
|
+ jl .Lfinal_fold
|
|
+
|
|
+.Lfold_16bytes_loop:
|
|
+
|
|
+ VL %v2,0(%r3) /* Load next data chunk */
|
|
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
|
|
+ VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
|
|
+
|
|
+ AGHI %r3,16
|
|
+ AGHI %r4,-16
|
|
+
|
|
+ CGHI %r4,16
|
|
+ jnl .Lfold_16bytes_loop
|
|
+
|
|
+.Lfinal_fold:
|
|
+ /*
|
|
+ * Set up a vector register for byte shifts. The shift value must
|
|
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
|
|
+ * Shift by 8 bytes: 0x40
|
|
+ * Shift by 4 bytes: 0x20
|
|
+ */
|
|
+ VLEIB SHIFTS,0x40,7
|
|
+
|
|
+ /*
|
|
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
|
|
+ * to move R4 into the rightmost doubleword and set the leftmost
|
|
+ * doubleword to 0x1.
|
|
+ */
|
|
+ VSRLB %v0,CONST_R4R3,SHIFTS
|
|
+ VLEIG %v0,1,0
|
|
+
|
|
+ /*
|
|
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
|
|
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
|
|
+ * multiplied by 0x1 and is then XORed with rightmost product.
|
|
+ * Implicitly, the intermediate leftmost product becomes padded
|
|
+ */
|
|
+ VGFMG %v1,%v0,%v1
|
|
+
|
|
+ /*
|
|
+ * Now do the final 32-bit fold by multiplying the rightmost word
|
|
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
|
|
+ *
|
|
+ * To achieve this by a single VGFMAG, right shift V1 by a word
|
|
+ * and store the result in V2 which is then accumulated. Use the
|
|
+ * vector unpack instruction to load the rightmost half of the
|
|
+ * doubleword into the rightmost doubleword element of V1; the other
|
|
+ * half is loaded in the leftmost doubleword.
|
|
+ * The vector register with CONST_R5 contains the R5 constant in the
|
|
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
|
|
+ * the leftmost product of V1.
|
|
+ */
|
|
+ VLEIB SHIFTS,0x20,7 /* Shift by words */
|
|
+ VSRLB %v2,%v1,SHIFTS /* Store remaining bits in V2 */
|
|
+ VUPLLF %v1,%v1 /* Split rightmost doubleword */
|
|
+ VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
|
|
+
|
|
+ /*
|
|
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
|
|
+ *
|
|
+ * The input values to the Barret reduction are the degree-63 polynomial
|
|
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
|
|
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
|
|
+ * P(x).
|
|
+ *
|
|
+ * The Barret reduction algorithm is defined as:
|
|
+ *
|
|
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
|
|
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
|
|
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
|
|
+ *
|
|
+ * Note: The leftmost doubleword of vector register containing
|
|
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
|
|
+ * is zero and does not contribute to the final result.
|
|
+ */
|
|
+
|
|
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
|
|
+ VUPLLF %v2,%v1
|
|
+ VGFMG %v2,CONST_RU_POLY,%v2
|
|
+
|
|
+ /*
|
|
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
|
|
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
|
|
+ * The final result is stored in word element 2 of V2.
|
|
+ */
|
|
+ VUPLLF %v2,%v2
|
|
+ VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
|
|
+
|
|
+.Ldone:
|
|
+ VLGVF %r2,%v2,2
|
|
+ BR %r14
|
|
+ .type crc32_le_vgfm_16, @function
|
|
+ .size crc32_le_vgfm_16, .-crc32_le_vgfm_16
|
|
+
|
|
+.previous
|
|
diff --git a/crc32.c b/crc32.c
|
|
index 34132ea..af5d3cd 100644
|
|
--- a/crc32.c
|
|
+++ b/crc32.c
|
|
@@ -252,12 +252,26 @@ unsigned long crc32_vpmsum(unsigned long, const unsigned char FAR *, z_size_t);
|
|
#endif
|
|
#endif
|
|
|
|
+#ifdef HAVE_S390X_VX
|
|
+#include <sys/auxv.h>
|
|
+
|
|
+local unsigned long crc32_s390_vx(unsigned long crc,
|
|
+ const unsigned char FAR *buf,
|
|
+ z_size_t len);
|
|
+#endif
|
|
+
|
|
/* due to a quirk of gnu_indirect_function - "local" (aka static) is applied to
|
|
* crc32_z which is not desired. crc32_z_ifunc is implictly "local" */
|
|
#ifndef Z_IFUNC_ASM
|
|
local
|
|
#endif
|
|
-unsigned long (*(crc32_z_ifunc(void)))(unsigned long, const unsigned char FAR *, z_size_t)
|
|
+unsigned long (*(crc32_z_ifunc(
|
|
+#ifdef __s390__
|
|
+unsigned long hwcap
|
|
+#else
|
|
+void
|
|
+#endif
|
|
+)))(unsigned long, const unsigned char FAR *, z_size_t)
|
|
{
|
|
#if _ARCH_PWR8==1
|
|
#if defined(__BUILTIN_CPU_SUPPORTS__)
|
|
@@ -269,6 +283,11 @@ unsigned long (*(crc32_z_ifunc(void)))(unsigned long, const unsigned char FAR *,
|
|
#endif
|
|
#endif /* _ARCH_PWR8 */
|
|
|
|
+#ifdef HAVE_S390X_VX
|
|
+ if (hwcap & HWCAP_S390_VX)
|
|
+ return crc32_s390_vx;
|
|
+#endif
|
|
+
|
|
/* return a function pointer for optimized arches here */
|
|
|
|
#ifdef DYNAMIC_CRC_TABLE
|
|
@@ -301,7 +320,11 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
|
|
static unsigned long ZEXPORT (*crc32_func)(unsigned long, const unsigned char FAR *, z_size_t) = NULL;
|
|
|
|
if (!crc32_func)
|
|
- crc32_func = crc32_z_ifunc();
|
|
+ crc32_func = crc32_z_ifunc(
|
|
+#ifdef __s390__
|
|
+ getauxval(AT_HWCAP)
|
|
+#endif
|
|
+ );
|
|
return (*crc32_func)(crc, buf, len);
|
|
}
|
|
|
|
@@ -500,6 +523,45 @@ local uLong crc32_combine_(crc1, crc2, len2)
|
|
return crc1;
|
|
}
|
|
|
|
+#ifdef HAVE_S390X_VX
|
|
+#define VX_MIN_LEN 64
|
|
+#define VX_ALIGNMENT 16L
|
|
+#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
|
|
+
|
|
+unsigned int crc32_le_vgfm_16(unsigned int crc,
|
|
+ unsigned char const *buf,
|
|
+ size_t size);
|
|
+
|
|
+local unsigned long crc32_s390_vx(crc, buf, len)
|
|
+ unsigned long crc;
|
|
+ const unsigned char FAR *buf;
|
|
+ z_size_t len;
|
|
+{
|
|
+ unsigned long prealign, aligned, remaining;
|
|
+
|
|
+ if (buf == Z_NULL) return 0UL;
|
|
+
|
|
+ if (len < VX_MIN_LEN + VX_ALIGN_MASK)
|
|
+ return crc32_big(crc, buf, len);
|
|
+
|
|
+ if ((unsigned long)buf & VX_ALIGN_MASK) {
|
|
+ prealign = VX_ALIGNMENT - ((unsigned long)buf & VX_ALIGN_MASK);
|
|
+ len -= prealign;
|
|
+ crc = crc32_big(crc, buf, prealign);
|
|
+ buf = (void *)((unsigned long)buf + prealign);
|
|
+ }
|
|
+ aligned = len & ~VX_ALIGN_MASK;
|
|
+ remaining = len & VX_ALIGN_MASK;
|
|
+
|
|
+ crc = crc32_le_vgfm_16(crc ^ 0xffffffff, buf, aligned) ^ 0xffffffff;
|
|
+
|
|
+ if (remaining)
|
|
+ crc = crc32_big(crc, buf + aligned, remaining);
|
|
+
|
|
+ return crc;
|
|
+}
|
|
+#endif
|
|
+
|
|
/* ========================================================================= */
|
|
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
|
uLong crc1;
|
|
--
|
|
2.25.1
|
|
|