394 lines
14 KiB
Diff
394 lines
14 KiB
Diff
|
From 2dfdc5b7d6943c0ac60eef63e361e2a50f9da610 Mon Sep 17 00:00:00 2001
|
||
|
From: Ilya Leoshkevich <iii@linux.ibm.com>
|
||
|
Date: Thu, 19 Mar 2020 11:52:03 +0100
|
||
|
Subject: [PATCH] s390x: vectorize crc32
|
||
|
|
||
|
Use vector extensions when compiling for s390x and binutils knows
|
||
|
about them. At runtime, check whether kernel supports vector
|
||
|
extensions (it has to be not just the CPU, but also the kernel) and
|
||
|
choose between the regular and the vectorized implementations.
|
||
|
---
|
||
|
Makefile.in | 9 ++
|
||
|
configure | 28 ++++++
|
||
|
contrib/s390/crc32-vx.c | 195 ++++++++++++++++++++++++++++++++++++++++
|
||
|
crc32.c | 55 +++++++++++-
|
||
|
4 files changed, 285 insertions(+), 2 deletions(-)
|
||
|
create mode 100644 contrib/s390/crc32-vx.c
|
||
|
|
||
|
diff --git a/Makefile.in b/Makefile.in
|
||
|
index 6070dcc..9e9743b 100644
|
||
|
--- a/Makefile.in
|
||
|
+++ b/Makefile.in
|
||
|
@@ -29,6 +29,7 @@ LDFLAGS=
|
||
|
TEST_LDFLAGS=-L. libz.a
|
||
|
LDSHARED=$(CC)
|
||
|
CPP=$(CC) -E
|
||
|
+VGFMAFLAG=
|
||
|
|
||
|
STATICLIB=libz.a
|
||
|
SHAREDLIB=libz.so
|
||
|
@@ -179,6 +180,9 @@ crc32_power8.o: $(SRCDIR)contrib/power8-crc/vec_crc32.c
|
||
|
crc32.o: $(SRCDIR)crc32.c
|
||
|
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)crc32.c
|
||
|
|
||
|
+crc32-vx.o: $(SRCDIR)contrib/s390/crc32-vx.c
|
||
|
+ $(CC) $(CFLAGS) $(VGFMAFLAG) $(ZINC) -c -o $@ $(SRCDIR)contrib/s390/crc32-vx.c
|
||
|
+
|
||
|
deflate.o: $(SRCDIR)deflate.c
|
||
|
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)deflate.c
|
||
|
|
||
|
@@ -234,6 +238,11 @@ crc32.lo: $(SRCDIR)crc32.c
|
||
|
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/crc32.o $(SRCDIR)crc32.c
|
||
|
-@mv objs/crc32.o $@
|
||
|
|
||
|
+crc32-vx.lo: $(SRCDIR)contrib/s390/crc32-vx.c
|
||
|
+ -@mkdir objs 2>/dev/null || test -d objs
|
||
|
+ $(CC) $(SFLAGS) $(VGFMAFLAG) $(ZINC) -DPIC -c -o objs/crc32-vx.o $(SRCDIR)contrib/s390/crc32-vx.c
|
||
|
+ -@mv objs/crc32-vx.o $@
|
||
|
+
|
||
|
deflate.lo: $(SRCDIR)deflate.c
|
||
|
-@mkdir objs 2>/dev/null || test -d objs
|
||
|
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/deflate.o $(SRCDIR)deflate.c
|
||
|
diff --git a/configure b/configure
|
||
|
index 70ed86b..7941f75 100755
|
||
|
--- a/configure
|
||
|
+++ b/configure
|
||
|
@@ -923,6 +923,32 @@ EOF
|
||
|
fi
|
||
|
fi
|
||
|
|
||
|
+# check if we are compiling for s390 and binutils support vector extensions
|
||
|
+VGFMAFLAG=-march=z13
|
||
|
+cat > $test.c <<EOF
|
||
|
+#ifndef __s390__
|
||
|
+#error
|
||
|
+#endif
|
||
|
+EOF
|
||
|
+if try $CC -c $CFLAGS $VGFMAFLAG $test.c; then
|
||
|
+ CFLAGS="$CFLAGS -DHAVE_S390X_VX"
|
||
|
+ SFLAGS="$SFLAGS -DHAVE_S390X_VX"
|
||
|
+ OBJC="$OBJC crc32-vx.o"
|
||
|
+ PIC_OBJC="$PIC_OBJC crc32-vx.lo"
|
||
|
+ echo "Checking for s390 vector extensions... Yes." | tee -a configure.log
|
||
|
+
|
||
|
+ for flag in -mzarch -fzvector; do
|
||
|
+ if try $CC -c $CFLAGS $VGFMAFLAG $flag $test.c; then
|
||
|
+ VGFMAFLAG="$VGFMAFLAG $flag"
|
||
|
+ echo "Checking for $flag... Yes." | tee -a configure.log
|
||
|
+ else
|
||
|
+ echo "Checking for $flag... No." | tee -a configure.log
|
||
|
+ fi
|
||
|
+ done
|
||
|
+else
|
||
|
+ echo "Checking for s390 vector extensions... No." | tee -a configure.log
|
||
|
+fi
|
||
|
+
|
||
|
# show the results in the log
|
||
|
echo >> configure.log
|
||
|
echo ALL = $ALL >> configure.log
|
||
|
@@ -955,6 +981,7 @@ echo mandir = $mandir >> configure.log
|
||
|
echo prefix = $prefix >> configure.log
|
||
|
echo sharedlibdir = $sharedlibdir >> configure.log
|
||
|
echo uname = $uname >> configure.log
|
||
|
+echo VGFMAFLAG = $VGFMAFLAG >> configure.log
|
||
|
|
||
|
# udpate Makefile with the configure results
|
||
|
sed < ${SRCDIR}Makefile.in "
|
||
|
@@ -964,6 +991,7 @@ sed < ${SRCDIR}Makefile.in "
|
||
|
/^LDFLAGS *=/s#=.*#=$LDFLAGS#
|
||
|
/^LDSHARED *=/s#=.*#=$LDSHARED#
|
||
|
/^CPP *=/s#=.*#=$CPP#
|
||
|
+/^VGFMAFLAG *=/s#=.*#=$VGFMAFLAG#
|
||
|
/^STATICLIB *=/s#=.*#=$STATICLIB#
|
||
|
/^SHAREDLIB *=/s#=.*#=$SHAREDLIB#
|
||
|
/^SHAREDLIBV *=/s#=.*#=$SHAREDLIBV#
|
||
|
diff --git a/contrib/s390/crc32-vx.c b/contrib/s390/crc32-vx.c
|
||
|
new file mode 100644
|
||
|
index 0000000..fa5387c
|
||
|
--- /dev/null
|
||
|
+++ b/contrib/s390/crc32-vx.c
|
||
|
@@ -0,0 +1,195 @@
|
||
|
+/*
|
||
|
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
|
||
|
+ *
|
||
|
+ * Use the z/Architecture Vector Extension Facility to accelerate the
|
||
|
+ * computing of bitreflected CRC-32 checksums.
|
||
|
+ *
|
||
|
+ * This CRC-32 implementation algorithm is bitreflected and processes
|
||
|
+ * the least-significant bit first (Little-Endian).
|
||
|
+ *
|
||
|
+ * This code was originally written by Hendrik Brueckner
|
||
|
+ * <brueckner@linux.vnet.ibm.com> for use in the Linux kernel and has been
|
||
|
+ * relicensed under the zlib license.
|
||
|
+ */
|
||
|
+
|
||
|
+#include "../../zutil.h"
|
||
|
+
|
||
|
+#include <stdint.h>
|
||
|
+#include <vecintrin.h>
|
||
|
+
|
||
|
+typedef unsigned char uv16qi __attribute__((vector_size(16)));
|
||
|
+typedef unsigned int uv4si __attribute__((vector_size(16)));
|
||
|
+typedef unsigned long long uv2di __attribute__((vector_size(16)));
|
||
|
+
|
||
|
+uint32_t crc32_le_vgfm_16(uint32_t crc, const unsigned char *buf, size_t len) {
|
||
|
+ /*
|
||
|
+ * The CRC-32 constant block contains reduction constants to fold and
|
||
|
+ * process particular chunks of the input data stream in parallel.
|
||
|
+ *
|
||
|
+ * For the CRC-32 variants, the constants are precomputed according to
|
||
|
+ * these definitions:
|
||
|
+ *
|
||
|
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
|
||
|
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
|
||
|
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
|
||
|
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
|
||
|
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
|
||
|
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
|
||
|
+ *
|
||
|
+ * The bitreflected Barret reduction constant, u', is defined as
|
||
|
+ * the bit reversal of floor(x**64 / P(x)).
|
||
|
+ *
|
||
|
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
|
||
|
+ * polynomial in the reversed (bitreflected) domain.
|
||
|
+ *
|
||
|
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
|
||
|
+ *
|
||
|
+ * P(x) = 0x04C11DB7
|
||
|
+ * P'(x) = 0xEDB88320
|
||
|
+ */
|
||
|
+ const uv16qi perm_le2be = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; /* BE->LE mask */
|
||
|
+ const uv2di r2r1 = {0x1C6E41596, 0x154442BD4}; /* R2, R1 */
|
||
|
+ const uv2di r4r3 = {0x0CCAA009E, 0x1751997D0}; /* R4, R3 */
|
||
|
+ const uv2di r5 = {0, 0x163CD6124}; /* R5 */
|
||
|
+ const uv2di ru_poly = {0, 0x1F7011641}; /* u' */
|
||
|
+ const uv2di crc_poly = {0, 0x1DB710641}; /* P'(x) << 1 */
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Load the initial CRC value.
|
||
|
+ *
|
||
|
+ * The CRC value is loaded into the rightmost word of the
|
||
|
+ * vector register and is later XORed with the LSB portion
|
||
|
+ * of the loaded input data.
|
||
|
+ */
|
||
|
+ uv2di v0 = {0, 0};
|
||
|
+ v0 = (uv2di)vec_insert(crc, (uv4si)v0, 3);
|
||
|
+
|
||
|
+ /* Load a 64-byte data chunk and XOR with CRC */
|
||
|
+ uv2di v1 = vec_perm(((uv2di *)buf)[0], ((uv2di *)buf)[0], perm_le2be);
|
||
|
+ uv2di v2 = vec_perm(((uv2di *)buf)[1], ((uv2di *)buf)[1], perm_le2be);
|
||
|
+ uv2di v3 = vec_perm(((uv2di *)buf)[2], ((uv2di *)buf)[2], perm_le2be);
|
||
|
+ uv2di v4 = vec_perm(((uv2di *)buf)[3], ((uv2di *)buf)[3], perm_le2be);
|
||
|
+
|
||
|
+ v1 ^= v0;
|
||
|
+ buf += 64;
|
||
|
+ len -= 64;
|
||
|
+
|
||
|
+ while (len >= 64) {
|
||
|
+ /* Load the next 64-byte data chunk */
|
||
|
+ uv16qi part1 = vec_perm(((uv16qi *)buf)[0], ((uv16qi *)buf)[0], perm_le2be);
|
||
|
+ uv16qi part2 = vec_perm(((uv16qi *)buf)[1], ((uv16qi *)buf)[1], perm_le2be);
|
||
|
+ uv16qi part3 = vec_perm(((uv16qi *)buf)[2], ((uv16qi *)buf)[2], perm_le2be);
|
||
|
+ uv16qi part4 = vec_perm(((uv16qi *)buf)[3], ((uv16qi *)buf)[3], perm_le2be);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Perform a GF(2) multiplication of the doublewords in V1 with
|
||
|
+ * the R1 and R2 reduction constants in V0. The intermediate result
|
||
|
+ * is then folded (accumulated) with the next data chunk in PART1 and
|
||
|
+ * stored in V1. Repeat this step for the register contents
|
||
|
+ * in V2, V3, and V4 respectively.
|
||
|
+ */
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r2r1, v1, part1);
|
||
|
+ v2 = (uv2di)vec_gfmsum_accum_128(r2r1, v2, part2);
|
||
|
+ v3 = (uv2di)vec_gfmsum_accum_128(r2r1, v3, part3);
|
||
|
+ v4 = (uv2di)vec_gfmsum_accum_128(r2r1, v4, part4);
|
||
|
+
|
||
|
+ buf += 64;
|
||
|
+ len -= 64;
|
||
|
+ }
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
|
||
|
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
|
||
|
+ * value remains.
|
||
|
+ */
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2);
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v3);
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v4);
|
||
|
+
|
||
|
+ while (len >= 16) {
|
||
|
+ /* Load next data chunk */
|
||
|
+ v2 = vec_perm(*(uv2di *)buf, *(uv2di *)buf, perm_le2be);
|
||
|
+
|
||
|
+ /* Fold next data chunk */
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2);
|
||
|
+
|
||
|
+ buf += 16;
|
||
|
+ len -= 16;
|
||
|
+ }
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Set up a vector register for byte shifts. The shift value must
|
||
|
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
|
||
|
+ * Shift by 8 bytes: 0x40
|
||
|
+ * Shift by 4 bytes: 0x20
|
||
|
+ */
|
||
|
+ uv16qi v9 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||
|
+ v9 = vec_insert((unsigned char)0x40, v9, 7);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
|
||
|
+ * to move R4 into the rightmost doubleword and set the leftmost
|
||
|
+ * doubleword to 0x1.
|
||
|
+ */
|
||
|
+ v0 = vec_srb(r4r3, (uv2di)v9);
|
||
|
+ v0[0] = 1;
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
|
||
|
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
|
||
|
+ * multiplied by 0x1 and is then XORed with rightmost product.
|
||
|
+ * Implicitly, the intermediate leftmost product becomes padded
|
||
|
+ */
|
||
|
+ v1 = (uv2di)vec_gfmsum_128(v0, v1);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Now do the final 32-bit fold by multiplying the rightmost word
|
||
|
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
|
||
|
+ *
|
||
|
+ * To achieve this by a single VGFMAG, right shift V1 by a word
|
||
|
+ * and store the result in V2 which is then accumulated. Use the
|
||
|
+ * vector unpack instruction to load the rightmost half of the
|
||
|
+ * doubleword into the rightmost doubleword element of V1; the other
|
||
|
+ * half is loaded in the leftmost doubleword.
|
||
|
+ * The vector register with CONST_R5 contains the R5 constant in the
|
||
|
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
|
||
|
+ * the leftmost product of V1.
|
||
|
+ */
|
||
|
+ v9 = vec_insert((unsigned char)0x20, v9, 7);
|
||
|
+ v2 = vec_srb(v1, (uv2di)v9);
|
||
|
+ v1 = vec_unpackl((uv4si)v1); /* Split rightmost doubleword */
|
||
|
+ v1 = (uv2di)vec_gfmsum_accum_128(r5, v1, (uv16qi)v2);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
|
||
|
+ *
|
||
|
+ * The input values to the Barret reduction are the degree-63 polynomial
|
||
|
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
|
||
|
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
|
||
|
+ * P(x).
|
||
|
+ *
|
||
|
+ * The Barret reduction algorithm is defined as:
|
||
|
+ *
|
||
|
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
|
||
|
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
|
||
|
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
|
||
|
+ *
|
||
|
+ * Note: The leftmost doubleword of vector register containing
|
||
|
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
|
||
|
+ * is zero and does not contribute to the final result.
|
||
|
+ */
|
||
|
+
|
||
|
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
|
||
|
+ v2 = vec_unpackl((uv4si)v1);
|
||
|
+ v2 = (uv2di)vec_gfmsum_128(ru_poly, v2);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
|
||
|
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
|
||
|
+ * The final result is stored in word element 2 of V2.
|
||
|
+ */
|
||
|
+ v2 = vec_unpackl((uv4si)v2);
|
||
|
+ v2 = (uv2di)vec_gfmsum_accum_128(crc_poly, v2, (uv16qi)v1);
|
||
|
+
|
||
|
+ return ((uv4si)v2)[2];
|
||
|
+}
|
||
|
diff --git a/crc32.c b/crc32.c
|
||
|
index 34132ea..dfa33ef 100644
|
||
|
--- a/crc32.c
|
||
|
+++ b/crc32.c
|
||
|
@@ -252,12 +252,54 @@ unsigned long crc32_vpmsum(unsigned long, const unsigned char FAR *, z_size_t);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
+#ifdef HAVE_S390X_VX
|
||
|
+#include <sys/auxv.h>
|
||
|
+
|
||
|
+#define VX_MIN_LEN 64
|
||
|
+#define VX_ALIGNMENT 16L
|
||
|
+#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
|
||
|
+
|
||
|
+unsigned int crc32_le_vgfm_16(unsigned int crc, const unsigned char FAR *buf, z_size_t len);
|
||
|
+
|
||
|
+local unsigned long s390_crc32_vx(unsigned long crc, const unsigned char FAR *buf, z_size_t len)
|
||
|
+{
|
||
|
+ uint64_t prealign, aligned, remaining;
|
||
|
+
|
||
|
+ if (buf == Z_NULL) return 0UL;
|
||
|
+
|
||
|
+ if (len < VX_MIN_LEN + VX_ALIGN_MASK)
|
||
|
+ return crc32_big(crc, buf, len);
|
||
|
+
|
||
|
+ if ((uintptr_t)buf & VX_ALIGN_MASK) {
|
||
|
+ prealign = VX_ALIGNMENT - ((uintptr_t)buf & VX_ALIGN_MASK);
|
||
|
+ len -= prealign;
|
||
|
+ crc = crc32_big(crc, buf, prealign);
|
||
|
+ buf += prealign;
|
||
|
+ }
|
||
|
+ aligned = len & ~VX_ALIGN_MASK;
|
||
|
+ remaining = len & VX_ALIGN_MASK;
|
||
|
+
|
||
|
+ crc = crc32_le_vgfm_16(crc ^ 0xffffffff, buf, (size_t)aligned) ^ 0xffffffff;
|
||
|
+
|
||
|
+ if (remaining)
|
||
|
+ crc = crc32_big(crc, buf + aligned, remaining);
|
||
|
+
|
||
|
+ return crc;
|
||
|
+}
|
||
|
+#endif
|
||
|
+
|
||
|
/* due to a quirk of gnu_indirect_function - "local" (aka static) is applied to
|
||
|
* crc32_z which is not desired. crc32_z_ifunc is implictly "local" */
|
||
|
#ifndef Z_IFUNC_ASM
|
||
|
local
|
||
|
#endif
|
||
|
-unsigned long (*(crc32_z_ifunc(void)))(unsigned long, const unsigned char FAR *, z_size_t)
|
||
|
+unsigned long (*(crc32_z_ifunc(
|
||
|
+#ifdef __s390__
|
||
|
+unsigned long hwcap
|
||
|
+#else
|
||
|
+void
|
||
|
+#endif
|
||
|
+)))(unsigned long, const unsigned char FAR *, z_size_t)
|
||
|
{
|
||
|
#if _ARCH_PWR8==1
|
||
|
#if defined(__BUILTIN_CPU_SUPPORTS__)
|
||
|
@@ -269,6 +311,11 @@ unsigned long (*(crc32_z_ifunc(void)))(unsigned long, const unsigned char FAR *,
|
||
|
#endif
|
||
|
#endif /* _ARCH_PWR8 */
|
||
|
|
||
|
+#ifdef HAVE_S390X_VX
|
||
|
+ if (hwcap & HWCAP_S390_VX)
|
||
|
+ return s390_crc32_vx;
|
||
|
+#endif
|
||
|
+
|
||
|
/* return a function pointer for optimized arches here */
|
||
|
|
||
|
#ifdef DYNAMIC_CRC_TABLE
|
||
|
@@ -301,7 +348,11 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||
|
static unsigned long ZEXPORT (*crc32_func)(unsigned long, const unsigned char FAR *, z_size_t) = NULL;
|
||
|
|
||
|
if (!crc32_func)
|
||
|
- crc32_func = crc32_z_ifunc();
|
||
|
+ crc32_func = crc32_z_ifunc(
|
||
|
+#ifdef __s390__
|
||
|
+ getauxval(AT_HWCAP)
|
||
|
+#endif
|
||
|
+ );
|
||
|
return (*crc32_func)(crc, buf, len);
|
||
|
}
|
||
|
|
||
|
--
|
||
|
2.25.1
|
||
|
|