valgrind/SOURCES/valgrind-3.14.0-memcheck-new-IROps.patch
2021-09-10 05:37:52 +00:00

454 lines
18 KiB
Diff

commit e221eca26be6b2396e3fcbf4117e630fc22e79f6
Author: Julian Seward <jseward@acm.org>
Date: Tue Nov 20 11:28:42 2018 +0100
Add Memcheck support for IROps added in 42719898.
memcheck/mc_translate.c:
Add mkRight{32,64} as right-travelling analogues to mkLeft{32,64}.
doCmpORD: for the cases of a signed comparison against zero, compute
definedness of the 3 result bits (lt,gt,eq) separately, and, for the lt and eq
bits, do it exactly accurately.
expensiveCountTrailingZeroes: no functional change. Re-analyse/verify and add
comments.
expensiveCountLeadingZeroes: add. Very similar to
expensiveCountTrailingZeroes.
Add some comments to mark unary ops which are self-shadowing.
Route Iop_Ctz{,Nat}{32,64} through expensiveCountTrailingZeroes.
Route Iop_Clz{,Nat}{32,64} through expensiveCountLeadingZeroes.
Add instrumentation for Iop_PopCount{32,64} and Iop_Reverse8sIn32_x1.
memcheck/tests/vbit-test/irops.c
Add dummy new entries for all new IROps, just enough to make it compile and
run.
diff --git a/memcheck/mc_translate.c b/memcheck/mc_translate.c
index 68a2ab3..c24db91 100644
--- a/memcheck/mc_translate.c
+++ b/memcheck/mc_translate.c
@@ -737,6 +737,34 @@ static IRAtom* mkLeft64 ( MCEnv* mce, IRAtom* a1 ) {
return assignNew('V', mce, Ity_I64, unop(Iop_Left64, a1));
}
+/* --------- The Right-family of operations. --------- */
+
+/* Unfortunately these are a lot more expensive then their Left
+ counterparts. Fortunately they are only very rarely used -- only for
+ count-leading-zeroes instrumentation. */
+
+static IRAtom* mkRight32 ( MCEnv* mce, IRAtom* a1 )
+{
+ for (Int i = 1; i <= 16; i *= 2) {
+ // a1 |= (a1 >>u i)
+ IRAtom* tmp
+ = assignNew('V', mce, Ity_I32, binop(Iop_Shr32, a1, mkU8(i)));
+ a1 = assignNew('V', mce, Ity_I32, binop(Iop_Or32, a1, tmp));
+ }
+ return a1;
+}
+
+static IRAtom* mkRight64 ( MCEnv* mce, IRAtom* a1 )
+{
+ for (Int i = 1; i <= 32; i *= 2) {
+ // a1 |= (a1 >>u i)
+ IRAtom* tmp
+ = assignNew('V', mce, Ity_I64, binop(Iop_Shr64, a1, mkU8(i)));
+ a1 = assignNew('V', mce, Ity_I64, binop(Iop_Or64, a1, tmp));
+ }
+ return a1;
+}
+
/* --------- 'Improvement' functions for AND/OR. --------- */
/* ImproveAND(data, vbits) = data OR vbits. Defined (0) data 0s give
@@ -1280,20 +1308,18 @@ static IRAtom* doCmpORD ( MCEnv* mce,
IRAtom* xxhash, IRAtom* yyhash,
IRAtom* xx, IRAtom* yy )
{
- Bool m64 = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U;
- Bool syned = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD32S;
- IROp opOR = m64 ? Iop_Or64 : Iop_Or32;
- IROp opAND = m64 ? Iop_And64 : Iop_And32;
- IROp opSHL = m64 ? Iop_Shl64 : Iop_Shl32;
- IROp opSHR = m64 ? Iop_Shr64 : Iop_Shr32;
- IRType ty = m64 ? Ity_I64 : Ity_I32;
- Int width = m64 ? 64 : 32;
+ Bool m64 = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U;
+ Bool syned = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD32S;
+ IROp opOR = m64 ? Iop_Or64 : Iop_Or32;
+ IROp opAND = m64 ? Iop_And64 : Iop_And32;
+ IROp opSHL = m64 ? Iop_Shl64 : Iop_Shl32;
+ IROp opSHR = m64 ? Iop_Shr64 : Iop_Shr32;
+ IROp op1UtoWS = m64 ? Iop_1Uto64 : Iop_1Uto32;
+ IRType ty = m64 ? Ity_I64 : Ity_I32;
+ Int width = m64 ? 64 : 32;
Bool (*isZero)(IRAtom*) = m64 ? isZeroU64 : isZeroU32;
- IRAtom* threeLeft1 = NULL;
- IRAtom* sevenLeft1 = NULL;
-
tl_assert(isShadowAtom(mce,xxhash));
tl_assert(isShadowAtom(mce,yyhash));
tl_assert(isOriginalAtom(mce,xx));
@@ -1312,30 +1338,55 @@ static IRAtom* doCmpORD ( MCEnv* mce,
/* fancy interpretation */
/* if yy is zero, then it must be fully defined (zero#). */
tl_assert(isZero(yyhash));
- threeLeft1 = m64 ? mkU64(3<<1) : mkU32(3<<1);
+ // This is still inaccurate, but I don't think it matters, since
+ // nobody writes code of the form
+ // "is <partially-undefined-value> signedly greater than zero?".
+ // We therefore simply declare "x >s 0" to be undefined if any bit in
+ // x is undefined. That's clearly suboptimal in some cases. Eg, if
+ // the highest order bit is a defined 1 then x is negative so it
+ // doesn't matter whether the remaining bits are defined or not.
+ IRAtom* t_0_gt_0_0
+ = assignNew(
+ 'V', mce,ty,
+ binop(
+ opAND,
+ mkPCastTo(mce,ty, xxhash),
+ m64 ? mkU64(1<<2) : mkU32(1<<2)
+ ));
+ // For "x <s 0", we can just copy the definedness of the top bit of x
+ // and we have a precise result.
+ IRAtom* t_lt_0_0_0
+ = assignNew(
+ 'V', mce,ty,
+ binop(
+ opSHL,
+ assignNew(
+ 'V', mce,ty,
+ binop(opSHR, xxhash, mkU8(width-1))),
+ mkU8(3)
+ ));
+ // For "x == 0" we can hand the problem off to expensiveCmpEQorNE.
+ IRAtom* t_0_0_eq_0
+ = assignNew(
+ 'V', mce,ty,
+ binop(
+ opSHL,
+ assignNew('V', mce,ty,
+ unop(
+ op1UtoWS,
+ expensiveCmpEQorNE(mce, ty, xxhash, yyhash, xx, yy))
+ ),
+ mkU8(1)
+ ));
return
binop(
opOR,
- assignNew(
- 'V', mce,ty,
- binop(
- opAND,
- mkPCastTo(mce,ty, xxhash),
- threeLeft1
- )),
- assignNew(
- 'V', mce,ty,
- binop(
- opSHL,
- assignNew(
- 'V', mce,ty,
- binop(opSHR, xxhash, mkU8(width-1))),
- mkU8(3)
- ))
- );
+ assignNew('V', mce,ty, binop(opOR, t_lt_0_0_0, t_0_gt_0_0)),
+ t_0_0_eq_0
+ );
} else {
/* standard interpretation */
- sevenLeft1 = m64 ? mkU64(7<<1) : mkU32(7<<1);
+ IRAtom* sevenLeft1 = m64 ? mkU64(7<<1) : mkU32(7<<1);
return
binop(
opAND,
@@ -2211,14 +2262,14 @@ IRAtom* expensiveCountTrailingZeroes ( MCEnv* mce, IROp czop,
tl_assert(sameKindedAtoms(atom,vatom));
switch (czop) {
- case Iop_Ctz32:
+ case Iop_Ctz32: case Iop_CtzNat32:
ty = Ity_I32;
xorOp = Iop_Xor32;
subOp = Iop_Sub32;
andOp = Iop_And32;
one = mkU32(1);
break;
- case Iop_Ctz64:
+ case Iop_Ctz64: case Iop_CtzNat64:
ty = Ity_I64;
xorOp = Iop_Xor64;
subOp = Iop_Sub64;
@@ -2232,8 +2283,30 @@ IRAtom* expensiveCountTrailingZeroes ( MCEnv* mce, IROp czop,
// improver = atom ^ (atom - 1)
//
- // That is, improver has its low ctz(atom) bits equal to one;
- // higher bits (if any) equal to zero.
+ // That is, improver has its low ctz(atom)+1 bits equal to one;
+ // higher bits (if any) equal to zero. So it's exactly the right
+ // mask to use to remove the irrelevant undefined input bits.
+ /* Here are some examples:
+ atom = U...U 1 0...0
+ atom-1 = U...U 0 1...1
+ ^ed = 0...0 1 11111, which correctly describes which bits of |atom|
+ actually influence the result
+ A boundary case
+ atom = 0...0
+ atom-1 = 1...1
+ ^ed = 11111, also a correct mask for the input: all input bits
+ are relevant
+ Another boundary case
+ atom = 1..1 1
+ atom-1 = 1..1 0
+ ^ed = 0..0 1, also a correct mask: only the rightmost input bit
+ is relevant
+ Now with misc U bits interspersed:
+ atom = U...U 1 0 U...U 0 1 0...0
+ atom-1 = U...U 1 0 U...U 0 0 1...1
+ ^ed = 0...0 0 0 0...0 0 1 1...1, also correct
+ (Per re-check/analysis of 14 Nov 2018)
+ */
improver = assignNew('V', mce,ty,
binop(xorOp,
atom,
@@ -2242,8 +2315,96 @@ IRAtom* expensiveCountTrailingZeroes ( MCEnv* mce, IROp czop,
// improved = vatom & improver
//
- // That is, treat any V bits above the first ctz(atom) bits as
- // "defined".
+ // That is, treat any V bits to the left of the rightmost ctz(atom)+1
+ // bits as "defined".
+ improved = assignNew('V', mce, ty,
+ binop(andOp, vatom, improver));
+
+ // Return pessimizing cast of improved.
+ return mkPCastTo(mce, ty, improved);
+}
+
+static
+IRAtom* expensiveCountLeadingZeroes ( MCEnv* mce, IROp czop,
+ IRAtom* atom, IRAtom* vatom )
+{
+ IRType ty;
+ IROp shrOp, notOp, andOp;
+ IRAtom* (*mkRight)(MCEnv*, IRAtom*);
+ IRAtom *improver, *improved;
+ tl_assert(isShadowAtom(mce,vatom));
+ tl_assert(isOriginalAtom(mce,atom));
+ tl_assert(sameKindedAtoms(atom,vatom));
+
+ switch (czop) {
+ case Iop_Clz32: case Iop_ClzNat32:
+ ty = Ity_I32;
+ shrOp = Iop_Shr32;
+ notOp = Iop_Not32;
+ andOp = Iop_And32;
+ mkRight = mkRight32;
+ break;
+ case Iop_Clz64: case Iop_ClzNat64:
+ ty = Ity_I64;
+ shrOp = Iop_Shr64;
+ notOp = Iop_Not64;
+ andOp = Iop_And64;
+ mkRight = mkRight64;
+ break;
+ default:
+ ppIROp(czop);
+ VG_(tool_panic)("memcheck:expensiveCountLeadingZeroes");
+ }
+
+ // This is in principle very similar to how expensiveCountTrailingZeroes
+ // works. That function computed an "improver", which it used to mask
+ // off all but the rightmost 1-bit and the zeroes to the right of it,
+ // hence removing irrelevant bits from the input. Here, we play the
+ // exact same game but with the left-vs-right roles interchanged.
+ // Unfortunately calculation of the improver in this case is
+ // significantly more expensive.
+ //
+ // improver = ~(RIGHT(atom) >>u 1)
+ //
+ // That is, improver has its upper clz(atom)+1 bits equal to one;
+ // lower bits (if any) equal to zero. So it's exactly the right
+ // mask to use to remove the irrelevant undefined input bits.
+ /* Here are some examples:
+ atom = 0...0 1 U...U
+ R(atom) = 0...0 1 1...1
+ R(atom) >>u 1 = 0...0 0 1...1
+ ~(R(atom) >>u 1) = 1...1 1 0...0
+ which correctly describes which bits of |atom|
+ actually influence the result
+ A boundary case
+ atom = 0...0
+ R(atom) = 0...0
+ R(atom) >>u 1 = 0...0
+ ~(R(atom) >>u 1) = 1...1
+ also a correct mask for the input: all input bits
+ are relevant
+ Another boundary case
+ atom = 1 1..1
+ R(atom) = 1 1..1
+ R(atom) >>u 1 = 0 1..1
+ ~(R(atom) >>u 1) = 1 0..0
+ also a correct mask: only the leftmost input bit
+ is relevant
+ Now with misc U bits interspersed:
+ atom = 0...0 1 U...U 0 1 U...U
+ R(atom) = 0...0 1 1...1 1 1 1...1
+ R(atom) >>u 1 = 0...0 0 1...1 1 1 1...1
+ ~(R(atom) >>u 1) = 1...1 1 0...0 0 0 0...0, also correct
+ (Per initial implementation of 15 Nov 2018)
+ */
+ improver = mkRight(mce, atom);
+ improver = assignNew('V', mce, ty, binop(shrOp, improver, mkU8(1)));
+ improver = assignNew('V', mce, ty, unop(notOp, improver));
+
+ // improved = vatom & improver
+ //
+ // That is, treat any V bits to the right of the leftmost clz(atom)+1
+ // bits as "defined".
improved = assignNew('V', mce, ty,
binop(andOp, vatom, improver));
@@ -4705,6 +4866,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_RecipEst32F0x4:
return unary32F0x4(mce, vatom);
+ // These are self-shadowing.
case Iop_32UtoV128:
case Iop_64UtoV128:
case Iop_Dup8x16:
@@ -4745,6 +4907,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_MulI128by10Carry:
case Iop_F16toF64x2:
case Iop_F64toF16x2:
+ // FIXME JRS 2018-Nov-15. This is surely not correct!
return vatom;
case Iop_I32StoF128: /* signed I32 -> F128 */
@@ -4770,7 +4933,6 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_RoundF64toF64_NegINF:
case Iop_RoundF64toF64_PosINF:
case Iop_RoundF64toF64_ZERO:
- case Iop_Clz64:
case Iop_D32toD64:
case Iop_I32StoD64:
case Iop_I32UtoD64:
@@ -4785,17 +4947,32 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_D64toD128:
return mkPCastTo(mce, Ity_I128, vatom);
- case Iop_Clz32:
case Iop_TruncF64asF32:
case Iop_NegF32:
case Iop_AbsF32:
case Iop_F16toF32:
return mkPCastTo(mce, Ity_I32, vatom);
- case Iop_Ctz32:
- case Iop_Ctz64:
+ case Iop_Ctz32: case Iop_CtzNat32:
+ case Iop_Ctz64: case Iop_CtzNat64:
return expensiveCountTrailingZeroes(mce, op, atom, vatom);
+ case Iop_Clz32: case Iop_ClzNat32:
+ case Iop_Clz64: case Iop_ClzNat64:
+ return expensiveCountLeadingZeroes(mce, op, atom, vatom);
+
+ // PopCount32: this is slightly pessimistic. It is true that the
+ // result depends on all input bits, so that aspect of the PCast is
+ // correct. However, regardless of the input, only the lowest 5 bits
+ // out of the output can ever be undefined. So we could actually
+ // "improve" the results here by marking the top 27 bits of output as
+ // defined. A similar comment applies for PopCount64.
+ case Iop_PopCount32:
+ return mkPCastTo(mce, Ity_I32, vatom);
+ case Iop_PopCount64:
+ return mkPCastTo(mce, Ity_I64, vatom);
+
+ // These are self-shadowing.
case Iop_1Uto64:
case Iop_1Sto64:
case Iop_8Uto64:
@@ -4821,6 +4998,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_V256to64_2: case Iop_V256to64_3:
return assignNew('V', mce, Ity_I64, unop(op, vatom));
+ // These are self-shadowing.
case Iop_64to32:
case Iop_64HIto32:
case Iop_1Uto32:
@@ -4830,8 +5008,10 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_16Sto32:
case Iop_8Sto32:
case Iop_V128to32:
+ case Iop_Reverse8sIn32_x1:
return assignNew('V', mce, Ity_I32, unop(op, vatom));
+ // These are self-shadowing.
case Iop_8Sto16:
case Iop_8Uto16:
case Iop_32to16:
@@ -4840,6 +5020,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_GetMSBs8x16:
return assignNew('V', mce, Ity_I16, unop(op, vatom));
+ // These are self-shadowing.
case Iop_1Uto8:
case Iop_1Sto8:
case Iop_16to8:
@@ -4868,6 +5049,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_Not16:
case Iop_Not8:
case Iop_Not1:
+ // FIXME JRS 2018-Nov-15. This is surely not correct!
return vatom;
case Iop_CmpNEZ8x8:
@@ -4929,6 +5111,7 @@ IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom )
case Iop_Ctz64x2:
return mkPCast64x2(mce, vatom);
+ // This is self-shadowing.
case Iop_PwBitMtxXpose64x2:
return assignNew('V', mce, Ity_V128, unop(op, vatom));
diff --git a/memcheck/tests/vbit-test/irops.c b/memcheck/tests/vbit-test/irops.c
index bfd82fc..e8bf67d 100644
--- a/memcheck/tests/vbit-test/irops.c
+++ b/memcheck/tests/vbit-test/irops.c
@@ -111,6 +111,12 @@ static irop_t irops[] = {
{ DEFOP(Iop_Clz32, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 1, .arm = 1, .ppc64 = 1, .ppc32 = 1, .mips32 =1, .mips64 = 1 },
{ DEFOP(Iop_Ctz64, UNDEF_ALL), .s390x = 0, .amd64 = 1, .x86 = 0, .arm = 0, .ppc64 = 0, .ppc32 = 0, .mips32 =0, .mips64 = 0 },
{ DEFOP(Iop_Ctz32, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 1, .arm = 0, .ppc64 = 0, .ppc32 = 0, .mips32 =0, .mips64 = 0 },
+ { DEFOP(Iop_ClzNat64, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 1, .ppc32 = 0, .mips32 =0, .mips64 = 0 }, // ppc32 asserts
+ { DEFOP(Iop_ClzNat32, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 1, .ppc32 = 1, .mips32 =0, .mips64 = 0 },
+ { DEFOP(Iop_CtzNat64, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 1, .ppc32 = 0, .mips32 =0, .mips64 = 0 },
+ { DEFOP(Iop_CtzNat32, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 0, .ppc32 = 1, .mips32 =0, .mips64 = 0 },
+ { DEFOP(Iop_PopCount64, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 1, .ppc32 = 0, .mips32 =0, .mips64 = 0 },
+ { DEFOP(Iop_PopCount32, UNDEF_ALL), .s390x = 0, .amd64 = 0, .x86 = 0, .arm = 0, .ppc64 = 1, .ppc32 = 1, .mips32 =0, .mips64 = 0 },
{ DEFOP(Iop_CmpLT32S, UNDEF_ALL), .s390x = 1, .amd64 = 1, .x86 = 1, .arm = 1, .ppc64 = 1, .ppc32 = 1, .mips32 =1, .mips64 = 1 },
{ DEFOP(Iop_CmpLT64S, UNDEF_ALL), .s390x = 1, .amd64 = 1, .x86 = 0, .arm = 0, .ppc64 = 0, .ppc32 = 0, .mips32 =0, .mips64 = 1 }, // ppc, mips assert
{ DEFOP(Iop_CmpLE32S, UNDEF_ALL), .s390x = 1, .amd64 = 1, .x86 = 1, .arm = 1, .ppc64 = 1, .ppc32 = 1, .mips32 =1, .mips64 = 1 },
@@ -336,6 +342,7 @@ static irop_t irops[] = {
{ DEFOP(Iop_Sad8Ux4, UNDEF_UNKNOWN), },
{ DEFOP(Iop_CmpNEZ16x2, UNDEF_UNKNOWN), },
{ DEFOP(Iop_CmpNEZ8x4, UNDEF_UNKNOWN), },
+ { DEFOP(Iop_Reverse8sIn32_x1, UNDEF_UNKNOWN) },
/* ------------------ 64-bit SIMD FP ------------------------ */
{ DEFOP(Iop_I32UtoFx2, UNDEF_UNKNOWN), },
{ DEFOP(Iop_I32StoFx2, UNDEF_UNKNOWN), },