userspace-rcu/tests/regression_tests/regression/rcutorture.h

613 lines
15 KiB
C

/*
* rcutorture.h: simple user-level performance/stress test of RCU.
*
* Usage:
* ./rcu <nreaders> rperf [ <cpustride> ]
* Run a read-side performance test with the specified
* number of readers spaced by <cpustride>.
* Thus "./rcu 16 rperf 2" would run 16 readers on even-numbered
* CPUs from 0 to 30.
* ./rcu <nupdaters> uperf [ <cpustride> ]
* Run an update-side performance test with the specified
* number of updaters and specified CPU spacing.
* ./rcu <nreaders> perf [ <cpustride> ]
* Run a combined read/update performance test with the specified
* number of readers and one updater and specified CPU spacing.
* The readers run on the low-numbered CPUs and the updater
* of the highest-numbered CPU.
*
* The above tests produce output as follows:
*
* n_reads: 46008000 n_updates: 146026 nreaders: 2 nupdaters: 1 duration: 1
* ns/read: 43.4707 ns/update: 6848.1
*
* The first line lists the total number of RCU reads and updates executed
* during the test, the number of reader threads, the number of updater
* threads, and the duration of the test in seconds. The second line
* lists the average duration of each type of operation in nanoseconds,
* or "nan" if the corresponding type of operation was not performed.
*
* ./rcu <nreaders> stress
* Run a stress test with the specified number of readers and
* one updater. None of the threads are affinitied to any
* particular CPU.
*
* This test produces output as follows:
*
* n_reads: 114633217 n_updates: 3903415 n_mberror: 0
* rcu_stress_count: 114618391 14826 0 0 0 0 0 0 0 0 0
*
* The first line lists the number of RCU read and update operations
* executed, followed by the number of memory-ordering violations
* (which will be zero in a correct RCU implementation). The second
* line lists the number of readers observing progressively more stale
* data. A correct RCU implementation will have all but the first two
* numbers non-zero.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright (c) 2008 Paul E. McKenney, IBM Corporation.
*/
/*
* Test variables.
*/
#include <stdlib.h>
#include "tap.h"
#define NR_TESTS 1
DEFINE_PER_THREAD(long long, n_reads_pt);
DEFINE_PER_THREAD(long long, n_updates_pt);
enum callrcu_type {
CALLRCU_GLOBAL,
CALLRCU_PERCPU,
CALLRCU_PERTHREAD,
};
static enum callrcu_type callrcu_type = CALLRCU_GLOBAL;
long long n_reads = 0LL;
long n_updates = 0L;
int nthreadsrunning;
char argsbuf[64];
#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2
volatile int goflag __attribute__((__aligned__(CAA_CACHE_LINE_SIZE)))
= GOFLAG_INIT;
#define RCU_READ_RUN 1000
//MD
#define RCU_READ_NESTABLE
#ifdef RCU_READ_NESTABLE
#define rcu_read_lock_nest() rcu_read_lock()
#define rcu_read_unlock_nest() rcu_read_unlock()
#else /* #ifdef RCU_READ_NESTABLE */
#define rcu_read_lock_nest()
#define rcu_read_unlock_nest()
#endif /* #else #ifdef RCU_READ_NESTABLE */
#ifdef TORTURE_QSBR
#define mark_rcu_quiescent_state rcu_quiescent_state
#define put_thread_offline rcu_thread_offline
#define put_thread_online rcu_thread_online
#endif
#ifndef mark_rcu_quiescent_state
#define mark_rcu_quiescent_state() do ; while (0)
#endif /* #ifdef mark_rcu_quiescent_state */
#ifndef put_thread_offline
#define put_thread_offline() do ; while (0)
#define put_thread_online() do ; while (0)
#define put_thread_online_delay() do ; while (0)
#else /* #ifndef put_thread_offline */
#define put_thread_online_delay() synchronize_rcu()
#endif /* #else #ifndef put_thread_offline */
/*
* Performance test.
*/
void *rcu_read_perf_test(void *arg)
{
int i;
int me = (long)arg;
long long n_reads_local = 0;
rcu_register_thread();
run_on(me);
uatomic_inc(&nthreadsrunning);
put_thread_offline();
while (goflag == GOFLAG_INIT)
(void) poll(NULL, 0, 1);
put_thread_online();
while (goflag == GOFLAG_RUN) {
for (i = 0; i < RCU_READ_RUN; i++) {
rcu_read_lock();
/* rcu_read_lock_nest(); */
/* rcu_read_unlock_nest(); */
rcu_read_unlock();
}
n_reads_local += RCU_READ_RUN;
mark_rcu_quiescent_state();
}
__get_thread_var(n_reads_pt) += n_reads_local;
put_thread_offline();
rcu_unregister_thread();
return (NULL);
}
void *rcu_update_perf_test(void *arg)
{
long long n_updates_local = 0;
if (callrcu_type == CALLRCU_PERTHREAD) {
struct call_rcu_data *crdp;
crdp = create_call_rcu_data(0, -1);
if (crdp != NULL) {
diag("Successfully using per-thread call_rcu() worker.");
set_thread_call_rcu_data(crdp);
}
}
uatomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT)
(void) poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
synchronize_rcu();
n_updates_local++;
}
__get_thread_var(n_updates_pt) += n_updates_local;
if (callrcu_type == CALLRCU_PERTHREAD) {
struct call_rcu_data *crdp;
crdp = get_thread_call_rcu_data();
set_thread_call_rcu_data(NULL);
call_rcu_data_free(crdp);
}
return NULL;
}
void perftestinit(void)
{
init_per_thread(n_reads_pt, 0LL);
init_per_thread(n_updates_pt, 0LL);
uatomic_set(&nthreadsrunning, 0);
}
int perftestrun(int nthreads, int nreaders, int nupdaters)
{
int t;
int duration = 1;
cmm_smp_mb();
while (uatomic_read(&nthreadsrunning) < nthreads)
(void) poll(NULL, 0, 1);
goflag = GOFLAG_RUN;
cmm_smp_mb();
sleep(duration);
cmm_smp_mb();
goflag = GOFLAG_STOP;
cmm_smp_mb();
wait_all_threads();
for_each_thread(t) {
n_reads += per_thread(n_reads_pt, t);
n_updates += per_thread(n_updates_pt, t);
}
diag("n_reads: %lld n_updates: %ld nreaders: %d nupdaters: %d duration: %d",
n_reads, n_updates, nreaders, nupdaters, duration);
diag("ns/read: %g ns/update: %g",
((duration * 1000*1000*1000.*(double)nreaders) /
(double)n_reads),
((duration * 1000*1000*1000.*(double)nupdaters) /
(double)n_updates));
if (get_cpu_call_rcu_data(0)) {
diag("Deallocating per-CPU call_rcu threads.\n");
free_all_cpu_call_rcu_data();
}
return 0;
}
int perftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_read_perf_test, (void *)arg);
}
arg = (long)(i * cpustride);
create_thread(rcu_update_perf_test, (void *)arg);
return perftestrun(i + 1, nreaders, 1);
}
int rperftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_read_perf_test, (void *)arg);
}
return perftestrun(i, nreaders, 0);
}
int uperftest(int nupdaters, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nupdaters; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_update_perf_test, (void *)arg);
}
return perftestrun(i, 0, nupdaters);
}
/*
* Stress test.
*/
#define RCU_STRESS_PIPE_LEN 10
struct rcu_stress {
int pipe_count;
int mbtest;
};
struct rcu_stress rcu_stress_array[RCU_STRESS_PIPE_LEN] = { { 0 } };
struct rcu_stress *rcu_stress_current;
int rcu_stress_idx = 0;
int n_mberror = 0;
DEFINE_PER_THREAD(long long [RCU_STRESS_PIPE_LEN + 1], rcu_stress_count);
int garbage = 0;
void *rcu_read_stress_test(void *arg)
{
int i;
int itercnt = 0;
struct rcu_stress *p;
int pc;
rcu_register_thread();
put_thread_offline();
while (goflag == GOFLAG_INIT)
(void) poll(NULL, 0, 1);
put_thread_online();
while (goflag == GOFLAG_RUN) {
rcu_read_lock();
p = rcu_dereference(rcu_stress_current);
if (p->mbtest == 0)
n_mberror++;
rcu_read_lock_nest();
for (i = 0; i < 100; i++)
garbage++;
rcu_read_unlock_nest();
pc = p->pipe_count;
rcu_read_unlock();
if ((pc > RCU_STRESS_PIPE_LEN) || (pc < 0))
pc = RCU_STRESS_PIPE_LEN;
__get_thread_var(rcu_stress_count)[pc]++;
__get_thread_var(n_reads_pt)++;
mark_rcu_quiescent_state();
if ((++itercnt % 0x1000) == 0) {
put_thread_offline();
put_thread_online_delay();
put_thread_online();
}
}
put_thread_offline();
rcu_unregister_thread();
return (NULL);
}
static pthread_mutex_t call_rcu_test_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t call_rcu_test_cond = PTHREAD_COND_INITIALIZER;
void rcu_update_stress_test_rcu(struct rcu_head *head)
{
int ret;
ret = pthread_mutex_lock(&call_rcu_test_mutex);
if (ret) {
errno = ret;
diag("pthread_mutex_lock: %s",
strerror(errno));
abort();
}
ret = pthread_cond_signal(&call_rcu_test_cond);
if (ret) {
errno = ret;
diag("pthread_cond_signal: %s",
strerror(errno));
abort();
}
ret = pthread_mutex_unlock(&call_rcu_test_mutex);
if (ret) {
errno = ret;
diag("pthread_mutex_unlock: %s",
strerror(errno));
abort();
}
}
void *rcu_update_stress_test(void *arg)
{
int i;
struct rcu_stress *p;
struct rcu_head rh;
while (goflag == GOFLAG_INIT)
(void) poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
i = rcu_stress_idx + 1;
if (i >= RCU_STRESS_PIPE_LEN)
i = 0;
p = &rcu_stress_array[i];
p->mbtest = 0;
cmm_smp_mb();
p->pipe_count = 0;
p->mbtest = 1;
rcu_assign_pointer(rcu_stress_current, p);
rcu_stress_idx = i;
for (i = 0; i < RCU_STRESS_PIPE_LEN; i++)
if (i != rcu_stress_idx)
rcu_stress_array[i].pipe_count++;
if (n_updates & 0x1)
synchronize_rcu();
else {
int ret;
ret = pthread_mutex_lock(&call_rcu_test_mutex);
if (ret) {
errno = ret;
diag("pthread_mutex_lock: %s",
strerror(errno));
abort();
}
rcu_register_thread();
call_rcu(&rh, rcu_update_stress_test_rcu);
rcu_unregister_thread();
/*
* Our MacOS X test machine with the following
* config:
* 15.6.0 Darwin Kernel Version 15.6.0
* root:xnu-3248.60.10~1/RELEASE_X86_64
* appears to have issues with liburcu-signal
* signal being delivered on top of
* pthread_cond_wait. It seems to make the
* thread continue, and therefore corrupt the
* rcu_head. Work around this issue by
* unregistering the RCU read-side thread
* immediately after call_rcu (call_rcu needs
* us to be registered RCU readers).
*/
ret = pthread_cond_wait(&call_rcu_test_cond,
&call_rcu_test_mutex);
if (ret) {
errno = ret;
diag("pthread_cond_signal: %s",
strerror(errno));
abort();
}
ret = pthread_mutex_unlock(&call_rcu_test_mutex);
if (ret) {
errno = ret;
diag("pthread_mutex_unlock: %s",
strerror(errno));
abort();
}
}
n_updates++;
}
return NULL;
}
void *rcu_fake_update_stress_test(void *arg)
{
if (callrcu_type == CALLRCU_PERTHREAD) {
struct call_rcu_data *crdp;
crdp = create_call_rcu_data(0, -1);
if (crdp != NULL) {
diag("Successfully using per-thread call_rcu() worker.");
set_thread_call_rcu_data(crdp);
}
}
while (goflag == GOFLAG_INIT)
(void) poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
synchronize_rcu();
(void) poll(NULL, 0, 1);
}
if (callrcu_type == CALLRCU_PERTHREAD) {
struct call_rcu_data *crdp;
crdp = get_thread_call_rcu_data();
set_thread_call_rcu_data(NULL);
call_rcu_data_free(crdp);
}
return NULL;
}
int stresstest(int nreaders)
{
int i;
int t;
long long *p;
long long sum;
init_per_thread(n_reads_pt, 0LL);
for_each_thread(t) {
p = &per_thread(rcu_stress_count,t)[0];
for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++)
p[i] = 0LL;
}
rcu_stress_current = &rcu_stress_array[0];
rcu_stress_current->pipe_count = 0;
rcu_stress_current->mbtest = 1;
for (i = 0; i < nreaders; i++)
create_thread(rcu_read_stress_test, NULL);
create_thread(rcu_update_stress_test, NULL);
for (i = 0; i < 5; i++)
create_thread(rcu_fake_update_stress_test, NULL);
cmm_smp_mb();
goflag = GOFLAG_RUN;
cmm_smp_mb();
sleep(10);
cmm_smp_mb();
goflag = GOFLAG_STOP;
cmm_smp_mb();
wait_all_threads();
for_each_thread(t)
n_reads += per_thread(n_reads_pt, t);
diag("n_reads: %lld n_updates: %ld n_mberror: %d",
n_reads, n_updates, n_mberror);
rdiag_start();
rdiag("rcu_stress_count:");
for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++) {
sum = 0LL;
for_each_thread(t) {
sum += per_thread(rcu_stress_count, t)[i];
}
rdiag(" %lld", sum);
}
rdiag_end();
if (get_cpu_call_rcu_data(0)) {
diag("Deallocating per-CPU call_rcu threads.");
free_all_cpu_call_rcu_data();
}
if (!n_mberror)
return 0;
else
return -1;
}
/*
* Mainprogram.
*/
void usage(int argc, char *argv[])
{
diag("Usage: %s nreaders [ perf | rperf | uperf | stress ] [ stride ] [ callrcu_global | callrcu_percpu | callrcu_perthread ]\n", argv[0]);
exit(-1);
}
int main(int argc, char *argv[])
{
int nreaders = 1;
int cpustride = 1;
plan_tests(NR_TESTS);
smp_init();
//rcu_init();
if (argc > 4) {
const char *callrcu_str = argv[4];;
if (strcmp(callrcu_str, "callrcu_global") == 0) {
callrcu_type = CALLRCU_GLOBAL;
} else if (strcmp(callrcu_str, "callrcu_percpu") == 0) {
callrcu_type = CALLRCU_PERCPU;
} else if (strcmp(callrcu_str, "callrcu_perthread") == 0) {
callrcu_type = CALLRCU_PERTHREAD;
} else {
usage(argc, argv);
goto end;
}
}
switch (callrcu_type) {
case CALLRCU_GLOBAL:
diag("Using global per-process call_rcu thread.");
break;
case CALLRCU_PERCPU:
diag("Using per-CPU call_rcu threads.");
if (create_all_cpu_call_rcu_data(0))
diag("create_all_cpu_call_rcu_data: %s",
strerror(errno));
break;
case CALLRCU_PERTHREAD:
diag("Using per-thread call_rcu() worker.");
break;
default:
abort();
}
#ifdef DEBUG_YIELD
yield_active |= YIELD_READ;
yield_active |= YIELD_WRITE;
#endif
if (argc > 1) {
if (strcmp(argv[1], "-h") == 0
|| strcmp(argv[1], "--help") == 0) {
usage(argc, argv);
goto end;
}
nreaders = strtoul(argv[1], NULL, 0);
if (argc == 2) {
ok(!perftest(nreaders, cpustride),
"perftest readers: %d, stride: %d",
nreaders, cpustride);
goto end;
}
if (argc > 3)
cpustride = strtoul(argv[3], NULL, 0);
if (strcmp(argv[2], "perf") == 0)
ok(!perftest(nreaders, cpustride),
"perftest readers: %d, stride: %d",
nreaders, cpustride);
else if (strcmp(argv[2], "rperf") == 0)
ok(!rperftest(nreaders, cpustride),
"rperftest readers: %d, stride: %d",
nreaders, cpustride);
else if (strcmp(argv[2], "uperf") == 0)
ok(!uperftest(nreaders, cpustride),
"uperftest readers: %d, stride: %d",
nreaders, cpustride);
else if (strcmp(argv[2], "stress") == 0)
ok(!stresstest(nreaders),
"stresstest readers: %d, stride: %d",
nreaders, cpustride);
else
usage(argc, argv);
} else {
usage(argc, argv);
}
end:
return exit_status();
}