qemu-kvm/kvm-Revert-target-i386-Clea...

289 lines
11 KiB
Diff
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From 4236a54d72270d871ff1ed3fd09a2971327077a1 Mon Sep 17 00:00:00 2001
From: Igor Mammedov <imammedo@redhat.com>
Date: Fri, 28 Aug 2020 16:23:48 -0400
Subject: [PATCH 06/11] Revert "target/i386: Cleanup and use the EPYC mode
topology functions"
RH-Author: Igor Mammedov <imammedo@redhat.com>
Message-id: <20200828162349.1616028-7-imammedo@redhat.com>
Patchwork-id: 98251
O-Subject: [RHEL-AV 8.3.0 qemu-kvm PATCH 6/7] Revert "target/i386: Cleanup and use the EPYC mode topology functions"
Bugzilla: 1873417
RH-Acked-by: Laszlo Ersek <lersek@redhat.com>
RH-Acked-by: Eduardo Habkost <ehabkost@redhat.com>
RH-Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1873417
Brew: http://brewweb.devel.redhat.com/brew/taskinfo?taskID=31005031
Branch: rhel-av-8.3.0
Upstream: RHEL only
Tested: locally
A regression was introduced since qemu-5.0, when EPYC specific
APIC ID encoding was introduced. Which leads to migration failing
with:
"
: Unknown savevm section or instance 'apic' 4. Make sure that your current VM setup matches your saved VM setup, including any hotplugged devices
: load of migration failed: Invalid argument
"
when EPYC cpu model and more than 1 numa node is used.
EPYC specific APIC ID encoding is considered as failed
experiment and upstream is preparing to revert it as well.
This reverts commit dd08ef0318e2b61d14bc069590d174913f7f437a.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Danilo C. L. de Paula <ddepaula@redhat.com>
---
target/i386/cpu.c | 161 ++++++++++++++++++++++++++++++++++++----------
1 file changed, 127 insertions(+), 34 deletions(-)
diff --git a/target/i386/cpu.c b/target/i386/cpu.c
index 5e3d086f05..73fc83e53f 100644
--- a/target/i386/cpu.c
+++ b/target/i386/cpu.c
@@ -338,15 +338,68 @@ static void encode_cache_cpuid80000006(CPUCacheInfo *l2,
}
}
+/*
+ * Definitions used for building CPUID Leaf 0x8000001D and 0x8000001E
+ * Please refer to the AMD64 Architecture Programmers Manual Volume 3.
+ * Define the constants to build the cpu topology. Right now, TOPOEXT
+ * feature is enabled only on EPYC. So, these constants are based on
+ * EPYC supported configurations. We may need to handle the cases if
+ * these values change in future.
+ */
+/* Maximum core complexes in a node */
+#define MAX_CCX 2
+/* Maximum cores in a core complex */
+#define MAX_CORES_IN_CCX 4
+/* Maximum cores in a node */
+#define MAX_CORES_IN_NODE 8
+/* Maximum nodes in a socket */
+#define MAX_NODES_PER_SOCKET 4
+
+/*
+ * Figure out the number of nodes required to build this config.
+ * Max cores in a node is 8
+ */
+static int nodes_in_socket(int nr_cores)
+{
+ int nodes;
+
+ nodes = DIV_ROUND_UP(nr_cores, MAX_CORES_IN_NODE);
+
+ /* Hardware does not support config with 3 nodes, return 4 in that case */
+ return (nodes == 3) ? 4 : nodes;
+}
+
+/*
+ * Decide the number of cores in a core complex with the given nr_cores using
+ * following set constants MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE and
+ * MAX_NODES_PER_SOCKET. Maintain symmetry as much as possible
+ * L3 cache is shared across all cores in a core complex. So, this will also
+ * tell us how many cores are sharing the L3 cache.
+ */
+static int cores_in_core_complex(int nr_cores)
+{
+ int nodes;
+
+ /* Check if we can fit all the cores in one core complex */
+ if (nr_cores <= MAX_CORES_IN_CCX) {
+ return nr_cores;
+ }
+ /* Get the number of nodes required to build this config */
+ nodes = nodes_in_socket(nr_cores);
+
+ /*
+ * Divide the cores accros all the core complexes
+ * Return rounded up value
+ */
+ return DIV_ROUND_UP(nr_cores, nodes * MAX_CCX);
+}
+
/* Encode cache info for CPUID[8000001D] */
-static void encode_cache_cpuid8000001d(CPUCacheInfo *cache,
- X86CPUTopoInfo *topo_info,
- uint32_t *eax, uint32_t *ebx,
- uint32_t *ecx, uint32_t *edx)
+static void encode_cache_cpuid8000001d(CPUCacheInfo *cache, CPUState *cs,
+ uint32_t *eax, uint32_t *ebx,
+ uint32_t *ecx, uint32_t *edx)
{
uint32_t l3_cores;
- unsigned nodes = MAX(topo_info->nodes_per_pkg, 1);
-
assert(cache->size == cache->line_size * cache->associativity *
cache->partitions * cache->sets);
@@ -355,13 +408,10 @@ static void encode_cache_cpuid8000001d(CPUCacheInfo *cache,
/* L3 is shared among multiple cores */
if (cache->level == 3) {
- l3_cores = DIV_ROUND_UP((topo_info->dies_per_pkg *
- topo_info->cores_per_die *
- topo_info->threads_per_core),
- nodes);
- *eax |= (l3_cores - 1) << 14;
+ l3_cores = cores_in_core_complex(cs->nr_cores);
+ *eax |= ((l3_cores * cs->nr_threads) - 1) << 14;
} else {
- *eax |= ((topo_info->threads_per_core - 1) << 14);
+ *eax |= ((cs->nr_threads - 1) << 14);
}
assert(cache->line_size > 0);
@@ -381,17 +431,55 @@ static void encode_cache_cpuid8000001d(CPUCacheInfo *cache,
(cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
}
+/* Data structure to hold the configuration info for a given core index */
+struct core_topology {
+ /* core complex id of the current core index */
+ int ccx_id;
+ /*
+ * Adjusted core index for this core in the topology
+ * This can be 0,1,2,3 with max 4 cores in a core complex
+ */
+ int core_id;
+ /* Node id for this core index */
+ int node_id;
+ /* Number of nodes in this config */
+ int num_nodes;
+};
+
+/*
+ * Build the configuration closely match the EPYC hardware. Using the EPYC
+ * hardware configuration values (MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE)
+ * right now. This could change in future.
+ * nr_cores : Total number of cores in the config
+ * core_id : Core index of the current CPU
+ * topo : Data structure to hold all the config info for this core index
+ */
+static void build_core_topology(int nr_cores, int core_id,
+ struct core_topology *topo)
+{
+ int nodes, cores_in_ccx;
+
+ /* First get the number of nodes required */
+ nodes = nodes_in_socket(nr_cores);
+
+ cores_in_ccx = cores_in_core_complex(nr_cores);
+
+ topo->node_id = core_id / (cores_in_ccx * MAX_CCX);
+ topo->ccx_id = (core_id % (cores_in_ccx * MAX_CCX)) / cores_in_ccx;
+ topo->core_id = core_id % cores_in_ccx;
+ topo->num_nodes = nodes;
+}
+
/* Encode cache info for CPUID[8000001E] */
-static void encode_topo_cpuid8000001e(X86CPUTopoInfo *topo_info, X86CPU *cpu,
+static void encode_topo_cpuid8000001e(CPUState *cs, X86CPU *cpu,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
- X86CPUTopoIDs topo_ids = {0};
- unsigned long nodes = MAX(topo_info->nodes_per_pkg, 1);
+ struct core_topology topo = {0};
+ unsigned long nodes;
int shift;
- x86_topo_ids_from_apicid_epyc(cpu->apic_id, topo_info, &topo_ids);
-
+ build_core_topology(cs->nr_cores, cpu->core_id, &topo);
*eax = cpu->apic_id;
/*
* CPUID_Fn8000001E_EBX
@@ -408,8 +496,12 @@ static void encode_topo_cpuid8000001e(X86CPUTopoInfo *topo_info, X86CPU *cpu,
* 3 Core complex id
* 1:0 Core id
*/
- *ebx = ((topo_info->threads_per_core - 1) << 8) | (topo_ids.node_id << 3) |
- (topo_ids.core_id);
+ if (cs->nr_threads - 1) {
+ *ebx = ((cs->nr_threads - 1) << 8) | (topo.node_id << 3) |
+ (topo.ccx_id << 2) | topo.core_id;
+ } else {
+ *ebx = (topo.node_id << 4) | (topo.ccx_id << 3) | topo.core_id;
+ }
/*
* CPUID_Fn8000001E_ECX
* 31:11 Reserved
@@ -418,8 +510,9 @@ static void encode_topo_cpuid8000001e(X86CPUTopoInfo *topo_info, X86CPU *cpu,
* 2 Socket id
* 1:0 Node id
*/
- if (nodes <= 4) {
- *ecx = ((nodes - 1) << 8) | (topo_ids.pkg_id << 2) | topo_ids.node_id;
+ if (topo.num_nodes <= 4) {
+ *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << 2) |
+ topo.node_id;
} else {
/*
* Node id fix up. Actual hardware supports up to 4 nodes. But with
@@ -434,10 +527,10 @@ static void encode_topo_cpuid8000001e(X86CPUTopoInfo *topo_info, X86CPU *cpu,
* number of nodes. find_last_bit returns last set bit(0 based). Left
* shift(+1) the socket id to represent all the nodes.
*/
- nodes -= 1;
+ nodes = topo.num_nodes - 1;
shift = find_last_bit(&nodes, 8);
- *ecx = (nodes << 8) | (topo_ids.pkg_id << (shift + 1)) |
- topo_ids.node_id;
+ *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << (shift + 1)) |
+ topo.node_id;
}
*edx = 0;
}
@@ -5473,7 +5566,6 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t signature[3];
X86CPUTopoInfo topo_info;
- topo_info.nodes_per_pkg = env->nr_nodes;
topo_info.dies_per_pkg = env->nr_dies;
topo_info.cores_per_die = cs->nr_cores;
topo_info.threads_per_core = cs->nr_threads;
@@ -5905,20 +5997,20 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
}
switch (count) {
case 0: /* L1 dcache info */
- encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache,
- &topo_info, eax, ebx, ecx, edx);
+ encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache, cs,
+ eax, ebx, ecx, edx);
break;
case 1: /* L1 icache info */
- encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache,
- &topo_info, eax, ebx, ecx, edx);
+ encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache, cs,
+ eax, ebx, ecx, edx);
break;
case 2: /* L2 cache info */
- encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache,
- &topo_info, eax, ebx, ecx, edx);
+ encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache, cs,
+ eax, ebx, ecx, edx);
break;
case 3: /* L3 cache info */
- encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache,
- &topo_info, eax, ebx, ecx, edx);
+ encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache, cs,
+ eax, ebx, ecx, edx);
break;
default: /* end of info */
*eax = *ebx = *ecx = *edx = 0;
@@ -5927,7 +6019,8 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
break;
case 0x8000001E:
assert(cpu->core_id <= 255);
- encode_topo_cpuid8000001e(&topo_info, cpu, eax, ebx, ecx, edx);
+ encode_topo_cpuid8000001e(cs, cpu,
+ eax, ebx, ecx, edx);
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
--
2.27.0