Fix for Python 3.10.0b1+
Fixes https://bugzilla.redhat.com/show_bug.cgi?id=1958052
This commit is contained in:
parent
837eabab5c
commit
bd487d7d25
126
ad2a73c18d.patch
Normal file
126
ad2a73c18d.patch
Normal file
@ -0,0 +1,126 @@
|
||||
From ad2a73c18dcff95d844c382c94ab7f73b5571cf3 Mon Sep 17 00:00:00 2001
|
||||
From: Sebastian Berg <sebastian@sipsolutions.net>
|
||||
Date: Tue, 4 May 2021 17:43:26 -0500
|
||||
Subject: [PATCH] MAINT: Adjust NumPy float hashing to Python's slightly
|
||||
changed hash
|
||||
|
||||
This is necessary, since we use the Python double hash and the
|
||||
semi-private function to calculate it in Python has a new signature
|
||||
to return the identity-hash when the value is NaN.
|
||||
|
||||
closes gh-18833, gh-18907
|
||||
---
|
||||
numpy/core/src/common/npy_pycompat.h | 16 ++++++++++
|
||||
numpy/core/src/multiarray/scalartypes.c.src | 13 ++++----
|
||||
numpy/core/tests/test_scalarmath.py | 34 +++++++++++++++++++++
|
||||
3 files changed, 57 insertions(+), 6 deletions(-)
|
||||
|
||||
diff --git a/numpy/core/src/common/npy_pycompat.h b/numpy/core/src/common/npy_pycompat.h
|
||||
index aa0b5c1224d3..9e94a971090a 100644
|
||||
--- a/numpy/core/src/common/npy_pycompat.h
|
||||
+++ b/numpy/core/src/common/npy_pycompat.h
|
||||
@@ -3,4 +3,20 @@
|
||||
|
||||
#include "numpy/npy_3kcompat.h"
|
||||
|
||||
+
|
||||
+/*
|
||||
+ * In Python 3.10a7 (or b1), python started using the identity for the hash
|
||||
+ * when a value is NaN. See https://bugs.python.org/issue43475
|
||||
+ */
|
||||
+#if PY_VERSION_HEX > 0x030a00a6
|
||||
+#define Npy_HashDouble _Py_HashDouble
|
||||
+#else
|
||||
+static NPY_INLINE Py_hash_t
|
||||
+Npy_HashDouble(PyObject *NPY_UNUSED(identity), double val)
|
||||
+{
|
||||
+ return _Py_HashDouble(val);
|
||||
+}
|
||||
+#endif
|
||||
+
|
||||
+
|
||||
#endif /* _NPY_COMPAT_H_ */
|
||||
diff --git a/numpy/core/src/multiarray/scalartypes.c.src b/numpy/core/src/multiarray/scalartypes.c.src
|
||||
index a001500b0a97..9930f7791d6e 100644
|
||||
--- a/numpy/core/src/multiarray/scalartypes.c.src
|
||||
+++ b/numpy/core/src/multiarray/scalartypes.c.src
|
||||
@@ -3172,7 +3172,7 @@ static npy_hash_t
|
||||
static npy_hash_t
|
||||
@lname@_arrtype_hash(PyObject *obj)
|
||||
{
|
||||
- return _Py_HashDouble((double) PyArrayScalar_VAL(obj, @name@));
|
||||
+ return Npy_HashDouble(obj, (double)PyArrayScalar_VAL(obj, @name@));
|
||||
}
|
||||
|
||||
/* borrowed from complex_hash */
|
||||
@@ -3180,14 +3180,14 @@ static npy_hash_t
|
||||
c@lname@_arrtype_hash(PyObject *obj)
|
||||
{
|
||||
npy_hash_t hashreal, hashimag, combined;
|
||||
- hashreal = _Py_HashDouble((double)
|
||||
- PyArrayScalar_VAL(obj, C@name@).real);
|
||||
+ hashreal = Npy_HashDouble(
|
||||
+ obj, (double)PyArrayScalar_VAL(obj, C@name@).real);
|
||||
|
||||
if (hashreal == -1) {
|
||||
return -1;
|
||||
}
|
||||
- hashimag = _Py_HashDouble((double)
|
||||
- PyArrayScalar_VAL(obj, C@name@).imag);
|
||||
+ hashimag = Npy_HashDouble(
|
||||
+ obj, (double)PyArrayScalar_VAL(obj, C@name@).imag);
|
||||
if (hashimag == -1) {
|
||||
return -1;
|
||||
}
|
||||
@@ -3202,7 +3202,8 @@ c@lname@_arrtype_hash(PyObject *obj)
|
||||
static npy_hash_t
|
||||
half_arrtype_hash(PyObject *obj)
|
||||
{
|
||||
- return _Py_HashDouble(npy_half_to_double(PyArrayScalar_VAL(obj, Half)));
|
||||
+ return Npy_HashDouble(
|
||||
+ obj, npy_half_to_double(PyArrayScalar_VAL(obj, Half)));
|
||||
}
|
||||
|
||||
static npy_hash_t
|
||||
diff --git a/numpy/core/tests/test_scalarmath.py b/numpy/core/tests/test_scalarmath.py
|
||||
index d91b4a39146d..09a734284a76 100644
|
||||
--- a/numpy/core/tests/test_scalarmath.py
|
||||
+++ b/numpy/core/tests/test_scalarmath.py
|
||||
@@ -707,3 +707,37 @@
|
||||
shift_arr = np.array([shift]*32, dtype=dt)
|
||||
res_arr = op(val_arr, shift_arr)
|
||||
assert_equal(res_arr, res_scl)
|
||||
+
|
||||
+
|
||||
+class TestHash:
|
||||
+ @pytest.mark.parametrize("type_code", np.typecodes['AllInteger'])
|
||||
+ def test_integer_hashes(self, type_code):
|
||||
+ scalar = np.dtype(type_code).type
|
||||
+ for i in range(128):
|
||||
+ assert hash(i) == hash(scalar(i))
|
||||
+
|
||||
+ @pytest.mark.parametrize("type_code", np.typecodes['AllFloat'])
|
||||
+ def test_float_and_complex_hashes(self, type_code):
|
||||
+ scalar = np.dtype(type_code).type
|
||||
+ for val in [np.pi, np.inf, 3, 6.]:
|
||||
+ numpy_val = scalar(val)
|
||||
+ # Cast back to Python, in case the NumPy scalar has less precision
|
||||
+ if numpy_val.dtype.kind == 'c':
|
||||
+ val = complex(numpy_val)
|
||||
+ else:
|
||||
+ val = float(numpy_val)
|
||||
+ assert val == numpy_val
|
||||
+ print(repr(numpy_val), repr(val))
|
||||
+ assert hash(val) == hash(numpy_val)
|
||||
+
|
||||
+ if hash(float(np.nan)) != hash(float(np.nan)):
|
||||
+ # If Python distinguises different NaNs we do so too (gh-18833)
|
||||
+ assert hash(scalar(np.nan)) != hash(scalar(np.nan))
|
||||
+
|
||||
+ @pytest.mark.parametrize("type_code", np.typecodes['Complex'])
|
||||
+ def test_complex_hashes(self, type_code):
|
||||
+ # Test some complex valued hashes specifically:
|
||||
+ scalar = np.dtype(type_code).type
|
||||
+ for val in [np.pi+1j, np.inf-3j, 3j, 6.+1j]:
|
||||
+ numpy_val = scalar(val)
|
||||
+ assert hash(complex(numpy_val)) == hash(numpy_val)
|
||||
@ -30,6 +30,11 @@ URL: http://www.numpy.org/
|
||||
Source0: https://github.com/%{name}/%{name}/releases/download/v%{version}/%{name}-%{version}.tar.gz
|
||||
Source1: https://numpy.org/doc/1.19/numpy-html.zip
|
||||
|
||||
# Adjust NumPy float hashing to Python's slightly changed hash (Python 3.10.0b1+)
|
||||
# Merged upstream, rebased slightly
|
||||
# https://github.com/numpy/numpy/commit/ad2a73c18d.patch
|
||||
Patch1: ad2a73c18d.patch
|
||||
|
||||
%description
|
||||
NumPy is a general-purpose array-processing package designed to
|
||||
efficiently manipulate large multi-dimensional arrays of arbitrary
|
||||
|
||||
Loading…
Reference in New Issue
Block a user