mingw-openssl/SOURCES/openssl-thread-test.c
2021-10-08 13:46:48 +00:00

401 lines
9.7 KiB
C

/* Test program to verify that RSA signing is thread-safe in OpenSSL. */
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/md5.h>
#include <openssl/ssl.h>
/* Just assume we want to do engine stuff if we're using 0.9.6b or
* higher. This assumption is only valid for versions bundled with RHL. */
#if OPENSSL_VERSION_NUMBER >= 0x0090602fL
#include <openssl/engine.h>
#define USE_ENGINE
#endif
#define MAX_THREAD_COUNT 10000
#define ITERATION_COUNT 10
#define MAIN_COUNT 100
/* OpenSSL requires us to provide thread ID and locking primitives. */
pthread_mutex_t *mutex_locks = NULL;
static unsigned long
thread_id_cb(void)
{
return (unsigned long) pthread_self();
}
static void
lock_cb(int mode, int n, const char *file, int line)
{
if (mode & CRYPTO_LOCK) {
pthread_mutex_lock(&mutex_locks[n]);
} else {
pthread_mutex_unlock(&mutex_locks[n]);
}
}
struct thread_args {
RSA *rsa;
int digest_type;
unsigned char *digest;
unsigned int digest_len;
unsigned char *signature;
unsigned int signature_len;
pthread_t main_thread;
};
static int print = 0;
pthread_mutex_t sign_lock = PTHREAD_MUTEX_INITIALIZER;
static int locked_sign = 0;
static void SIGN_LOCK() {if (locked_sign) pthread_mutex_lock(&sign_lock);}
static void SIGN_UNLOCK() {if (locked_sign) pthread_mutex_unlock(&sign_lock);}
pthread_mutex_t verify_lock = PTHREAD_MUTEX_INITIALIZER;
static int locked_verify = 0;
static void VERIFY_LOCK() {if (locked_verify) pthread_mutex_lock(&verify_lock);}
static void VERIFY_UNLOCK() {if (locked_verify) pthread_mutex_unlock(&verify_lock);}
pthread_mutex_t failure_count_lock = PTHREAD_MUTEX_INITIALIZER;
long failure_count = 0;
static void
failure()
{
pthread_mutex_lock(&failure_count_lock);
failure_count++;
pthread_mutex_unlock(&failure_count_lock);
}
static void *
thread_main(void *argp)
{
struct thread_args *args = argp;
unsigned char *signature;
unsigned int signature_len, signature_alloc_len;
int ret, i;
signature_alloc_len = args->signature_len;
if (RSA_size(args->rsa) > signature_alloc_len) {
signature_alloc_len = RSA_size(args->rsa);
}
signature = malloc(signature_alloc_len);
if (signature == NULL) {
fprintf(stderr, "Skipping checks in thread %lu -- %s.\n",
(unsigned long) pthread_self(), strerror(errno));
pthread_exit(0);
return NULL;
}
for (i = 0; i < ITERATION_COUNT; i++) {
signature_len = signature_alloc_len;
SIGN_LOCK();
ret = RSA_check_key(args->rsa);
ERR_print_errors_fp(stdout);
if (ret != 1) {
failure();
break;
}
ret = RSA_sign(args->digest_type,
args->digest,
args->digest_len,
signature, &signature_len,
args->rsa);
SIGN_UNLOCK();
ERR_print_errors_fp(stdout);
if (ret != 1) {
failure();
break;
}
VERIFY_LOCK();
ret = RSA_verify(args->digest_type,
args->digest,
args->digest_len,
signature, signature_len,
args->rsa);
VERIFY_UNLOCK();
if (ret != 1) {
fprintf(stderr,
"Signature from thread %lu(%d) fails "
"verification (passed in thread #%lu)!\n",
(long) pthread_self(), i,
(long) args->main_thread);
ERR_print_errors_fp(stdout);
failure();
continue;
}
if (print) {
fprintf(stderr, ">%d\n", i);
}
}
free(signature);
pthread_exit(0);
return NULL;
}
unsigned char *
xmemdup(unsigned char *s, size_t len)
{
unsigned char *r;
r = malloc(len);
if (r == NULL) {
fprintf(stderr, "Out of memory.\n");
ERR_print_errors_fp(stdout);
assert(r != NULL);
}
memcpy(r, s, len);
return r;
}
int
main(int argc, char **argv)
{
RSA *rsa;
MD5_CTX md5;
int fd, i;
pthread_t threads[MAX_THREAD_COUNT];
int thread_count = 1000;
unsigned char *message, *digest;
unsigned int message_len, digest_len;
unsigned char *correct_signature;
unsigned int correct_siglen, ret;
struct thread_args master_args, *args;
int sync = 0, seed = 0;
int again = 1;
#ifdef USE_ENGINE
char *engine = NULL;
ENGINE *e = NULL;
#endif
pthread_mutex_init(&failure_count_lock, NULL);
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "--seed") == 0) {
printf("Seeding PRNG.\n");
seed++;
} else
if (strcmp(argv[i], "--sync") == 0) {
printf("Running synchronized.\n");
sync++;
} else
if ((strcmp(argv[i], "--threads") == 0) && (i < argc - 1)) {
i++;
thread_count = atol(argv[i]);
if (thread_count > MAX_THREAD_COUNT) {
thread_count = MAX_THREAD_COUNT;
}
printf("Starting %d threads.\n", thread_count);
sync++;
} else
if (strcmp(argv[i], "--sign") == 0) {
printf("Locking signing.\n");
locked_sign++;
} else
if (strcmp(argv[i], "--verify") == 0) {
printf("Locking verifies.\n");
locked_verify++;
} else
if (strcmp(argv[i], "--print") == 0) {
printf("Tracing.\n");
print++;
#ifdef USE_ENGINE
} else
if ((strcmp(argv[i], "--engine") == 0) && (i < argc - 1)) {
printf("Using engine \"%s\".\n", argv[i + 1]);
engine = argv[i + 1];
i++;
#endif
} else {
printf("Bad argument: %s\n", argv[i]);
return 1;
}
}
/* Get some random data to sign. */
fd = open("/dev/urandom", O_RDONLY);
if (fd == -1) {
fprintf(stderr, "Error opening /dev/urandom: %s\n",
strerror(errno));
}
if (print) {
fprintf(stderr, "Reading random data.\n");
}
message = malloc(message_len = 9371);
read(fd, message, message_len);
close(fd);
/* Initialize the SSL library and set up thread-safe locking. */
ERR_load_crypto_strings();
SSL_library_init();
mutex_locks = malloc(sizeof(pthread_mutex_t) * CRYPTO_num_locks());
for (i = 0; i < CRYPTO_num_locks(); i++) {
pthread_mutex_init(&mutex_locks[i], NULL);
}
CRYPTO_set_id_callback(thread_id_cb);
CRYPTO_set_locking_callback(lock_cb);
ERR_print_errors_fp(stdout);
/* Seed the PRNG if we were asked to do so. */
if (seed) {
if (print) {
fprintf(stderr, "Seeding PRNG.\n");
}
RAND_add(message, message_len, message_len);
ERR_print_errors_fp(stdout);
}
/* Turn on a hardware crypto device if asked to do so. */
#ifdef USE_ENGINE
if (engine) {
#if OPENSSL_VERSION_NUMBER >= 0x0090700fL
ENGINE_load_builtin_engines();
#endif
if (print) {
fprintf(stderr, "Initializing \"%s\" engine.\n",
engine);
}
e = ENGINE_by_id(engine);
ERR_print_errors_fp(stdout);
if (e) {
i = ENGINE_init(e);
ERR_print_errors_fp(stdout);
i = ENGINE_set_default_RSA(e);
ERR_print_errors_fp(stdout);
}
}
#endif
/* Compute the digest for the signature. */
if (print) {
fprintf(stderr, "Computing digest.\n");
}
digest = malloc(digest_len = MD5_DIGEST_LENGTH);
MD5_Init(&md5);
MD5_Update(&md5, message, message_len);
MD5_Final(digest, &md5);
/* Generate a signing key. */
if (print) {
fprintf(stderr, "Generating key.\n");
}
rsa = RSA_generate_key(4096, 3, NULL, NULL);
ERR_print_errors_fp(stdout);
if (rsa == NULL) {
_exit(1);
}
/* Sign the data. */
correct_siglen = RSA_size(rsa);
correct_signature = malloc(correct_siglen);
for (i = 0; i < MAIN_COUNT; i++) {
if (print) {
fprintf(stderr, "Signing data (%d).\n", i);
}
ret = RSA_check_key(rsa);
ERR_print_errors_fp(stdout);
if (ret != 1) {
failure();
}
correct_siglen = RSA_size(rsa);
ret = RSA_sign(NID_md5, digest, digest_len,
correct_signature, &correct_siglen,
rsa);
ERR_print_errors_fp(stdout);
if (ret != 1) {
_exit(2);
}
if (print) {
fprintf(stderr, "Verifying data (%d).\n", i);
}
ret = RSA_verify(NID_md5, digest, digest_len,
correct_signature, correct_siglen,
rsa);
if (ret != 1) {
_exit(2);
}
}
/* Collect up the inforamtion which other threads will need for
* comparing their signature results with ours. */
master_args.rsa = rsa;
master_args.digest_type = NID_md5;
master_args.digest = digest;
master_args.digest_len = digest_len;
master_args.signature = correct_signature;
master_args.signature_len = correct_siglen;
master_args.main_thread = pthread_self();
fprintf(stdout, "Performing %d signatures in each of %d threads "
"(%d, %d).\n", ITERATION_COUNT, thread_count,
digest_len, correct_siglen);
fflush(NULL);
/* Start up all of the threads. */
for (i = 0; i < thread_count; i++) {
args = malloc(sizeof(struct thread_args));
args->rsa = RSAPrivateKey_dup(master_args.rsa);
args->digest_type = master_args.digest_type;
args->digest_len = master_args.digest_len;
args->digest = xmemdup(master_args.digest, args->digest_len);
args->signature_len = master_args.signature_len;
args->signature = xmemdup(master_args.signature,
args->signature_len);
args->main_thread = pthread_self();
ret = pthread_create(&threads[i], NULL, thread_main, args);
while ((ret != 0) && (errno == EAGAIN)) {
ret = pthread_create(&threads[i], NULL,
thread_main, &args);
fprintf(stderr, "Thread limit hit at %d.\n", i);
}
if (ret != 0) {
fprintf(stderr, "Unable to create thread %d: %s.\n",
i, strerror(errno));
threads[i] = -1;
} else {
if (sync) {
ret = pthread_join(threads[i], NULL);
assert(ret == 0);
}
if (print) {
fprintf(stderr, "%d\n", i);
}
}
}
/* Wait for all threads to complete. So long as we can find an
* unjoined thread, keep joining threads. */
do {
again = 0;
for (i = 0; i < thread_count; i++) {
/* If we have an unterminated thread, join it. */
if (threads[i] != -1) {
again = 1;
if (print) {
fprintf(stderr, "Joining thread %d.\n",
i);
}
pthread_join(threads[i], NULL);
threads[i] = -1;
break;
}
}
} while (again == 1);
fprintf(stderr, "%ld failures\n", failure_count);
return (failure_count != 0);
}