499 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
| From 43dfe54ce017c8d37eaec480a2f13a492bbc4203 Mon Sep 17 00:00:00 2001
 | |
| From: serge-sans-paille <sguelton@redhat.com>
 | |
| Date: Thu, 25 Feb 2021 14:24:14 +0100
 | |
| Subject: [PATCH 2/2] [PATCH][lld] Import compact_unwind_encoding.h from
 | |
|  libunwind
 | |
| 
 | |
| This avoids an implicit cross package dependency
 | |
| ---
 | |
|  lld/include/mach-o/compact_unwind_encoding.h | 477 +++++++++++++++++++++++++++
 | |
|  1 file changed, 477 insertions(+)
 | |
|  create mode 100644 lld/include/mach-o/compact_unwind_encoding.h
 | |
| 
 | |
| diff --git a/lld/include/mach-o/compact_unwind_encoding.h b/lld/include/mach-o/compact_unwind_encoding.h
 | |
| new file mode 100644
 | |
| index 0000000..5301b10
 | |
| --- /dev/null
 | |
| +++ b/lld/include/mach-o/compact_unwind_encoding.h
 | |
| @@ -0,0 +1,477 @@
 | |
| +//===------------------ mach-o/compact_unwind_encoding.h ------------------===//
 | |
| +//
 | |
| +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| +// See https://llvm.org/LICENSE.txt for license information.
 | |
| +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| +//
 | |
| +//
 | |
| +// Darwin's alternative to DWARF based unwind encodings.
 | |
| +//
 | |
| +//===----------------------------------------------------------------------===//
 | |
| +
 | |
| +
 | |
| +#ifndef __COMPACT_UNWIND_ENCODING__
 | |
| +#define __COMPACT_UNWIND_ENCODING__
 | |
| +
 | |
| +#include <stdint.h>
 | |
| +
 | |
| +//
 | |
| +// Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section
 | |
| +// of object files. Or compilers can emit compact unwind information in
 | |
| +// the __LD,__compact_unwind section.
 | |
| +//
 | |
| +// When the linker creates a final linked image, it will create a
 | |
| +// __TEXT,__unwind_info section.  This section is a small and fast way for the
 | |
| +// runtime to access unwind info for any given function.  If the compiler
 | |
| +// emitted compact unwind info for the function, that compact unwind info will
 | |
| +// be encoded in the __TEXT,__unwind_info section. If the compiler emitted
 | |
| +// DWARF unwind info, the __TEXT,__unwind_info section will contain the offset
 | |
| +// of the FDE in the __TEXT,__eh_frame section in the final linked image.
 | |
| +//
 | |
| +// Note: Previously, the linker would transform some DWARF unwind infos into
 | |
| +//       compact unwind info.  But that is fragile and no longer done.
 | |
| +
 | |
| +
 | |
| +//
 | |
| +// The compact unwind endoding is a 32-bit value which encoded in an
 | |
| +// architecture specific way, which registers to restore from where, and how
 | |
| +// to unwind out of the function.
 | |
| +//
 | |
| +typedef uint32_t compact_unwind_encoding_t;
 | |
| +
 | |
| +
 | |
| +// architecture independent bits
 | |
| +enum {
 | |
| +    UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
 | |
| +    UNWIND_HAS_LSDA                        = 0x40000000,
 | |
| +    UNWIND_PERSONALITY_MASK                = 0x30000000,
 | |
| +};
 | |
| +
 | |
| +
 | |
| +
 | |
| +
 | |
| +//
 | |
| +// x86
 | |
| +//
 | |
| +// 1-bit: start
 | |
| +// 1-bit: has lsda
 | |
| +// 2-bit: personality index
 | |
| +//
 | |
| +// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF
 | |
| +//  ebp based:
 | |
| +//        15-bits (5*3-bits per reg) register permutation
 | |
| +//        8-bits for stack offset
 | |
| +//  frameless:
 | |
| +//        8-bits stack size
 | |
| +//        3-bits stack adjust
 | |
| +//        3-bits register count
 | |
| +//        10-bits register permutation
 | |
| +//
 | |
| +enum {
 | |
| +    UNWIND_X86_MODE_MASK                         = 0x0F000000,
 | |
| +    UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
 | |
| +    UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
 | |
| +    UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
 | |
| +    UNWIND_X86_MODE_DWARF                        = 0x04000000,
 | |
| +
 | |
| +    UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
 | |
| +    UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
 | |
| +
 | |
| +    UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
 | |
| +    UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
 | |
| +    UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
 | |
| +    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
 | |
| +
 | |
| +    UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
 | |
| +};
 | |
| +
 | |
| +enum {
 | |
| +    UNWIND_X86_REG_NONE     = 0,
 | |
| +    UNWIND_X86_REG_EBX      = 1,
 | |
| +    UNWIND_X86_REG_ECX      = 2,
 | |
| +    UNWIND_X86_REG_EDX      = 3,
 | |
| +    UNWIND_X86_REG_EDI      = 4,
 | |
| +    UNWIND_X86_REG_ESI      = 5,
 | |
| +    UNWIND_X86_REG_EBP      = 6,
 | |
| +};
 | |
| +
 | |
| +//
 | |
| +// For x86 there are four modes for the compact unwind encoding:
 | |
| +// UNWIND_X86_MODE_EBP_FRAME:
 | |
| +//    EBP based frame where EBP is push on stack immediately after return address,
 | |
| +//    then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
 | |
| +//    EPB value, then EBP is restored by popping off the stack, and the return
 | |
| +//    is done by popping the stack once more into the pc.
 | |
| +//    All non-volatile registers that need to be restored must have been saved
 | |
| +//    in a small range in the stack that starts EBP-4 to EBP-1020.  The offset/4
 | |
| +//    is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits.  The registers saved
 | |
| +//    are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
 | |
| +//    Each entry contains which register to restore.
 | |
| +// UNWIND_X86_MODE_STACK_IMMD:
 | |
| +//    A "frameless" (EBP not used as frame pointer) function with a small 
 | |
| +//    constant stack size.  To return, a constant (encoded in the compact
 | |
| +//    unwind encoding) is added to the ESP. Then the return is done by
 | |
| +//    popping the stack into the pc.
 | |
| +//    All non-volatile registers that need to be restored must have been saved
 | |
| +//    on the stack immediately after the return address.  The stack_size/4 is
 | |
| +//    encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
 | |
| +//    The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
 | |
| +//    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
 | |
| +//    saved and their order.
 | |
| +// UNWIND_X86_MODE_STACK_IND:
 | |
| +//    A "frameless" (EBP not used as frame pointer) function large constant 
 | |
| +//    stack size.  This case is like the previous, except the stack size is too
 | |
| +//    large to encode in the compact unwind encoding.  Instead it requires that 
 | |
| +//    the function contains "subl $nnnnnnnn,ESP" in its prolog.  The compact 
 | |
| +//    encoding contains the offset to the nnnnnnnn value in the function in
 | |
| +//    UNWIND_X86_FRAMELESS_STACK_SIZE.  
 | |
| +// UNWIND_X86_MODE_DWARF:
 | |
| +//    No compact unwind encoding is available.  Instead the low 24-bits of the
 | |
| +//    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
 | |
| +//    This mode is never used in object files.  It is only generated by the 
 | |
| +//    linker in final linked images which have only DWARF unwind info for a
 | |
| +//    function.
 | |
| +//
 | |
| +// The permutation encoding is a Lehmer code sequence encoded into a
 | |
| +// single variable-base number so we can encode the ordering of up to
 | |
| +// six registers in a 10-bit space.
 | |
| +//
 | |
| +// The following is the algorithm used to create the permutation encoding used
 | |
| +// with frameless stacks.  It is passed the number of registers to be saved and
 | |
| +// an array of the register numbers saved.
 | |
| +//
 | |
| +//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
 | |
| +//{
 | |
| +//    uint32_t renumregs[6];
 | |
| +//    for (int i=6-registerCount; i < 6; ++i) {
 | |
| +//        int countless = 0;
 | |
| +//        for (int j=6-registerCount; j < i; ++j) {
 | |
| +//            if ( registers[j] < registers[i] )
 | |
| +//                ++countless;
 | |
| +//        }
 | |
| +//        renumregs[i] = registers[i] - countless -1;
 | |
| +//    }
 | |
| +//    uint32_t permutationEncoding = 0;
 | |
| +//    switch ( registerCount ) {
 | |
| +//        case 6:
 | |
| +//            permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
 | |
| +//                                    + 6*renumregs[2] + 2*renumregs[3]
 | |
| +//                                      + renumregs[4]);
 | |
| +//            break;
 | |
| +//        case 5:
 | |
| +//            permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
 | |
| +//                                    + 6*renumregs[3] + 2*renumregs[4]
 | |
| +//                                      + renumregs[5]);
 | |
| +//            break;
 | |
| +//        case 4:
 | |
| +//            permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
 | |
| +//                                   + 3*renumregs[4] + renumregs[5]);
 | |
| +//            break;
 | |
| +//        case 3:
 | |
| +//            permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
 | |
| +//                                     + renumregs[5]);
 | |
| +//            break;
 | |
| +//        case 2:
 | |
| +//            permutationEncoding |= (5*renumregs[4] + renumregs[5]);
 | |
| +//            break;
 | |
| +//        case 1:
 | |
| +//            permutationEncoding |= (renumregs[5]);
 | |
| +//            break;
 | |
| +//    }
 | |
| +//    return permutationEncoding;
 | |
| +//}
 | |
| +//
 | |
| +
 | |
| +
 | |
| +
 | |
| +
 | |
| +//
 | |
| +// x86_64
 | |
| +//
 | |
| +// 1-bit: start
 | |
| +// 1-bit: has lsda
 | |
| +// 2-bit: personality index
 | |
| +//
 | |
| +// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF
 | |
| +//  rbp based:
 | |
| +//        15-bits (5*3-bits per reg) register permutation
 | |
| +//        8-bits for stack offset
 | |
| +//  frameless:
 | |
| +//        8-bits stack size
 | |
| +//        3-bits stack adjust
 | |
| +//        3-bits register count
 | |
| +//        10-bits register permutation
 | |
| +//
 | |
| +enum {
 | |
| +    UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
 | |
| +    UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
 | |
| +    UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
 | |
| +    UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
 | |
| +    UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
 | |
| +
 | |
| +    UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
 | |
| +    UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,
 | |
| +
 | |
| +    UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
 | |
| +    UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
 | |
| +    UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
 | |
| +    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
 | |
| +
 | |
| +    UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
 | |
| +};
 | |
| +
 | |
| +enum {
 | |
| +    UNWIND_X86_64_REG_NONE       = 0,
 | |
| +    UNWIND_X86_64_REG_RBX        = 1,
 | |
| +    UNWIND_X86_64_REG_R12        = 2,
 | |
| +    UNWIND_X86_64_REG_R13        = 3,
 | |
| +    UNWIND_X86_64_REG_R14        = 4,
 | |
| +    UNWIND_X86_64_REG_R15        = 5,
 | |
| +    UNWIND_X86_64_REG_RBP        = 6,
 | |
| +};
 | |
| +//
 | |
| +// For x86_64 there are four modes for the compact unwind encoding:
 | |
| +// UNWIND_X86_64_MODE_RBP_FRAME:
 | |
| +//    RBP based frame where RBP is push on stack immediately after return address,
 | |
| +//    then RSP is moved to RBP. Thus, to unwind RSP is restored with the current 
 | |
| +//    EPB value, then RBP is restored by popping off the stack, and the return 
 | |
| +//    is done by popping the stack once more into the pc.
 | |
| +//    All non-volatile registers that need to be restored must have been saved
 | |
| +//    in a small range in the stack that starts RBP-8 to RBP-2040.  The offset/8 
 | |
| +//    is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits.  The registers saved
 | |
| +//    are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
 | |
| +//    Each entry contains which register to restore.  
 | |
| +// UNWIND_X86_64_MODE_STACK_IMMD:
 | |
| +//    A "frameless" (RBP not used as frame pointer) function with a small 
 | |
| +//    constant stack size.  To return, a constant (encoded in the compact 
 | |
| +//    unwind encoding) is added to the RSP. Then the return is done by 
 | |
| +//    popping the stack into the pc.
 | |
| +//    All non-volatile registers that need to be restored must have been saved
 | |
| +//    on the stack immediately after the return address.  The stack_size/8 is
 | |
| +//    encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
 | |
| +//    The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
 | |
| +//    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
 | |
| +//    saved and their order.  
 | |
| +// UNWIND_X86_64_MODE_STACK_IND:
 | |
| +//    A "frameless" (RBP not used as frame pointer) function large constant 
 | |
| +//    stack size.  This case is like the previous, except the stack size is too
 | |
| +//    large to encode in the compact unwind encoding.  Instead it requires that 
 | |
| +//    the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact 
 | |
| +//    encoding contains the offset to the nnnnnnnn value in the function in
 | |
| +//    UNWIND_X86_64_FRAMELESS_STACK_SIZE.  
 | |
| +// UNWIND_X86_64_MODE_DWARF:
 | |
| +//    No compact unwind encoding is available.  Instead the low 24-bits of the
 | |
| +//    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
 | |
| +//    This mode is never used in object files.  It is only generated by the 
 | |
| +//    linker in final linked images which have only DWARF unwind info for a
 | |
| +//    function.
 | |
| +//
 | |
| +
 | |
| +
 | |
| +// ARM64
 | |
| +//
 | |
| +// 1-bit: start
 | |
| +// 1-bit: has lsda
 | |
| +// 2-bit: personality index
 | |
| +//
 | |
| +// 4-bits: 4=frame-based, 3=DWARF, 2=frameless
 | |
| +//  frameless:
 | |
| +//        12-bits of stack size
 | |
| +//  frame-based:
 | |
| +//        4-bits D reg pairs saved
 | |
| +//        5-bits X reg pairs saved
 | |
| +//  DWARF:
 | |
| +//        24-bits offset of DWARF FDE in __eh_frame section
 | |
| +//
 | |
| +enum {
 | |
| +    UNWIND_ARM64_MODE_MASK                     = 0x0F000000,
 | |
| +    UNWIND_ARM64_MODE_FRAMELESS                = 0x02000000,
 | |
| +    UNWIND_ARM64_MODE_DWARF                    = 0x03000000,
 | |
| +    UNWIND_ARM64_MODE_FRAME                    = 0x04000000,
 | |
| +
 | |
| +    UNWIND_ARM64_FRAME_X19_X20_PAIR            = 0x00000001,
 | |
| +    UNWIND_ARM64_FRAME_X21_X22_PAIR            = 0x00000002,
 | |
| +    UNWIND_ARM64_FRAME_X23_X24_PAIR            = 0x00000004,
 | |
| +    UNWIND_ARM64_FRAME_X25_X26_PAIR            = 0x00000008,
 | |
| +    UNWIND_ARM64_FRAME_X27_X28_PAIR            = 0x00000010,
 | |
| +    UNWIND_ARM64_FRAME_D8_D9_PAIR              = 0x00000100,
 | |
| +    UNWIND_ARM64_FRAME_D10_D11_PAIR            = 0x00000200,
 | |
| +    UNWIND_ARM64_FRAME_D12_D13_PAIR            = 0x00000400,
 | |
| +    UNWIND_ARM64_FRAME_D14_D15_PAIR            = 0x00000800,
 | |
| +
 | |
| +    UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK     = 0x00FFF000,
 | |
| +    UNWIND_ARM64_DWARF_SECTION_OFFSET          = 0x00FFFFFF,
 | |
| +};
 | |
| +// For arm64 there are three modes for the compact unwind encoding:
 | |
| +// UNWIND_ARM64_MODE_FRAME:
 | |
| +//    This is a standard arm64 prolog where FP/LR are immediately pushed on the
 | |
| +//    stack, then SP is copied to FP. If there are any non-volatile registers
 | |
| +//    saved, then are copied into the stack frame in pairs in a contiguous
 | |
| +//    range right below the saved FP/LR pair.  Any subset of the five X pairs 
 | |
| +//    and four D pairs can be saved, but the memory layout must be in register
 | |
| +//    number order.  
 | |
| +// UNWIND_ARM64_MODE_FRAMELESS:
 | |
| +//    A "frameless" leaf function, where FP/LR are not saved. The return address 
 | |
| +//    remains in LR throughout the function. If any non-volatile registers
 | |
| +//    are saved, they must be pushed onto the stack before any stack space is
 | |
| +//    allocated for local variables.  The stack sized (including any saved
 | |
| +//    non-volatile registers) divided by 16 is encoded in the bits 
 | |
| +//    UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
 | |
| +// UNWIND_ARM64_MODE_DWARF:
 | |
| +//    No compact unwind encoding is available.  Instead the low 24-bits of the
 | |
| +//    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
 | |
| +//    This mode is never used in object files.  It is only generated by the 
 | |
| +//    linker in final linked images which have only DWARF unwind info for a
 | |
| +//    function.
 | |
| +//
 | |
| +
 | |
| +
 | |
| +
 | |
| +
 | |
| +
 | |
| +////////////////////////////////////////////////////////////////////////////////
 | |
| +//
 | |
| +//  Relocatable Object Files: __LD,__compact_unwind
 | |
| +//
 | |
| +////////////////////////////////////////////////////////////////////////////////
 | |
| +
 | |
| +//
 | |
| +// A compiler can generated compact unwind information for a function by adding
 | |
| +// a "row" to the __LD,__compact_unwind section.  This section has the 
 | |
| +// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers. 
 | |
| +// It is removed by the new linker, so never ends up in final executables. 
 | |
| +// This section is a table, initially with one row per function (that needs 
 | |
| +// unwind info).  The table columns and some conceptual entries are:
 | |
| +//
 | |
| +//     range-start               pointer to start of function/range
 | |
| +//     range-length              
 | |
| +//     compact-unwind-encoding   32-bit encoding  
 | |
| +//     personality-function      or zero if no personality function
 | |
| +//     lsda                      or zero if no LSDA data
 | |
| +//
 | |
| +// The length and encoding fields are 32-bits.  The other are all pointer sized. 
 | |
| +//
 | |
| +// In x86_64 assembly, these entry would look like:
 | |
| +//
 | |
| +//     .section __LD,__compact_unwind,regular,debug
 | |
| +//
 | |
| +//     #compact unwind for _foo
 | |
| +//     .quad    _foo
 | |
| +//     .set     L1,LfooEnd-_foo
 | |
| +//     .long    L1
 | |
| +//     .long    0x01010001
 | |
| +//     .quad    0
 | |
| +//     .quad    0
 | |
| +//
 | |
| +//     #compact unwind for _bar
 | |
| +//     .quad    _bar
 | |
| +//     .set     L2,LbarEnd-_bar
 | |
| +//     .long    L2
 | |
| +//     .long    0x01020011
 | |
| +//     .quad    __gxx_personality
 | |
| +//     .quad    except_tab1
 | |
| +//
 | |
| +//
 | |
| +// Notes: There is no need for any labels in the the __compact_unwind section.  
 | |
| +//        The use of the .set directive is to force the evaluation of the 
 | |
| +//        range-length at assembly time, instead of generating relocations.
 | |
| +//
 | |
| +// To support future compiler optimizations where which non-volatile registers 
 | |
| +// are saved changes within a function (e.g. delay saving non-volatiles until
 | |
| +// necessary), there can by multiple lines in the __compact_unwind table for one
 | |
| +// function, each with a different (non-overlapping) range and each with 
 | |
| +// different compact unwind encodings that correspond to the non-volatiles 
 | |
| +// saved at that range of the function.
 | |
| +//
 | |
| +// If a particular function is so wacky that there is no compact unwind way
 | |
| +// to encode it, then the compiler can emit traditional DWARF unwind info.  
 | |
| +// The runtime will use which ever is available.
 | |
| +//
 | |
| +// Runtime support for compact unwind encodings are only available on 10.6 
 | |
| +// and later.  So, the compiler should not generate it when targeting pre-10.6. 
 | |
| +
 | |
| +
 | |
| +
 | |
| +
 | |
| +////////////////////////////////////////////////////////////////////////////////
 | |
| +//
 | |
| +//  Final Linked Images: __TEXT,__unwind_info
 | |
| +//
 | |
| +////////////////////////////////////////////////////////////////////////////////
 | |
| +
 | |
| +//
 | |
| +// The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
 | |
| +// The header of the section contains a coarse index that maps function address
 | |
| +// to the page (4096 byte block) containing the unwind info for that function.  
 | |
| +//
 | |
| +
 | |
| +#define UNWIND_SECTION_VERSION 1
 | |
| +struct unwind_info_section_header
 | |
| +{
 | |
| +    uint32_t    version;            // UNWIND_SECTION_VERSION
 | |
| +    uint32_t    commonEncodingsArraySectionOffset;
 | |
| +    uint32_t    commonEncodingsArrayCount;
 | |
| +    uint32_t    personalityArraySectionOffset;
 | |
| +    uint32_t    personalityArrayCount;
 | |
| +    uint32_t    indexSectionOffset;
 | |
| +    uint32_t    indexCount;
 | |
| +    // compact_unwind_encoding_t[]
 | |
| +    // uint32_t personalities[]
 | |
| +    // unwind_info_section_header_index_entry[]
 | |
| +    // unwind_info_section_header_lsda_index_entry[]
 | |
| +};
 | |
| +
 | |
| +struct unwind_info_section_header_index_entry
 | |
| +{
 | |
| +    uint32_t        functionOffset;
 | |
| +    uint32_t        secondLevelPagesSectionOffset;  // section offset to start of regular or compress page
 | |
| +    uint32_t        lsdaIndexArraySectionOffset;    // section offset to start of lsda_index array for this range
 | |
| +};
 | |
| +
 | |
| +struct unwind_info_section_header_lsda_index_entry
 | |
| +{
 | |
| +    uint32_t        functionOffset;
 | |
| +    uint32_t        lsdaOffset;
 | |
| +};
 | |
| +
 | |
| +//
 | |
| +// There are two kinds of second level index pages: regular and compressed.
 | |
| +// A compressed page can hold up to 1021 entries, but it cannot be used
 | |
| +// if too many different encoding types are used.  The regular page holds
 | |
| +// 511 entries.
 | |
| +//
 | |
| +
 | |
| +struct unwind_info_regular_second_level_entry
 | |
| +{
 | |
| +    uint32_t                    functionOffset;
 | |
| +    compact_unwind_encoding_t    encoding;
 | |
| +};
 | |
| +
 | |
| +#define UNWIND_SECOND_LEVEL_REGULAR 2
 | |
| +struct unwind_info_regular_second_level_page_header
 | |
| +{
 | |
| +    uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
 | |
| +    uint16_t    entryPageOffset;
 | |
| +    uint16_t    entryCount;
 | |
| +    // entry array
 | |
| +};
 | |
| +
 | |
| +#define UNWIND_SECOND_LEVEL_COMPRESSED 3
 | |
| +struct unwind_info_compressed_second_level_page_header
 | |
| +{
 | |
| +    uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
 | |
| +    uint16_t    entryPageOffset;
 | |
| +    uint16_t    entryCount;
 | |
| +    uint16_t    encodingsPageOffset;
 | |
| +    uint16_t    encodingsCount;
 | |
| +    // 32-bit entry array
 | |
| +    // encodings array
 | |
| +};
 | |
| +
 | |
| +#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            (entry & 0x00FFFFFF)
 | |
| +#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        ((entry >> 24) & 0xFF)
 | |
| +
 | |
| +
 | |
| +
 | |
| +#endif
 | |
| +
 | |
| -- 
 | |
| 1.8.3.1
 | |
| 
 |