diff --git a/src/extra/gd/Makefile.am b/src/extra/gd/Makefile.am index 3fb9330..14bda8c 100644 --- a/src/extra/gd/Makefile.am +++ b/src/extra/gd/Makefile.am @@ -22,7 +22,7 @@ libgd_la_SOURCES = gd.c gd_gd.c gd_gd2.c gd_io.c gd_io_dp.c \ gd_io_file.c gd_ss.c gd_io_ss.c gd_png.c gd_jpeg.c gdxpm.c \ gdfontt.c gdfonts.c gdfontmb.c gdfontl.c gdfontg.c \ gdtables.c gdft.c gdcache.c gdkanji.c wbmp.c \ - gd_wbmp.c gdhelpers.c gd_topal.c gd_clip.c + gd_wbmp.c gdhelpers.c gd_clip.c gddir = $(includedir)/libwmf/gd diff --git a/src/extra/gd/Makefile.gd b/src/extra/gd/Makefile.gd index 3cd876f..b90e4ac 100644 --- a/src/extra/gd/Makefile.gd +++ b/src/extra/gd/Makefile.gd @@ -145,7 +145,7 @@ LIBOBJS=gd.o gd_gd.o gd_gd2.o gd_io.o gd_io_dp.o \ gd_io_file.o gd_ss.o gd_io_ss.o gd_png.o gd_jpeg.o gdxpm.o \ gdfontt.o gdfonts.o gdfontmb.o gdfontl.o gdfontg.o \ gdtables.o gdft.o gdcache.o gdkanji.o wbmp.o \ - gd_wbmp.o gdhelpers.o gd_topal.o + gd_wbmp.o gdhelpers.o #Shared library. This should work fine on any ELF platform (Linux, etc.) with #GNU ld or something similarly intelligent. To avoid the chicken-and-egg diff --git a/src/extra/gd/Makefile.in b/src/extra/gd/Makefile.in index edb5c90..8cf93a6 100644 --- a/src/extra/gd/Makefile.in +++ b/src/extra/gd/Makefile.in @@ -107,7 +107,7 @@ am_libgd_la_OBJECTS = gd.lo gd_gd.lo gd_gd2.lo gd_io.lo gd_io_dp.lo \ gd_io_file.lo gd_ss.lo gd_io_ss.lo gd_png.lo gd_jpeg.lo \ gdxpm.lo gdfontt.lo gdfonts.lo gdfontmb.lo gdfontl.lo \ gdfontg.lo gdtables.lo gdft.lo gdcache.lo gdkanji.lo wbmp.lo \ - gd_wbmp.lo gdhelpers.lo gd_topal.lo gd_clip.lo + gd_wbmp.lo gdhelpers.lo gd_clip.lo libgd_la_OBJECTS = $(am_libgd_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) @@ -370,7 +370,7 @@ libgd_la_SOURCES = gd.c gd_gd.c gd_gd2.c gd_io.c gd_io_dp.c \ gd_io_file.c gd_ss.c gd_io_ss.c gd_png.c gd_jpeg.c gdxpm.c \ gdfontt.c gdfonts.c gdfontmb.c gdfontl.c gdfontg.c \ gdtables.c gdft.c gdcache.c gdkanji.c wbmp.c \ - gd_wbmp.c gdhelpers.c gd_topal.c gd_clip.c + gd_wbmp.c gdhelpers.c gd_clip.c gddir = $(includedir)/libwmf/gd gd_HEADERS = $(HDRGDINST) @@ -472,7 +472,6 @@ distclean-compile: @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gd_jpeg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gd_png.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gd_ss.Plo@am__quote@ -@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gd_topal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gd_wbmp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gdcache.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gdfontg.Plo@am__quote@ diff --git a/src/extra/gd/gd.c b/src/extra/gd/gd.c index 6296472..dc6a9a7 100644 --- a/src/extra/gd/gd.c +++ b/src/extra/gd/gd.c @@ -1995,7 +1995,7 @@ gdImageCopyResized (gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX else { /* Find or create the best match */ - mapTo = gdImageColorResolveAlpha (dst, + nc = gdImageColorResolveAlpha (dst, gdTrueColorGetRed (c), gdTrueColorGetGreen (c), gdTrueColorGetBlue (c), diff --git a/src/extra/gd/gd.h b/src/extra/gd/gd.h index 619ddd3..8c19354 100644 --- a/src/extra/gd/gd.h +++ b/src/extra/gd/gd.h @@ -308,24 +308,6 @@ int gdImageColorResolveAlpha(gdImagePtr im, int r, int g, int b, int a); void gdImageColorDeallocate(gdImagePtr im, int color); -/* Converts a truecolor image to a palette-based image, - using a high-quality two-pass quantization routine - which attempts to preserve alpha channel information - as well as R/G/B color information when creating - a palette. If ditherFlag is set, the image will be - dithered to approximate colors better, at the expense - of some obvious "speckling." colorsWanted can be - anything up to 256. If the original source image - includes photographic information or anything that - came out of a JPEG, 256 is strongly recommended. - - Better yet, don't use this function -- write real - truecolor PNGs and JPEGs. The disk space gain of - conversion to palette is not great (for small images - it can be negative) and the quality loss is ugly. */ - -void gdImageTrueColorToPalette(gdImagePtr im, int ditherFlag, int colorsWanted); - /* Specifies a color index (if a palette image) or an RGB color (if a truecolor image) which should be considered 100% transparent. FOR TRUECOLOR IMAGES, diff --git a/src/extra/gd/gd_gd2.c b/src/extra/gd/gd_gd2.c index 602b869..05d8dcb 100644 --- a/src/extra/gd/gd_gd2.c +++ b/src/extra/gd/gd_gd2.c @@ -361,7 +361,7 @@ gdImageCreateFromGd2Ctx (gdIOCtxPtr in) xhi = im->sx; }; /*GD2_DBG(printf("y=%d: ",y)); */ - if (fmt == GD2_FMT_RAW) + if (fmt != GD2_FMT_COMPRESSED) { for (x = xlo; x < xhi; x++) { @@ -617,7 +617,7 @@ gdImageCreateFromGd2PartCtx (gdIOCtx * in, int srcx, int srcy, int w, int h) for (x = xlo; x < xhi; x++) { - if (fmt == GD2_FMT_RAW) + if (fmt != GD2_FMT_COMPRESSED) { if (im->trueColor) { diff --git a/src/extra/gd/gd_png.c b/src/extra/gd/gd_png.c index b37fc2c..c7f3aa0 100644 --- a/src/extra/gd/gd_png.c +++ b/src/extra/gd/gd_png.c @@ -131,7 +131,6 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) gdImagePtr im = NULL; int i, j, *open; volatile int transparent = -1; - volatile int palette_allocated = FALSE; /* Make sure the signature can't match by dumb luck -- TBB */ memset (sig, 0, sizeof (sig)); @@ -177,6 +176,7 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) } #endif open = NULL; + palette = NULL; png_set_sig_bytes (png_ptr, 8); /* we already read the 8 signature bytes */ @@ -254,7 +254,6 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) gdImageDestroy(im); return NULL; } - palette_allocated = TRUE; if (bit_depth < 8) { num_palette = 1 << bit_depth; @@ -321,8 +320,7 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) fprintf (stderr, "gd-png error: cannot allocate image data\n"); png_destroy_read_struct (&png_ptr, &info_ptr, NULL); gdImageDestroy(im); - if (palette_allocated) - gdFree (palette); + gdFree(palette); return NULL; } if ((row_pointers = (png_bytepp) gdMalloc (height * sizeof (png_bytep))) == NULL) @@ -331,8 +329,7 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) png_destroy_read_struct (&png_ptr, &info_ptr, NULL); gdFree (image_data); gdImageDestroy(im); - if (palette_allocated) - gdFree (palette); + gdFree(palette); return NULL; } @@ -429,8 +426,7 @@ gdImageCreateFromPngCtx (gdIOCtx * infile) } #endif - if (palette_allocated) - gdFree (palette); + gdFree (palette); gdFree (image_data); gdFree (row_pointers); diff --git a/src/extra/gd/gd_topal.c b/src/extra/gd/gd_topal.c deleted file mode 100644 index 4ca86c9..0000000 --- a/src/extra/gd/gd_topal.c +++ /dev/null @@ -1,1698 +0,0 @@ - - -/* - * gd_topal.c - * - * This code is adapted pretty much entirely from jquant2.c, - * Copyright (C) 1991-1996, Thomas G. Lane. That file is - * part of the Independent JPEG Group's software. Conditions of - * use are compatible with the gd license. See the gd license - * statement and README-JPEG.TXT for additional information. - * - * This file contains 2-pass color quantization (color mapping) routines. - * These routines provide selection of a custom color map for an image, - * followed by mapping of the image to that color map, with optional - * Floyd-Steinberg dithering. - * - * It is also possible to use just the second pass to map to an arbitrary - * externally-given color map. - * - * Note: ordered dithering is not supported, since there isn't any fast - * way to compute intercolor distances; it's unclear that ordered dither's - * fundamental assumptions even hold with an irregularly spaced color map. - * - * SUPPORT FOR ALPHA CHANNELS WAS HACKED IN BY THOMAS BOUTELL, who also - * adapted the code to work within gd rather than within libjpeg, and - * may not have done a great job of either. It's not Thomas G. Lane's fault. - */ - -#include "gd.h" -#include "gdhelpers.h" -#include - -/* - * This module implements the well-known Heckbert paradigm for color - * quantization. Most of the ideas used here can be traced back to - * Heckbert's seminal paper - * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", - * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. - * - * In the first pass over the image, we accumulate a histogram showing the - * usage count of each possible color. To keep the histogram to a reasonable - * size, we reduce the precision of the input; typical practice is to retain - * 5 or 6 bits per color, so that 8 or 4 different input values are counted - * in the same histogram cell. - * - * Next, the color-selection step begins with a box representing the whole - * color space, and repeatedly splits the "largest" remaining box until we - * have as many boxes as desired colors. Then the mean color in each - * remaining box becomes one of the possible output colors. - * - * The second pass over the image maps each input pixel to the closest output - * color (optionally after applying a Floyd-Steinberg dithering correction). - * This mapping is logically trivial, but making it go fast enough requires - * considerable care. - * - * Heckbert-style quantizers vary a good deal in their policies for choosing - * the "largest" box and deciding where to cut it. The particular policies - * used here have proved out well in experimental comparisons, but better ones - * may yet be found. - * - * In earlier versions of the IJG code, this module quantized in YCbCr color - * space, processing the raw upsampled data without a color conversion step. - * This allowed the color conversion math to be done only once per colormap - * entry, not once per pixel. However, that optimization precluded other - * useful optimizations (such as merging color conversion with upsampling) - * and it also interfered with desired capabilities such as quantizing to an - * externally-supplied colormap. We have therefore abandoned that approach. - * The present code works in the post-conversion color space, typically RGB. - * - * To improve the visual quality of the results, we actually work in scaled - * RGBA space, giving G distances more weight than R, and R in turn more than - * B. Alpha is weighted least. To do everything in integer math, we must - * use integer scale factors. The 2/3/1 scale factors used here correspond - * loosely to the relative weights of the colors in the NTSC grayscale - * equation. - */ - -#ifndef TRUE -#define TRUE 1 -#endif /* TRUE */ - -#ifndef FALSE -#define FALSE 0 -#endif /* FALSE */ - -#define R_SCALE 2 /* scale R distances by this much */ -#define G_SCALE 3 /* scale G distances by this much */ -#define B_SCALE 1 /* and B by this much */ -#define A_SCALE 4 /* and alpha by this much. This really - only scales by 1 because alpha - values are 7-bit to begin with. */ - -/* Channel ordering (fixed in gd) */ -#define C0_SCALE R_SCALE -#define C1_SCALE G_SCALE -#define C2_SCALE B_SCALE -#define C3_SCALE A_SCALE - -/* - * First we have the histogram data structure and routines for creating it. - * - * The number of bits of precision can be adjusted by changing these symbols. - * We recommend keeping 6 bits for G and 5 each for R and B. - * If you have plenty of memory and cycles, 6 bits all around gives marginally - * better results; if you are short of memory, 5 bits all around will save - * some space but degrade the results. - * To maintain a fully accurate histogram, we'd need to allocate a "long" - * (preferably unsigned long) for each cell. In practice this is overkill; - * we can get by with 16 bits per cell. Few of the cell counts will overflow, - * and clamping those that do overflow to the maximum value will give close- - * enough results. This reduces the recommended histogram size from 256Kb - * to 128Kb, which is a useful savings on PC-class machines. - * (In the second pass the histogram space is re-used for pixel mapping data; - * in that capacity, each cell must be able to store zero to the number of - * desired colors. 16 bits/cell is plenty for that too.) - * Since the JPEG code is intended to run in small memory model on 80x86 - * machines, we can't just allocate the histogram in one chunk. Instead - * of a true 3-D array, we use a row of pointers to 2-D arrays. Each - * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and - * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that - * on 80x86 machines, the pointer row is in near memory but the actual - * arrays are in far memory (same arrangement as we use for image arrays). - */ - -#define MAXNUMCOLORS (gdMaxColors) /* maximum size of colormap */ - -#define HIST_C0_BITS 5 /* bits of precision in R histogram */ -#define HIST_C1_BITS 6 /* bits of precision in G histogram */ -#define HIST_C2_BITS 5 /* bits of precision in B histogram */ -#define HIST_C3_BITS 3 /* bits of precision in A histogram */ - -/* Number of elements along histogram axes. */ -#define HIST_C0_ELEMS (1<histogram; - int row; - int col; - int *ptr; - int width = im->sx; - - for (row = 0; row < im->sy; row++) - { - ptr = im->tpixels[row]; - for (col = width; col > 0; col--) - { - /* get pixel value and index into the histogram */ - int r, g, b, a; - r = gdTrueColorGetRed (*ptr) >> C0_SHIFT; - g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT; - b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT; - a = gdTrueColorGetAlpha (*ptr); - /* We must have 100% opacity and transparency available - in the color map to do an acceptable job with alpha - channel, if opacity and transparency are present in the - original, because of the visual properties of large - flat-color border areas (requiring 100% transparency) - and the behavior of poorly implemented browsers - (requiring 100% opacity). Test for the presence of - these here, and rescale the most opaque and transparent - palette entries at the end if so. This avoids the need - to develop a fuller understanding I have not been able - to reach so far in my study of this subject. TBB */ - if (a == gdAlphaTransparent) - { - cquantize->transparentIsPresent = 1; - } - if (a == gdAlphaOpaque) - { - cquantize->opaqueIsPresent = 1; - } - a >>= C3_SHIFT; - histp = &histogram[r][g][b][a]; - /* increment, check for overflow and undo increment if so. */ - if (++(*histp) <= 0) - (*histp)--; - ptr++; - } - } -} - - -/* - * Next we have the really interesting routines: selection of a colormap - * given the completed histogram. - * These routines work with a list of "boxes", each representing a rectangular - * subset of the input color space (to histogram precision). - */ - -typedef struct -{ - /* The bounds of the box (inclusive); expressed as histogram indexes */ - int c0min, c0max; - int c1min, c1max; - int c2min, c2max; - int c3min, c3max; - /* The volume (actually 2-norm) of the box */ - int volume; - /* The number of nonzero histogram cells within this box */ - long colorcount; -} -box; - -typedef box *boxptr; - -static boxptr -find_biggest_color_pop (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest color population */ -/* Returns NULL if no splittable boxes remain */ -{ - register boxptr boxp; - register int i; - register long maxc = 0; - boxptr which = NULL; - - for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) - { - if (boxp->colorcount > maxc && boxp->volume > 0) - { - which = boxp; - maxc = boxp->colorcount; - } - } - return which; -} - - -static boxptr -find_biggest_volume (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest (scaled) volume */ -/* Returns NULL if no splittable boxes remain */ -{ - register boxptr boxp; - register int i; - register int maxv = 0; - boxptr which = NULL; - - for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) - { - if (boxp->volume > maxv) - { - which = boxp; - maxv = boxp->volume; - } - } - return which; -} - - -static void -update_box (my_cquantize_ptr cquantize, boxptr boxp) -/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ -/* and recompute its volume and population */ -{ - hist4d histogram = cquantize->histogram; - histptr histp; - int c0, c1, c2, c3; - int c0min, c0max, c1min, c1max, c2min, c2max, c3min, c3max; - int dist0, dist1, dist2, dist3; - long ccount; - - c0min = boxp->c0min; - c0max = boxp->c0max; - c1min = boxp->c1min; - c1max = boxp->c1max; - c2min = boxp->c2min; - c2max = boxp->c2max; - c3min = boxp->c3min; - c3max = boxp->c3max; - - if (c0max > c0min) - { - for (c0 = c0min; c0 <= c0max; c0++) - { - for (c1 = c1min; c1 <= c1max; c1++) - { - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++) - { - if (*histp++ != 0) - { - boxp->c0min = c0min = c0; - goto have_c0min; - } - } - } - } - } - } -have_c0min: - if (c0max > c0min) - { - for (c0 = c0max; c0 >= c0min; c0--) - { - for (c1 = c1min; c1 <= c1max; c1++) - { - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++) - { - if (*histp++ != 0) - { - boxp->c0max = c0max = c0; - goto have_c0max; - } - } - } - } - } - } -have_c0max: - if (c1max > c1min) - for (c1 = c1min; c1 <= c1max; c1++) - for (c0 = c0min; c0 <= c0max; c0++) - { - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++) - if (*histp++ != 0) - { - boxp->c1min = c1min = c1; - goto have_c1min; - } - } - } -have_c1min: - if (c1max > c1min) - for (c1 = c1max; c1 >= c1min; c1--) - for (c0 = c0min; c0 <= c0max; c0++) - { - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++) - if (*histp++ != 0) - { - boxp->c1max = c1max = c1; - goto have_c1max; - } - } - } -have_c1max: - /* The original version hand-rolled the array lookup a little, but - with four dimensions, I don't even want to think about it. TBB */ - if (c2max > c2min) - for (c2 = c2min; c2 <= c2max; c2++) - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) - for (c3 = c3min; c3 <= c3max; c3++) - if (histogram[c0][c1][c2][c3] != 0) - { - boxp->c2min = c2min = c2; - goto have_c2min; - } -have_c2min: - if (c2max > c2min) - for (c2 = c2max; c2 >= c2min; c2--) - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) - for (c3 = c3min; c3 <= c3max; c3++) - if (histogram[c0][c1][c2][c3] != 0) - { - boxp->c2max = c2max = c2; - goto have_c2max; - } -have_c2max: - if (c3max > c3min) - for (c3 = c3min; c3 <= c3max; c3++) - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) - for (c2 = c2min; c2 <= c2max; c2++) - if (histogram[c0][c1][c2][c3] != 0) - { - boxp->c3min = c3min = c3; - goto have_c3min; - } -have_c3min: - if (c3max > c3min) - for (c3 = c3max; c3 >= c3min; c3--) - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) - for (c2 = c2min; c2 <= c2max; c2++) - if (histogram[c0][c1][c2][c3] != 0) - { - boxp->c3max = c3max = c3; - goto have_c3max; - } -have_c3max: - /* Update box volume. - * We use 2-norm rather than real volume here; this biases the method - * against making long narrow boxes, and it has the side benefit that - * a box is splittable iff norm > 0. - * Since the differences are expressed in histogram-cell units, - * we have to shift back to 8-bit units to get consistent distances; - * after which, we scale according to the selected distance scale factors. - * TBB: alpha shifts back to 7 bit units. That was accounted for in the - * alpha scale factor. - */ - dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; - dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; - dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; - dist3 = ((c3max - c3min) << C3_SHIFT) * C3_SCALE; - boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2 + dist3 * dist3; - - /* Now scan remaining volume of box and compute population */ - ccount = 0; - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++, histp++) - if (*histp != 0) - { - ccount++; - } - } - boxp->colorcount = ccount; -} - - -static int -median_cut (my_cquantize_ptr cquantize, - boxptr boxlist, int numboxes, - int desired_colors) -/* Repeatedly select and split the largest box until we have enough boxes */ -{ - int n, lb; - int c0, c1, c2, c3, cmax; - register boxptr b1, b2; - - while (numboxes < desired_colors) - { - /* Select box to split. - * Current algorithm: by population for first half, then by volume. - */ - if (numboxes * 2 <= desired_colors) - { - b1 = find_biggest_color_pop (boxlist, numboxes); - } - else - { - b1 = find_biggest_volume (boxlist, numboxes); - } - if (b1 == NULL) /* no splittable boxes left! */ - break; - b2 = &boxlist[numboxes]; /* where new box will go */ - /* Copy the color bounds to the new box. */ - b2->c0max = b1->c0max; - b2->c1max = b1->c1max; - b2->c2max = b1->c2max; - b2->c3max = b1->c3max; - b2->c0min = b1->c0min; - b2->c1min = b1->c1min; - b2->c2min = b1->c2min; - b2->c3min = b1->c3min; - /* Choose which axis to split the box on. - * Current algorithm: longest scaled axis. - * See notes in update_box about scaling distances. - */ - c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; - c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; - c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; - c3 = ((b1->c3max - b1->c3min) << C3_SHIFT) * C3_SCALE; - /* We want to break any ties in favor of green, then red, then blue, - with alpha last. */ - cmax = c1; - n = 1; - if (c0 > cmax) - { - cmax = c0; - n = 0; - } - if (c2 > cmax) - { - cmax = c2; - n = 2; - } - if (c3 > cmax) - { - n = 3; - } - /* Choose split point along selected axis, and update box bounds. - * Current algorithm: split at halfway point. - * (Since the box has been shrunk to minimum volume, - * any split will produce two nonempty subboxes.) - * Note that lb value is max for lower box, so must be < old max. - */ - switch (n) - { - case 0: - lb = (b1->c0max + b1->c0min) / 2; - b1->c0max = lb; - b2->c0min = lb + 1; - break; - case 1: - lb = (b1->c1max + b1->c1min) / 2; - b1->c1max = lb; - b2->c1min = lb + 1; - break; - case 2: - lb = (b1->c2max + b1->c2min) / 2; - b1->c2max = lb; - b2->c2min = lb + 1; - break; - case 3: - lb = (b1->c3max + b1->c3min) / 2; - b1->c3max = lb; - b2->c3min = lb + 1; - break; - } - /* Update stats for boxes */ - update_box (cquantize, b1); - update_box (cquantize, b2); - numboxes++; - } - return numboxes; -} - - -static void -compute_color (gdImagePtr im, my_cquantize_ptr cquantize, - boxptr boxp, int icolor) -/* - Compute representative color for a box, put it in - palette index icolor */ -{ - /* Current algorithm: mean weighted by pixels (not colors) */ - /* Note it is important to get the rounding correct! */ - hist4d histogram = cquantize->histogram; - histptr histp; - int c0, c1, c2, c3; - int c0min, c0max, c1min, c1max, c2min, c2max, c3min, c3max; - long count; - long total = 0; - long c0total = 0; - long c1total = 0; - long c2total = 0; - long c3total = 0; - - c0min = boxp->c0min; - c0max = boxp->c0max; - c1min = boxp->c1min; - c1max = boxp->c1max; - c2min = boxp->c2min; - c2max = boxp->c2max; - c3min = boxp->c3min; - c3max = boxp->c3max; - - for (c0 = c0min; c0 <= c0max; c0++) - { - for (c1 = c1min; c1 <= c1max; c1++) - { - for (c2 = c2min; c2 <= c2max; c2++) - { - histp = &histogram[c0][c1][c2][c3min]; - for (c3 = c3min; c3 <= c3max; c3++) - { - if ((count = *histp++) != 0) - { - total += count; - c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; - c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; - c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; - c3total += ((c3 << C3_SHIFT) + ((1 << C3_SHIFT) >> 1)) * count; - } - } - } - } - } - if (total) - { - im->red[icolor] = (int) ((c0total + (total >> 1)) / total); - im->green[icolor] = (int) ((c1total + (total >> 1)) / total); - im->blue[icolor] = (int) ((c2total + (total >> 1)) / total); - im->alpha[icolor] = (int) ((c3total + (total >> 1)) / total); - } - else - { - im->red[icolor] = 255; - im->green[icolor] = 255; - im->blue[icolor] = 255; - im->alpha[icolor] = 255; - } - im->open[icolor] = 0; - if (im->colorsTotal <= icolor) - { - im->colorsTotal = icolor + 1; - } -} - -static void -select_colors (gdImagePtr im, my_cquantize_ptr cquantize, int desired_colors) -/* Master routine for color selection */ -{ - boxptr boxlist; - int numboxes; - int i; - - /* Allocate workspace for box list */ - boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box)); - /* Initialize one box containing whole space */ - numboxes = 1; - /* Note maxval for alpha is different */ - boxlist[0].c0min = 0; - boxlist[0].c0max = 255 >> C0_SHIFT; - boxlist[0].c1min = 0; - boxlist[0].c1max = 255 >> C1_SHIFT; - boxlist[0].c2min = 0; - boxlist[0].c2max = 255 >> C2_SHIFT; - boxlist[0].c3min = 0; - boxlist[0].c3max = gdAlphaMax >> C3_SHIFT; - /* Shrink it to actually-used volume and set its statistics */ - update_box (cquantize, &boxlist[0]); - /* Perform median-cut to produce final box list */ - numboxes = median_cut (cquantize, boxlist, numboxes, desired_colors); - /* Compute the representative color for each box, fill colormap */ - for (i = 0; i < numboxes; i++) - compute_color (im, cquantize, &boxlist[i], i); - /* TBB: if the image contains colors at both scaled ends - of the alpha range, rescale slightly to make sure alpha - covers the full spectrum from 100% transparent to 100% - opaque. Even a faint distinct background color is - generally considered failure with regard to alpha. */ - - im->colorsTotal = numboxes; - gdFree (boxlist); -} - - -/* - * These routines are concerned with the time-critical task of mapping input - * colors to the nearest color in the selected colormap. - * - * We re-use the histogram space as an "inverse color map", essentially a - * cache for the results of nearest-color searches. All colors within a - * histogram cell will be mapped to the same colormap entry, namely the one - * closest to the cell's center. This may not be quite the closest entry to - * the actual input color, but it's almost as good. A zero in the cache - * indicates we haven't found the nearest color for that cell yet; the array - * is cleared to zeroes before starting the mapping pass. When we find the - * nearest color for a cell, its colormap index plus one is recorded in the - * cache for future use. The pass2 scanning routines call fill_inverse_cmap - * when they need to use an unfilled entry in the cache. - * - * Our method of efficiently finding nearest colors is based on the "locally - * sorted search" idea described by Heckbert and on the incremental distance - * calculation described by Spencer W. Thomas in chapter III.1 of Graphics - * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that - * the distances from a given colormap entry to each cell of the histogram can - * be computed quickly using an incremental method: the differences between - * distances to adjacent cells themselves differ by a constant. This allows a - * fairly fast implementation of the "brute force" approach of computing the - * distance from every colormap entry to every histogram cell. Unfortunately, - * it needs a work array to hold the best-distance-so-far for each histogram - * cell (because the inner loop has to be over cells, not colormap entries). - * The work array elements have to be INT32s, so the work array would need - * 256Kb at our recommended precision. This is not feasible in DOS machines. - * - * To get around these problems, we apply Thomas' method to compute the - * nearest colors for only the cells within a small subbox of the histogram. - * The work array need be only as big as the subbox, so the memory usage - * problem is solved. Furthermore, we need not fill subboxes that are never - * referenced in pass2; many images use only part of the color gamut, so a - * fair amount of work is saved. An additional advantage of this - * approach is that we can apply Heckbert's locality criterion to quickly - * eliminate colormap entries that are far away from the subbox; typically - * three-fourths of the colormap entries are rejected by Heckbert's criterion, - * and we need not compute their distances to individual cells in the subbox. - * The speed of this approach is heavily influenced by the subbox size: too - * small means too much overhead, too big loses because Heckbert's criterion - * can't eliminate as many colormap entries. Empirically the best subbox - * size seems to be about 1/512th of the histogram (1/8th in each direction). - * - * Thomas' article also describes a refined method which is asymptotically - * faster than the brute-force method, but it is also far more complex and - * cannot efficiently be applied to small subboxes. It is therefore not - * useful for programs intended to be portable to DOS machines. On machines - * with plenty of memory, filling the whole histogram in one shot with Thomas' - * refined method might be faster than the present code --- but then again, - * it might not be any faster, and it's certainly more complicated. - */ - - -/* log2(histogram cells in update box) for each axis; this can be adjusted */ -#define BOX_C0_LOG (HIST_C0_BITS-3) -#define BOX_C1_LOG (HIST_C1_BITS-3) -#define BOX_C2_LOG (HIST_C2_BITS-3) -#define BOX_C3_LOG (HIST_C3_BITS-3) - -#define BOX_C0_ELEMS (1<colorsTotal; - int maxc0, maxc1, maxc2, maxc3; - int centerc0, centerc1, centerc2, centerc3; - int i, x, ncolors; - int minmaxdist, min_dist, max_dist, tdist; - int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ - - /* Compute true coordinates of update box's upper corner and center. - * Actually we compute the coordinates of the center of the upper-corner - * histogram cell, which are the upper bounds of the volume we care about. - * Note that since ">>" rounds down, the "center" values may be closer to - * min than to max; hence comparisons to them must be "<=", not "<". - */ - maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); - centerc0 = (minc0 + maxc0) >> 1; - maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); - centerc1 = (minc1 + maxc1) >> 1; - maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); - centerc2 = (minc2 + maxc2) >> 1; - maxc3 = minc3 + ((1 << BOX_C3_SHIFT) - (1 << C3_SHIFT)); - centerc3 = (minc3 + maxc3) >> 1; - - /* For each color in colormap, find: - * 1. its minimum squared-distance to any point in the update box - * (zero if color is within update box); - * 2. its maximum squared-distance to any point in the update box. - * Both of these can be found by considering only the corners of the box. - * We save the minimum distance for each color in mindist[]; - * only the smallest maximum distance is of interest. - */ - minmaxdist = 0x7FFFFFFFL; - - for (i = 0; i < numcolors; i++) - { - /* We compute the squared-c0-distance term, then add in the other three. */ - x = im->red[i]; - if (x < minc0) - { - tdist = (x - minc0) * C0_SCALE; - min_dist = tdist * tdist; - tdist = (x - maxc0) * C0_SCALE; - max_dist = tdist * tdist; - } - else if (x > maxc0) - { - tdist = (x - maxc0) * C0_SCALE; - min_dist = tdist * tdist; - tdist = (x - minc0) * C0_SCALE; - max_dist = tdist * tdist; - } - else - { - /* within cell range so no contribution to min_dist */ - min_dist = 0; - if (x <= centerc0) - { - tdist = (x - maxc0) * C0_SCALE; - max_dist = tdist * tdist; - } - else - { - tdist = (x - minc0) * C0_SCALE; - max_dist = tdist * tdist; - } - } - - x = im->green[i]; - if (x < minc1) - { - tdist = (x - minc1) * C1_SCALE; - min_dist += tdist * tdist; - tdist = (x - maxc1) * C1_SCALE; - max_dist += tdist * tdist; - } - else if (x > maxc1) - { - tdist = (x - maxc1) * C1_SCALE; - min_dist += tdist * tdist; - tdist = (x - minc1) * C1_SCALE; - max_dist += tdist * tdist; - } - else - { - /* within cell range so no contribution to min_dist */ - if (x <= centerc1) - { - tdist = (x - maxc1) * C1_SCALE; - max_dist += tdist * tdist; - } - else - { - tdist = (x - minc1) * C1_SCALE; - max_dist += tdist * tdist; - } - } - - x = im->blue[i]; - if (x < minc2) - { - tdist = (x - minc2) * C2_SCALE; - min_dist += tdist * tdist; - tdist = (x - maxc2) * C2_SCALE; - max_dist += tdist * tdist; - } - else if (x > maxc2) - { - tdist = (x - maxc2) * C2_SCALE; - min_dist += tdist * tdist; - tdist = (x - minc2) * C2_SCALE; - max_dist += tdist * tdist; - } - else - { - /* within cell range so no contribution to min_dist */ - if (x <= centerc2) - { - tdist = (x - maxc2) * C2_SCALE; - max_dist += tdist * tdist; - } - else - { - tdist = (x - minc2) * C2_SCALE; - max_dist += tdist * tdist; - } - } - - x = im->alpha[i]; - if (x < minc3) - { - tdist = (x - minc3) * C3_SCALE; - min_dist += tdist * tdist; - tdist = (x - maxc3) * C3_SCALE; - max_dist += tdist * tdist; - } - else if (x > maxc3) - { - tdist = (x - maxc3) * C3_SCALE; - min_dist += tdist * tdist; - tdist = (x - minc3) * C3_SCALE; - max_dist += tdist * tdist; - } - else - { - /* within cell range so no contribution to min_dist */ - if (x <= centerc3) - { - tdist = (x - maxc3) * C3_SCALE; - max_dist += tdist * tdist; - } - else - { - tdist = (x - minc3) * C3_SCALE; - max_dist += tdist * tdist; - } - } - - mindist[i] = min_dist; /* save away the results */ - if (max_dist < minmaxdist) - minmaxdist = max_dist; - } - - /* Now we know that no cell in the update box is more than minmaxdist - * away from some colormap entry. Therefore, only colors that are - * within minmaxdist of some part of the box need be considered. - */ - ncolors = 0; - for (i = 0; i < numcolors; i++) - { - if (mindist[i] <= minmaxdist) - colorlist[ncolors++] = i; - } - return ncolors; -} - - -static void -find_best_colors (gdImagePtr im, - int minc0, int minc1, int minc2, int minc3, - int numcolors, int colorlist[], int bestcolor[]) -/* Find the closest colormap entry for each cell in the update box, - * given the list of candidate colors prepared by find_nearby_colors. - * Return the indexes of the closest entries in the bestcolor[] array. - * This routine uses Thomas' incremental distance calculation method to - * find the distance from a colormap entry to successive cells in the box. - */ -{ - int ic0, ic1, ic2, ic3; - int i, icolor; - register int *bptr; /* pointer into bestdist[] array */ - int *cptr; /* pointer into bestcolor[] array */ - int dist0, dist1, dist2; /* initial distance values */ - register int dist3 = 0; /* current distance in inner loop */ - int xx0, xx1, xx2; /* distance increments */ - register int xx3 = 0; - int inc0, inc1, inc2, inc3; /* initial values for increments */ - /* This array holds the distance to the nearest-so-far color for each cell */ - int bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS * BOX_C3_ELEMS]; - - /* Initialize best-distance for each cell of the update box */ - bptr = bestdist; - for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS * BOX_C3_ELEMS - 1; i >= 0; i--) - *bptr++ = 0x7FFFFFFFL; - - /* For each color selected by find_nearby_colors, - * compute its distance to the center of each cell in the box. - * If that's less than best-so-far, update best distance and color number. - */ - - /* Nominal steps between cell centers ("x" in Thomas article) */ -#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) -#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) -#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) -#define STEP_C3 ((1 << C3_SHIFT) * C3_SCALE) - - for (i = 0; i < numcolors; i++) - { - icolor = colorlist[i]; - /* Compute (square of) distance from minc0/c1/c2 to this color */ - inc0 = (minc0 - (im->red[icolor])) * C0_SCALE; - dist0 = inc0 * inc0; - inc1 = (minc1 - (im->green[icolor])) * C1_SCALE; - dist0 += inc1 * inc1; - inc2 = (minc2 - (im->blue[icolor])) * C2_SCALE; - dist0 += inc2 * inc2; - inc3 = (minc3 - (im->alpha[icolor])) * C3_SCALE; - dist0 += inc3 * inc3; - /* Form the initial difference increments */ - inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; - inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; - inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; - inc3 = inc3 * (2 * STEP_C3) + STEP_C3 * STEP_C3; - /* Now loop over all cells in box, updating distance per Thomas method */ - bptr = bestdist; - cptr = bestcolor; - xx0 = inc0; - for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) - { - dist1 = dist0; - xx1 = inc1; - for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) - { - dist2 = dist1; - xx2 = inc2; - for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) - { - for (ic3 = BOX_C3_ELEMS - 1; ic3 >= 0; ic3--) - { - if (dist3 < *bptr) - { - *bptr = dist3; - *cptr = icolor; - } - dist3 += xx3; - xx3 += 2 * STEP_C3 * STEP_C3; - bptr++; - cptr++; - } - dist2 += xx2; - xx2 += 2 * STEP_C2 * STEP_C2; - } - dist1 += xx1; - xx1 += 2 * STEP_C1 * STEP_C1; - } - dist0 += xx0; - xx0 += 2 * STEP_C0 * STEP_C0; - } - } -} - - -static void -fill_inverse_cmap (gdImagePtr im, my_cquantize_ptr cquantize, - int c0, int c1, int c2, int c3) -/* Fill the inverse-colormap entries in the update box that contains */ -/* histogram cell c0/c1/c2/c3. (Only that one cell MUST be filled, but */ -/* we can fill as many others as we wish.) */ -{ - hist4d histogram = cquantize->histogram; - int minc0, minc1, minc2, minc3; /* lower left corner of update box */ - int ic0, ic1, ic2, ic3; - register int *cptr; /* pointer into bestcolor[] array */ - register histptr cachep; /* pointer into main cache array */ - /* This array lists the candidate colormap indexes. */ - int colorlist[MAXNUMCOLORS]; - int numcolors; /* number of candidate colors */ - /* This array holds the actually closest colormap index for each cell. */ - int bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS * BOX_C3_ELEMS]; - - /* Convert cell coordinates to update box ID */ - c0 >>= BOX_C0_LOG; - c1 >>= BOX_C1_LOG; - c2 >>= BOX_C2_LOG; - c3 >>= BOX_C3_LOG; - - /* Compute true coordinates of update box's origin corner. - * Actually we compute the coordinates of the center of the corner - * histogram cell, which are the lower bounds of the volume we care about. - */ - minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); - minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); - minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); - minc3 = (c3 << BOX_C3_SHIFT) + ((1 << C3_SHIFT) >> 1); - /* Determine which colormap entries are close enough to be candidates - * for the nearest entry to some cell in the update box. - */ - numcolors = find_nearby_colors (im, minc0, minc1, minc2, minc3, colorlist); - - /* Determine the actually nearest colors. */ - find_best_colors (im, minc0, minc1, minc2, minc3, numcolors, colorlist, - bestcolor); - - /* Save the best color numbers (plus 1) in the main cache array */ - c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ - c1 <<= BOX_C1_LOG; - c2 <<= BOX_C2_LOG; - c3 <<= BOX_C3_LOG; - cptr = bestcolor; - for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) - { - for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) - { - for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) - { - cachep = &histogram[c0 + ic0][c1 + ic1][c2 + ic2][c3]; - for (ic3 = 0; ic3 < BOX_C3_ELEMS; ic3++) - { - *cachep++ = (histcell) ((*cptr++) + 1); - } - } - } - } -} - - -/* - * Map some rows of pixels to the output colormapped representation. - */ - -static void -pass2_no_dither (gdImagePtr im, my_cquantize_ptr cquantize) -/* This version performs no dithering */ -{ - hist4d histogram = cquantize->histogram; - register int *inptr; - register unsigned char *outptr; - register histptr cachep; - register int c0, c1, c2, c3; - int row; - int col; - int width = im->sx; - int num_rows = im->sy; - for (row = 0; row < num_rows; row++) - { - inptr = im->tpixels[row]; - outptr = im->pixels[row]; - for (col = 0; col < width; col++) - { - int r, g, b, a; - /* get pixel value and index into the cache */ - r = gdTrueColorGetRed (*inptr); - g = gdTrueColorGetGreen (*inptr); - b = gdTrueColorGetBlue (*inptr); - a = gdTrueColorGetAlpha (*inptr++); - c0 = r >> C0_SHIFT; - c1 = g >> C1_SHIFT; - c2 = b >> C2_SHIFT; - c3 = a >> C3_SHIFT; - cachep = &histogram[c0][c1][c2][c3]; - /* If we have not seen this color before, find nearest colormap entry */ - /* and update the cache */ - if (*cachep == 0) - { -#if 0 - /* TBB: quick and dirty approach for use when testing - fill_inverse_cmap for errors */ - int i; - int best = -1; - int mindist = 0x7FFFFFFF; - for (i = 0; (i < im->colorsTotal); i++) - { - int rdist = (im->red[i] >> C0_SHIFT) - c0; - int gdist = (im->green[i] >> C1_SHIFT) - c1; - int bdist = (im->blue[i] >> C2_SHIFT) - c2; - int adist = (im->alpha[i] >> C3_SHIFT) - c3; - int dist = (rdist * rdist) * R_SCALE + - (gdist * gdist) * G_SCALE + - (bdist * bdist) * B_SCALE + - (adist * adist) * A_SCALE; - if (dist < mindist) - { - best = i; - mindist = dist; - } - } - *cachep = best + 1; -#endif - fill_inverse_cmap (im, cquantize, c0, c1, c2, c3); - } - /* Now emit the colormap index for this cell */ - *outptr++ = (*cachep - 1); - } - } -} - -/* We assume that right shift corresponds to signed division by 2 with - * rounding towards minus infinity. This is correct for typical "arithmetic - * shift" instructions that shift in copies of the sign bit. But some - * C compilers implement >> with an unsigned shift. For these machines you - * must define RIGHT_SHIFT_IS_UNSIGNED. - * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. - * It is only applied with constant shift counts. SHIFT_TEMPS must be - * included in the variables of any routine using RIGHT_SHIFT. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define SHIFT_TEMPS INT32 shift_temp; -#define RIGHT_SHIFT(x,shft) \ - ((shift_temp = (x)) < 0 ? \ - (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ - (shift_temp >> (shft))) -#else -#define SHIFT_TEMPS -#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - - -static void -pass2_fs_dither (gdImagePtr im, my_cquantize_ptr cquantize) - -/* This version performs Floyd-Steinberg dithering */ -{ - hist4d histogram = cquantize->histogram; - register LOCFSERROR cur0, cur1, cur2, cur3; /* current error or pixel value */ - LOCFSERROR belowerr0, belowerr1, belowerr2, belowerr3; /* error for pixel below cur */ - LOCFSERROR bpreverr0, bpreverr1, bpreverr2, bpreverr3; /* error for below/prev col */ - register FSERRPTR errorptr; /* => fserrors[] at column before current */ - int *inptr; /* => current input pixel */ - unsigned char *outptr; /* => current output pixel */ - histptr cachep; - int dir; /* +1 or -1 depending on direction */ - int dir4; /* 4*dir, for advancing errorptr */ - int row; - int col; - int width = im->sx; - int num_rows = im->sy; - int *error_limit = cquantize->error_limiter; - int *colormap0 = im->red; - int *colormap1 = im->green; - int *colormap2 = im->blue; - int *colormap3 = im->alpha; - SHIFT_TEMPS - - for (row = 0; row < num_rows; row++) - { - inptr = im->tpixels[row]; - outptr = im->pixels[row]; - if (cquantize->on_odd_row) - { - /* work right to left in this row */ - inptr += (width - 1); /* so point to rightmost pixel */ - outptr += width - 1; - dir = -1; - dir4 = -4; - errorptr = cquantize->fserrors + (width + 1) * 4; /* => entry after last column */ - cquantize->on_odd_row = FALSE; /* flip for next time */ - } - else - { - /* work left to right in this row */ - dir = 1; - dir4 = 4; - errorptr = cquantize->fserrors; /* => entry before first real column */ - cquantize->on_odd_row = TRUE; /* flip for next time */ - } - /* Preset error values: no error propagated to first pixel from left */ - cur0 = cur1 = cur2 = cur3 = 0; - /* and no error propagated to row below yet */ - belowerr0 = belowerr1 = belowerr2 = belowerr3 = 0; - bpreverr0 = bpreverr1 = bpreverr2 = bpreverr3 = 0; - - for (col = width; col > 0; col--) - { - int a; - /* curN holds the error propagated from the previous pixel on the - * current line. Add the error propagated from the previous line - * to form the complete error correction term for this pixel, and - * round the error term (which is expressed * 16) to an integer. - * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct - * for either sign of the error value. - * Note: errorptr points to *previous* column's array entry. - */ - cur0 = RIGHT_SHIFT (cur0 + errorptr[dir4 + 0] + 8, 4); - cur1 = RIGHT_SHIFT (cur1 + errorptr[dir4 + 1] + 8, 4); - cur2 = RIGHT_SHIFT (cur2 + errorptr[dir4 + 2] + 8, 4); - cur3 = RIGHT_SHIFT (cur3 + errorptr[dir4 + 3] + 8, 4); - /* Limit the error using transfer function set by init_error_limit. - * See comments with init_error_limit for rationale. - */ - cur0 = error_limit[cur0]; - cur1 = error_limit[cur1]; - cur2 = error_limit[cur2]; - cur3 = error_limit[cur3]; - /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. - * The maximum error is +- MAXJSAMPLE (or less with error limiting); - * but we'll be lazy and just clamp this with an if test (TBB). - */ - cur0 += gdTrueColorGetRed (*inptr); - cur1 += gdTrueColorGetGreen (*inptr); - cur2 += gdTrueColorGetBlue (*inptr); - /* Expand to 8 bits for consistency with dithering algorithm -- TBB */ - a = gdTrueColorGetAlpha (*inptr); - cur3 += (a << 1) + (a >> 6); - if (cur0 < 0) - { - cur0 = 0; - } - if (cur0 > 255) - { - cur0 = 255; - } - if (cur1 < 0) - { - cur1 = 0; - } - if (cur1 > 255) - { - cur1 = 255; - } - if (cur2 < 0) - { - cur2 = 0; - } - if (cur2 > 255) - { - cur2 = 255; - } - if (cur3 < 0) - { - cur3 = 0; - } - if (cur3 > 255) - { - cur3 = 255; - } - /* Index into the cache with adjusted pixel value */ - cachep = &histogram - [cur0 >> C0_SHIFT] - [cur1 >> C1_SHIFT] - [cur2 >> C2_SHIFT] - [cur3 >> (C3_SHIFT + 1)]; - /* If we have not seen this color before, find nearest colormap */ - /* entry and update the cache */ - if (*cachep == 0) - fill_inverse_cmap (im, cquantize, - cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT, - cur3 >> (C3_SHIFT + 1)); - /* Now emit the colormap index for this cell */ - { - register int pixcode = *cachep - 1; - *outptr = pixcode; - /* Compute representation error for this pixel */ - cur0 -= colormap0[pixcode]; - cur1 -= colormap1[pixcode]; - cur2 -= colormap2[pixcode]; - cur3 -= ((colormap3[pixcode] << 1) + (colormap3[pixcode] >> 6)); - } - /* Compute error fractions to be propagated to adjacent pixels. - * Add these into the running sums, and simultaneously shift the - * next-line error sums left by 1 column. - */ - { - register LOCFSERROR bnexterr, delta; - - bnexterr = cur0; /* Process component 0 */ - delta = cur0 * 2; - cur0 += delta; /* form error * 3 */ - errorptr[0] = (FSERROR) (bpreverr0 + cur0); - cur0 += delta; /* form error * 5 */ - bpreverr0 = belowerr0 + cur0; - belowerr0 = bnexterr; - cur0 += delta; /* form error * 7 */ - bnexterr = cur1; /* Process component 1 */ - delta = cur1 * 2; - cur1 += delta; /* form error * 3 */ - errorptr[1] = (FSERROR) (bpreverr1 + cur1); - cur1 += delta; /* form error * 5 */ - bpreverr1 = belowerr1 + cur1; - belowerr1 = bnexterr; - cur1 += delta; /* form error * 7 */ - bnexterr = cur2; /* Process component 2 */ - delta = cur2 * 2; - cur2 += delta; /* form error * 3 */ - errorptr[2] = (FSERROR) (bpreverr2 + cur2); - cur2 += delta; /* form error * 5 */ - bpreverr2 = belowerr2 + cur2; - belowerr2 = bnexterr; - cur2 += delta; /* form error * 7 */ - bnexterr = cur3; /* Process component 3 */ - delta = cur3 * 2; - cur3 += delta; /* form error * 3 */ - errorptr[3] = (FSERROR) (bpreverr3 + cur3); - cur3 += delta; /* form error * 5 */ - bpreverr3 = belowerr3 + cur3; - belowerr3 = bnexterr; - cur3 += delta; /* form error * 7 */ - } - /* At this point curN contains the 7/16 error value to be propagated - * to the next pixel on the current line, and all the errors for the - * next line have been shifted over. We are therefore ready to move on. - */ - inptr += dir; /* Advance pixel pointers to next column */ - outptr += dir; - errorptr += dir4; /* advance errorptr to current column */ - } - /* Post-loop cleanup: we must unload the final error values into the - * final fserrors[] entry. Note we need not unload belowerrN because - * it is for the dummy column before or after the actual array. - */ - errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ - errorptr[1] = (FSERROR) bpreverr1; - errorptr[2] = (FSERROR) bpreverr2; - errorptr[3] = (FSERROR) bpreverr3; - } -} - - -/* - * Initialize the error-limiting transfer function (lookup table). - * The raw F-S error computation can potentially compute error values of up to - * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be - * much less, otherwise obviously wrong pixels will be created. (Typical - * effects include weird fringes at color-area boundaries, isolated bright - * pixels in a dark area, etc.) The standard advice for avoiding this problem - * is to ensure that the "corners" of the color cube are allocated as output - * colors; then repeated errors in the same direction cannot cause cascading - * error buildup. However, that only prevents the error from getting - * completely out of hand; Aaron Giles reports that error limiting improves - * the results even with corner colors allocated. - * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty - * well, but the smoother transfer function used below is even better. Thanks - * to Aaron Giles for this idea. - */ - -static int -init_error_limit (my_cquantize_ptr cquantize) -/* Allocate and fill in the error_limiter table */ -{ - int *table; - int in, out; - - cquantize->error_limiter_storage = (int *) gdMalloc ((255 * 2 + 1) * sizeof (int)); - if (!cquantize->error_limiter_storage) - { - return 0; - } - /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ - cquantize->error_limiter = cquantize->error_limiter_storage + 255; - table = cquantize->error_limiter; -#define STEPSIZE ((255+1)/16) - /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ - out = 0; - for (in = 0; in < STEPSIZE; in++, out++) - { - table[in] = out; - table[-in] = -out; - } - /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ - for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) - { - table[in] = out; - table[-in] = -out; - } - /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ - for (; in <= 255; in++) - { - table[in] = out; - table[-in] = -out; - } -#undef STEPSIZE - return 1; -} - -static void -zeroHistogram (hist4d histogram) -{ - int i; - int j; - /* Zero the histogram or inverse color map */ - for (i = 0; i < HIST_C0_ELEMS; i++) - { - for (j = 0; j < HIST_C1_ELEMS; j++) - { - memset (histogram[i][j], - 0, - HIST_C2_ELEMS * HIST_C3_ELEMS * sizeof (histcell)); - } - } -} - -/* Here we go at last. */ -void -gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted) -{ - my_cquantize_ptr cquantize = 0; - int i; - size_t arraysize; - if (!im->trueColor) - { - /* Nothing to do! */ - return; - } - if (colorsWanted > gdMaxColors) - { - colorsWanted = gdMaxColors; - } - im->pixels = gdCalloc (sizeof (unsigned char *), im->sy); - if (!im->pixels) - { - /* No can do */ - goto outOfMemory; - } - for (i = 0; (i < im->sy); i++) - { - im->pixels[i] = (unsigned char *) gdCalloc (sizeof (unsigned char), im->sx); - if (!im->pixels[i]) - { - goto outOfMemory; - } - } - cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1); - if (!cquantize) - { - /* No can do */ - goto outOfMemory; - } - /* Allocate the histogram/inverse colormap storage */ - cquantize->histogram = (hist4d) gdMalloc (HIST_C0_ELEMS * sizeof (hist3d)); - for (i = 0; i < HIST_C0_ELEMS; i++) - { - int j; - cquantize->histogram[i] = (hist3d) gdCalloc (HIST_C1_ELEMS, - sizeof (hist2d)); - if (!cquantize->histogram[i]) - { - goto outOfMemory; - } - for (j = 0; (j < HIST_C1_ELEMS); j++) - { - cquantize->histogram[i][j] = (hist2d) gdCalloc (HIST_C2_ELEMS * HIST_C3_ELEMS, - sizeof (histcell)); - if (!cquantize->histogram[i][j]) - { - goto outOfMemory; - } - } - } - cquantize->fserrors = (FSERRPTR) gdMalloc (4 * sizeof (FSERROR)); - init_error_limit (cquantize); - arraysize = (size_t) ((im->sx + 2) * - (4 * sizeof (FSERROR))); - /* Allocate Floyd-Steinberg workspace. */ - cquantize->fserrors = gdCalloc (arraysize, 1); - if (!cquantize->fserrors) - { - goto outOfMemory; - } - cquantize->on_odd_row = FALSE; - - /* Do the work! */ - zeroHistogram (cquantize->histogram); - prescan_quantize (im, cquantize); - select_colors (im, cquantize, 256); - /* TBB HACK REMOVE */ - { - FILE *out = fopen ("palettemap.png", "wb"); - int i; - gdImagePtr im2 = gdImageCreateTrueColor (256, 256); - for (i = 0; (i < 256); i++) - { - gdImageFilledRectangle (im2, (i % 16) * 16, (i / 16) * 16, - (i % 16) * 16 + 15, (i / 16) * 16 + 15, - gdTrueColorAlpha (im->red[i], im->green[i], - im->blue[i], im->alpha[i])); - } - gdImagePng (im2, out); - fclose (out); - gdImageDestroy (im2); - } - zeroHistogram (cquantize->histogram); - if (dither) - { - pass2_fs_dither (im, cquantize); - } - else - { - pass2_no_dither (im, cquantize); - } - if (cquantize->transparentIsPresent) - { - int mt = -1; - for (i = 0; (i < im->colorsTotal); i++) - { - if (im->alpha[i] > mt) - { - mt = im->alpha[i]; - } - } - for (i = 0; (i < im->colorsTotal); i++) - { - if (im->alpha[i] == mt) - { - im->alpha[i] = gdAlphaTransparent; - } - } - } - if (cquantize->opaqueIsPresent) - { - int mo = 128; - int moIndex = -1; - for (i = 0; (i < im->colorsTotal); i++) - { - if (im->alpha[i] < mo) - { - moIndex = i; - mo = im->alpha[i]; - } - } - for (i = 0; (i < im->colorsTotal); i++) - { - if (im->alpha[i] == mo) - { - im->alpha[i] = gdAlphaOpaque; - } - } - } - /* Success! Get rid of the truecolor image data. */ - im->trueColor = 0; - /* Junk the truecolor pixels */ - for (i = 0; i < im->sy; i++) - { - gdFree (im->tpixels[i]); - } - gdFree (im->tpixels); - im->tpixels = 0; - /* Tediously free stuff. */ -outOfMemory: - if (im->trueColor) - { - if (im->pixels) - { - /* On failure only */ - for (i = 0; i < im->sy; i++) - { - if (im->pixels[i]) - { - gdFree (im->pixels[i]); - } - } - gdFree (im->pixels); - } - im->pixels = 0; - } - - if (!cquantize) - return; - - for (i = 0; i < HIST_C0_ELEMS; i++) - { - if (cquantize->histogram[i]) - { - int j; - for (j = 0; j < HIST_C1_ELEMS; j++) - { - if (cquantize->histogram[i][j]) - { - gdFree (cquantize->histogram[i][j]); - } - } - gdFree (cquantize->histogram[i]); - } - } - if (cquantize->histogram) - { - gdFree (cquantize->histogram); - } - if (cquantize->fserrors) - { - gdFree (cquantize->fserrors); - } - if (cquantize->error_limiter_storage) - { - gdFree (cquantize->error_limiter_storage); - } - gdFree (cquantize); -} diff --git a/src/extra/gd/gd_wbmp.c b/src/extra/gd/gd_wbmp.c index 5281337..f1258da 100644 --- a/src/extra/gd/gd_wbmp.c +++ b/src/extra/gd/gd_wbmp.c @@ -105,7 +105,10 @@ gdImageWBMPCtx (gdImagePtr image, int fg, gdIOCtx * out) /* create the WBMP */ if ((wbmp = createwbmp (gdImageSX (image), gdImageSY (image), WBMP_WHITE)) == NULL) - fprintf (stderr, "Could not create WBMP\n"); + { + fprintf (stderr, "Could not create WBMP\n"); + return; + } /* fill up the WBMP structure */ pos = 0; diff --git a/src/extra/gd/gdcache.c b/src/extra/gd/gdcache.c index e4770f5..ff65b97 100644 --- a/src/extra/gd/gdcache.c +++ b/src/extra/gd/gdcache.c @@ -1,5 +1,6 @@ #include "gd.h" #include "gdhelpers.h" +#include #ifdef HAVE_LIBTTF #define NEED_CACHE 1 @@ -130,7 +131,9 @@ gdCacheGet (gdCache_head_t * head, void *keydata) else { /* cache full - replace least-recently-used */ /* preveprev becomes new end of list */ - prevprev->next = NULL; + assert (prevprev); + if (prevprev) + prevprev->next = NULL; elem = prev; (*(head->gdCacheRelease)) (elem->userdata); } diff --git a/src/extra/gd/gdft.c b/src/extra/gd/gdft.c index b1e9414..33430f6 100644 --- a/src/extra/gd/gdft.c +++ b/src/extra/gd/gdft.c @@ -574,6 +574,7 @@ gdft_draw_bitmap (gdImage * im, int fg, FT_Bitmap bitmap, int pen_x, int pen_y) for (col = 0; col < bitmap.width; col++, pc++) { + const int trueColor = im->trueColor; if (bitmap.pixel_mode == ft_pixel_mode_grays) { /* @@ -603,7 +604,7 @@ gdft_draw_bitmap (gdImage * im, int fg, FT_Bitmap bitmap, int pen_x, int pen_y) if (x >= im->sx || x < 0) continue; /* get pixel location in gd buffer */ - if (im->trueColor) + if (trueColor) { tpixel = &im->tpixels[y][x]; } @@ -614,7 +615,7 @@ gdft_draw_bitmap (gdImage * im, int fg, FT_Bitmap bitmap, int pen_x, int pen_y) if (tc_key.pixel == NUMCOLORS) { /* use fg color directly */ - if (im->trueColor) + if (trueColor) { *tpixel = fg; } @@ -625,23 +626,17 @@ gdft_draw_bitmap (gdImage * im, int fg, FT_Bitmap bitmap, int pen_x, int pen_y) } else { + tc_elem = (tweencolor_t *) gdCacheGet (tc_cache, &tc_key); + if (!tc_elem) return tc_cache->error; /* find antialised color */ - if (im->trueColor) + if (trueColor) { tc_key.bgcolor = *tpixel; - } - else - { - tc_key.bgcolor = *pixel; - } - tc_elem = (tweencolor_t *) gdCacheGet ( - tc_cache, &tc_key); - if (im->trueColor) - { *tpixel = tc_elem->tweencolor; } else { + tc_key.bgcolor = *pixel; *pixel = tc_elem->tweencolor; } } diff --git a/src/extra/gd/testac.c b/src/extra/gd/testac.c index 55a5434..47d466d 100644 --- a/src/extra/gd/testac.c +++ b/src/extra/gd/testac.c @@ -115,13 +115,6 @@ testDrawing ( Otherwise the file would typically be slightly larger. */ gdImageSaveAlpha (im_out, !blending); - /* If requested, convert from truecolor to palette. */ - if (palette) - { - /* Dithering, 256 colors. */ - gdImageTrueColorToPalette (im_out, 1, 256); - } - gdImagePng (im_out, out); fclose (out); diff --git a/src/extra/trio/strio.c b/src/extra/trio/strio.c index 0e7196c..c6796af 100644 --- a/src/extra/trio/strio.c +++ b/src/extra/trio/strio.c @@ -20,8 +20,6 @@ * - StrToLongDouble */ -static const char rcsid[] = "@(#)$Id: strio.c,v 1.1 2001/06/07 08:23:02 fjfranklin Exp $"; - #if defined(unix) || defined(__xlC__) # define PLATFORM_UNIX #elif defined(WIN32) || defined(_WIN32) diff --git a/src/extra/trio/trio.c b/src/extra/trio/trio.c index 83a2ce9..930e210 100644 --- a/src/extra/trio/trio.c +++ b/src/extra/trio/trio.c @@ -41,8 +41,6 @@ * immediately followed by an 's'. */ -static const char rcsid[] = "@(#)$Id: trio.c,v 1.1 2001/06/07 08:23:02 fjfranklin Exp $"; - #if defined(unix) || defined(__xlC__) /* AIX xlC workaround */ # define PLATFORM_UNIX #elif defined(AMIGA) && defined(__GNUC__) diff --git a/src/font.c b/src/font.c index b3927c9..6b88499 100644 --- a/src/font.c +++ b/src/font.c @@ -535,6 +535,8 @@ static void ipa_font_add_api (wmfAPI* API,char* name) float wmf_ipa_font_stringwidth (wmfAPI* API,wmfFont* font,char* str) { FT_Face face = WMF_FONT_FTFACE (font); + if (!face) return 0.0; + FT_Vector delta; FT_Bool use_kerning; @@ -592,6 +594,8 @@ float wmf_ipa_font_stringwidth (wmfAPI* API,wmfFont* font,char* str) static float ipa_char_position (wmfFont* font,char* str,char* last) { FT_Face face = WMF_FONT_FTFACE (font); + if (!face) return 0.0; + FT_Vector delta; FT_Bool use_kerning; @@ -1218,14 +1222,19 @@ static char* ipa_font_gs_readline (wmfAPI* API,FILE* in) line = more; if (line == 0) - { fContinue = wmf_false; + { break; } } if (line == 0) return (0); - if (fReadExtra) while (buf[strlen(buf)-1] != '\n') fgets (buf,128,in); + if (fReadExtra) + { + while (buf[strlen(buf)-1] != '\n') + if (fgets (buf,128,in) == 0) + break; + } /* Strip the string */ diff --git a/src/ipa/ipa/bmp.h b/src/ipa/ipa/bmp.h index 568d26e..94a1a17 100644 --- a/src/ipa/ipa/bmp.h +++ b/src/ipa/ipa/bmp.h @@ -947,8 +947,8 @@ static int DecodeImage (wmfBMP* bmp,BMPSource* src,unsigned int compression,unsi } /* ?? TODO if (QuantumTick (y,image->rows)) MagickMonitor (LoadImageText,y,image->rows); */ } - byte = ReadBlobByte (src); /* end of line */ - byte = ReadBlobByte (src); + ReadBlobByte (src); /* end of line */ + ReadBlobByte (src); return 1; } diff --git a/src/ipa/svg.c b/src/ipa/svg.c index 0692296..9c4adf7 100644 --- a/src/ipa/svg.c +++ b/src/ipa/svg.c @@ -156,7 +156,6 @@ static void wmf_svg_draw_text (wmfAPI* API,wmfDrawText_t* draw_text) svgPoint pt; float font_height; - float font_ratio; float sin_theta; float cos_theta; @@ -172,8 +171,6 @@ static void wmf_svg_draw_text (wmfAPI* API,wmfDrawText_t* draw_text) pt = svg_translate (API,draw_text->pt); font_height = svg_height (API,(float) draw_text->font_height); - font_ratio = svg_width (API,(float) (draw_text->font_height * draw_text->font_ratio)); - font_ratio /= font_height; theta = - WMF_TEXT_ANGLE (draw_text->dc->font); diff --git a/src/ipa/xgd/font.h b/src/ipa/xgd/font.h index 79b5d87..5b15e57 100644 --- a/src/ipa/xgd/font.h +++ b/src/ipa/xgd/font.h @@ -157,10 +157,6 @@ static void gd_draw_ftbitmap (wmfAPI* API,FT_Bitmap* bitmap,gdPoint pt,wmfRGB* f fg_pixel = gdImageColorResolve (gd->image,fg->r,fg->g,fg->b); - if (bitmap->pixel_mode == ft_pixel_mode_mono) - { color = fg_pixel; - } - for (row = 0; row < rows; row++) { buffer = bitmap->buffer + row * bitmap->pitch; diff --git a/src/meta.c b/src/meta.c index cf046a5..ea14f94 100644 --- a/src/meta.c +++ b/src/meta.c @@ -441,7 +441,6 @@ static void write_b64 (wmfAPI * API, const unsigned char * buffer, unsigned long b32 = (b32 << 16); *ptr++ = B64[(b32 >> 18) ]; *ptr++ = B64[(b32 >> 12) & 0x3f]; - remaining -= 1; } *ptr++ = '\n'; diff --git a/src/player.c b/src/player.c index 9b66eb7..813a2bf 100644 --- a/src/player.c +++ b/src/player.c @@ -554,7 +554,7 @@ static wmf_error_t WmfPlayMetaFile (wmfAPI* API) case META_SETVIEWPORTORG: SCAN_DIAGNOSTIC (API,"New Record: SETVIEWPORTORG"); - changed = meta_orgext (API,&Record); + meta_orgext (API,&Record); if (SCAN (API)) wmf_write (API, Size, Function, "setviewportorg", atts->atts, Record.parameter, Record.size * 2); SCAN_DIAGNOSTIC (API,"\n"); diff --git a/src/player/meta.h b/src/player/meta.h index d656dfd..b9762e3 100644 --- a/src/player/meta.h +++ b/src/player/meta.h @@ -412,16 +412,12 @@ static int meta_arc (wmfAPI* API,wmfRecord* Record) d_pt.y = c_pt.y; D_Coord_Register (API,d_pt,scope); /* fallthrough */ + default: case '2': d_pt.x = c_pt.x; d_pt.y = drawarc.TL.y; D_Coord_Register (API,d_pt,scope); break; - - default: - WMF_ERROR (API,"Glitch!"); - API->err = wmf_E_Glitch; - break; } break; @@ -445,16 +441,12 @@ static int meta_arc (wmfAPI* API,wmfRecord* Record) d_pt.y = drawarc.BR.y; D_Coord_Register (API,d_pt,scope); /* fallthrough */ + default: case '3': d_pt.x = drawarc.TL.x; d_pt.y = c_pt.y; D_Coord_Register (API,d_pt,scope); break; - - default: - WMF_ERROR (API,"Glitch!"); - API->err = wmf_E_Glitch; - break; } break; @@ -478,20 +470,17 @@ static int meta_arc (wmfAPI* API,wmfRecord* Record) d_pt.y = c_pt.y; D_Coord_Register (API,d_pt,scope); /* fallthrough */ + default: case '4': d_pt.x = c_pt.x; d_pt.y = drawarc.BR.y; D_Coord_Register (API,d_pt,scope); break; - - default: - WMF_ERROR (API,"Glitch!"); - API->err = wmf_E_Glitch; - break; } break; case '4': + default: switch (Qe) { case '4': @@ -511,23 +500,14 @@ static int meta_arc (wmfAPI* API,wmfRecord* Record) d_pt.y = drawarc.TL.y; D_Coord_Register (API,d_pt,scope); /* fallthrough */ + default: case '1': d_pt.x = drawarc.BR.x; d_pt.y = c_pt.y; D_Coord_Register (API,d_pt,scope); break; - - default: - WMF_ERROR (API,"Glitch!"); - API->err = wmf_E_Glitch; - break; } break; - - default: - WMF_ERROR (API,"Glitch!"); - API->err = wmf_E_Glitch; - break; } return (changed); @@ -2428,7 +2408,7 @@ static int meta_dc_color (wmfAPI* API,wmfRecord* Record,wmfAttributes* attrlist) hash[5] = hex[(color.b >> 4) & 0x0f]; hash[6] = hex[ color.b & 0x0f]; hash[7] = 0; - value = wmf_attr_add (API, attrlist, "color", hash); + wmf_attr_add (API, attrlist, "color", hash); } if (SCAN (API)) wmf_ipa_color_add (API,&color); @@ -3152,7 +3132,7 @@ static int meta_pen_create (wmfAPI* API,wmfRecord* Record,wmfAttributes* attrlis hash[5] = hex[(color.b >> 4) & 0x0f]; hash[6] = hex[ color.b & 0x0f]; hash[7] = 0; - value = wmf_attr_add (API, attrlist, "color", hash); + wmf_attr_add (API, attrlist, "color", hash); } WMF_PEN_SET_COLOR (pen,&color); @@ -3254,7 +3234,7 @@ static int meta_brush_create (wmfAPI* API,wmfRecord* Record,wmfAttributes* attrl hash[5] = hex[(color.b >> 4) & 0x0f]; hash[6] = hex[ color.b & 0x0f]; hash[7] = 0; - value = wmf_attr_add (API, attrlist, "color", hash); + wmf_attr_add (API, attrlist, "color", hash); } WMF_BRUSH_SET_COLOR (brush,&color); diff --git a/src/recorder.c b/src/recorder.c index b5e6431..ff371a7 100644 --- a/src/recorder.c +++ b/src/recorder.c @@ -48,6 +48,9 @@ static void s_rbox_set (wmfAPI * API, wmfConstruct * construct, { WMF_ERROR (API, "Hmm. Record out of range..."); API->err = wmf_E_Glitch; + rbox->start = NULL; + rbox->end = NULL; + rbox->ptr = NULL; return; } rbox->start = construct->buffer + construct->rec_offset[n ];