kyotocabinet/SOURCES/kyotocabinet-1.2.76-tr1_hashtable.patch
2021-09-09 19:47:54 +00:00

1327 lines
39 KiB
Diff

Workaround by Robert Scheck <robert@fedoraproject.org> for kyotocabinet >= 1.2.76, which
avoids the "error: declaration of 'struct std::tr1::hash<long long int>'" compile errors
when using GCC 4.1.x on Red Hat Enterprise Linux 5 instead of using recommented GCC 4.4.x
(or later) by copying and patching the relevant "/usr/include/c++/4.1.1/tr1/functional"
file. Passing "long long" and "unsigned long long" to tr1_hashtable_define_trivial_hash()
is the key. For further information, also have a look to Red Hat Bugzilla, bug ID #915123:
https://bugzilla.redhat.com/show_bug.cgi?id=915123
--- kyotocabinet-1.2.76/configure 2012-05-24 13:31:45.000000000 +0200
+++ kyotocabinet-1.2.76/configure.tr1_hashtable 2013-11-17 03:11:59.000000000 +0100
@@ -2090,7 +2090,7 @@
# Targets
MYHEADERFILES="kccommon.h kcutil.h kcthread.h kcfile.h"
-MYHEADERFILES="$MYHEADERFILES kccompress.h kccompare.h kcmap.h kcregex.h"
+MYHEADERFILES="$MYHEADERFILES kccompress.h kccompare.h kcmap.h kcregex.h kcfunctional.h"
MYHEADERFILES="$MYHEADERFILES kcdb.h kcplantdb.h kcprotodb.h kcstashdb.h kccachedb.h"
MYHEADERFILES="$MYHEADERFILES kchashdb.h kcdirdb.h kctextdb.h kcpolydb.h kcdbext.h kclangc.h"
MYLIBRARYFILES="libkyotocabinet.a"
--- kyotocabinet-1.2.76/configure.in 2012-05-24 13:31:42.000000000 +0200
+++ kyotocabinet-1.2.76/configure.in.tr1_hashtable 2013-11-17 03:12:07.000000000 +0100
@@ -16,7 +16,7 @@
# Targets
MYHEADERFILES="kccommon.h kcutil.h kcthread.h kcfile.h"
-MYHEADERFILES="$MYHEADERFILES kccompress.h kccompare.h kcmap.h kcregex.h"
+MYHEADERFILES="$MYHEADERFILES kccompress.h kccompare.h kcmap.h kcregex.h kcfunctional.h"
MYHEADERFILES="$MYHEADERFILES kcdb.h kcplantdb.h kcprotodb.h kcstashdb.h kccachedb.h"
MYHEADERFILES="$MYHEADERFILES kchashdb.h kcdirdb.h kctextdb.h kcpolydb.h kcdbext.h kclangc.h"
MYLIBRARYFILES="libkyotocabinet.a"
--- kyotocabinet-1.2.76/kccommon.h 2012-05-24 18:27:59.000000000 +0200
+++ kyotocabinet-1.2.76/kccommon.h.tr1_hashtable 2013-03-01 00:09:59.000000000 +0100
@@ -44,7 +44,7 @@
#include <typeinfo>
#include <utility>
-#include <functional>
+#include <kcfunctional.h>
#include <memory>
#include <iterator>
#include <algorithm>
--- kyotocabinet-1.2.76/kcfunctional.h 1970-01-01 01:00:00.000000000 +0100
+++ kyotocabinet-1.2.76/kcfunctional.h.tr1_hashtable 2013-03-01 00:06:28.000000000 +0100
@@ -0,0 +1,1282 @@
+// TR1 functional header -*- C++ -*-
+
+// Copyright (C) 2004, 2005 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING. If not, write to the Free
+// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction. Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License. This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+/** @file
+ * This is a TR1 C++ Library header.
+ */
+
+#ifndef _TR1_FUNCTIONAL
+#define _TR1_FUNCTIONAL 1
+
+#pragma GCC system_header
+
+#include "../functional"
+#include <typeinfo>
+#include <tr1/type_traits>
+#include <bits/cpp_type_traits.h>
+#include <string> // for std::tr1::hash
+#include <cstdlib> // for std::abort
+#include <cmath> // for std::frexp
+#include <tr1/tuple>
+
+namespace std
+{
+namespace tr1
+{
+ template<typename _MemberPointer>
+ class _Mem_fn;
+
+ /**
+ * @if maint
+ * Actual implementation of _Has_result_type, which uses SFINAE to
+ * determine if the type _Tp has a publicly-accessible member type
+ * result_type.
+ * @endif
+ */
+ template<typename _Tp>
+ class _Has_result_type_helper : __sfinae_types
+ {
+ template<typename _Up>
+ struct _Wrap_type
+ { };
+
+ template<typename _Up>
+ static __one __test(_Wrap_type<typename _Up::result_type>*);
+
+ template<typename _Up>
+ static __two __test(...);
+
+ public:
+ static const bool value = sizeof(__test<_Tp>(0)) == 1;
+ };
+
+ template<typename _Tp>
+ struct _Has_result_type
+ : integral_constant<
+ bool,
+ _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
+ { };
+
+ /**
+ * @if maint
+ * If we have found a result_type, extract it.
+ * @endif
+ */
+ template<bool _Has_result_type, typename _Functor>
+ struct _Maybe_get_result_type
+ { };
+
+ template<typename _Functor>
+ struct _Maybe_get_result_type<true, _Functor>
+ {
+ typedef typename _Functor::result_type result_type;
+ };
+
+ /**
+ * @if maint
+ * Base class for any function object that has a weak result type, as
+ * defined in 3.3/3 of TR1.
+ * @endif
+ */
+ template<typename _Functor>
+ struct _Weak_result_type_impl
+ : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
+ {
+ };
+
+ /**
+ * @if maint
+ * Strip top-level cv-qualifiers from the function object and let
+ * _Weak_result_type_impl perform the real work.
+ * @endif
+ */
+ template<typename _Functor>
+ struct _Weak_result_type
+ : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
+ {
+ };
+
+ template<typename _Signature>
+ class result_of;
+
+ /**
+ * @if maint
+ * Actual implementation of result_of. When _Has_result_type is
+ * true, gets its result from _Weak_result_type. Otherwise, uses
+ * the function object's member template result to extract the
+ * result type.
+ * @endif
+ */
+ template<bool _Has_result_type, typename _Signature>
+ struct _Result_of_impl;
+
+ // Handle member data pointers using _Mem_fn's logic
+ template<typename _Res, typename _Class, typename _T1>
+ struct _Result_of_impl<false, _Res _Class::*(_T1)>
+ {
+ typedef typename _Mem_fn<_Res _Class::*>
+ ::template _Result_type<_T1>::type type;
+ };
+
+ /**
+ * @if maint
+ * Determines if the type _Tp derives from unary_function.
+ * @endif
+ */
+ template<typename _Tp>
+ struct _Derives_from_unary_function : __sfinae_types
+ {
+ private:
+ template<typename _T1, typename _Res>
+ static __one __test(const volatile unary_function<_T1, _Res>*);
+
+ // It's tempting to change "..." to const volatile void*, but
+ // that fails when _Tp is a function type.
+ static __two __test(...);
+
+ public:
+ static const bool value = sizeof(__test((_Tp*)0)) == 1;
+ };
+
+ /**
+ * @if maint
+ * Determines if the type _Tp derives from binary_function.
+ * @endif
+ */
+ template<typename _Tp>
+ struct _Derives_from_binary_function : __sfinae_types
+ {
+ private:
+ template<typename _T1, typename _T2, typename _Res>
+ static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
+
+ // It's tempting to change "..." to const volatile void*, but
+ // that fails when _Tp is a function type.
+ static __two __test(...);
+
+ public:
+ static const bool value = sizeof(__test((_Tp*)0)) == 1;
+ };
+
+ /**
+ * @if maint
+ * Turns a function type into a function pointer type
+ * @endif
+ */
+ template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
+ struct _Function_to_function_pointer
+ {
+ typedef _Tp type;
+ };
+
+ template<typename _Tp>
+ struct _Function_to_function_pointer<_Tp, true>
+ {
+ typedef _Tp* type;
+ };
+
+ /**
+ * @if maint
+ * Knowing which of unary_function and binary_function _Tp derives
+ * from, derives from the same and ensures that reference_wrapper
+ * will have a weak result type. See cases below.
+ * @endif
+ */
+ template<bool _Unary, bool _Binary, typename _Tp>
+ struct _Reference_wrapper_base_impl;
+
+ // Not a unary_function or binary_function, so try a weak result type
+ template<typename _Tp>
+ struct _Reference_wrapper_base_impl<false, false, _Tp>
+ : _Weak_result_type<_Tp>
+ { };
+
+ // unary_function but not binary_function
+ template<typename _Tp>
+ struct _Reference_wrapper_base_impl<true, false, _Tp>
+ : unary_function<typename _Tp::argument_type,
+ typename _Tp::result_type>
+ { };
+
+ // binary_function but not unary_function
+ template<typename _Tp>
+ struct _Reference_wrapper_base_impl<false, true, _Tp>
+ : binary_function<typename _Tp::first_argument_type,
+ typename _Tp::second_argument_type,
+ typename _Tp::result_type>
+ { };
+
+ // both unary_function and binary_function. import result_type to
+ // avoid conflicts.
+ template<typename _Tp>
+ struct _Reference_wrapper_base_impl<true, true, _Tp>
+ : unary_function<typename _Tp::argument_type,
+ typename _Tp::result_type>,
+ binary_function<typename _Tp::first_argument_type,
+ typename _Tp::second_argument_type,
+ typename _Tp::result_type>
+ {
+ typedef typename _Tp::result_type result_type;
+ };
+
+ /**
+ * @if maint
+ * Derives from unary_function or binary_function when it
+ * can. Specializations handle all of the easy cases. The primary
+ * template determines what to do with a class type, which may
+ * derive from both unary_function and binary_function.
+ * @endif
+ */
+ template<typename _Tp>
+ struct _Reference_wrapper_base
+ : _Reference_wrapper_base_impl<
+ _Derives_from_unary_function<_Tp>::value,
+ _Derives_from_binary_function<_Tp>::value,
+ _Tp>
+ { };
+
+ // - a function type (unary)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res(_T1)>
+ : unary_function<_T1, _Res>
+ { };
+
+ // - a function type (binary)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res(_T1, _T2)>
+ : binary_function<_T1, _T2, _Res>
+ { };
+
+ // - a function pointer type (unary)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res(*)(_T1)>
+ : unary_function<_T1, _Res>
+ { };
+
+ // - a function pointer type (binary)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
+ : binary_function<_T1, _T2, _Res>
+ { };
+
+ // - a pointer to member function type (unary, no qualifiers)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res (_T1::*)()>
+ : unary_function<_T1*, _Res>
+ { };
+
+ // - a pointer to member function type (binary, no qualifiers)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
+ : binary_function<_T1*, _T2, _Res>
+ { };
+
+ // - a pointer to member function type (unary, const)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res (_T1::*)() const>
+ : unary_function<const _T1*, _Res>
+ { };
+
+ // - a pointer to member function type (binary, const)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
+ : binary_function<const _T1*, _T2, _Res>
+ { };
+
+ // - a pointer to member function type (unary, volatile)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
+ : unary_function<volatile _T1*, _Res>
+ { };
+
+ // - a pointer to member function type (binary, volatile)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
+ : binary_function<volatile _T1*, _T2, _Res>
+ { };
+
+ // - a pointer to member function type (unary, const volatile)
+ template<typename _Res, typename _T1>
+ struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
+ : unary_function<const volatile _T1*, _Res>
+ { };
+
+ // - a pointer to member function type (binary, const volatile)
+ template<typename _Res, typename _T1, typename _T2>
+ struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
+ : binary_function<const volatile _T1*, _T2, _Res>
+ { };
+
+ template<typename _Tp>
+ class reference_wrapper
+ : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
+ {
+ // If _Tp is a function type, we can't form result_of<_Tp(...)>,
+ // so turn it into a function pointer type.
+ typedef typename _Function_to_function_pointer<_Tp>::type
+ _M_func_type;
+
+ _Tp* _M_data;
+ public:
+ typedef _Tp type;
+ explicit reference_wrapper(_Tp& __indata): _M_data(&__indata)
+ { }
+
+ reference_wrapper(const reference_wrapper<_Tp>& __inref):
+ _M_data(__inref._M_data)
+ { }
+
+ reference_wrapper&
+ operator=(const reference_wrapper<_Tp>& __inref)
+ {
+ _M_data = __inref._M_data;
+ return *this;
+ }
+
+ operator _Tp&() const
+ { return this->get(); }
+
+ _Tp&
+ get() const
+ { return *_M_data; }
+
+#define _GLIBCXX_REPEAT_HEADER <tr1/ref_wrap_iterate.h>
+#include <tr1/repeat.h>
+#undef _GLIBCXX_REPEAT_HEADER
+ };
+
+
+ // Denotes a reference should be taken to a variable.
+ template<typename _Tp>
+ inline reference_wrapper<_Tp>
+ ref(_Tp& __t)
+ { return reference_wrapper<_Tp>(__t); }
+
+ // Denotes a const reference should be taken to a variable.
+ template<typename _Tp>
+ inline reference_wrapper<const _Tp>
+ cref(const _Tp& __t)
+ { return reference_wrapper<const _Tp>(__t); }
+
+ template<typename _Tp>
+ inline reference_wrapper<_Tp>
+ ref(reference_wrapper<_Tp> __t)
+ { return ref(__t.get()); }
+
+ template<typename _Tp>
+ inline reference_wrapper<const _Tp>
+ cref(reference_wrapper<_Tp> __t)
+ { return cref(__t.get()); }
+
+ template<typename _Tp, bool>
+ struct _Mem_fn_const_or_non
+ {
+ typedef const _Tp& type;
+ };
+
+ template<typename _Tp>
+ struct _Mem_fn_const_or_non<_Tp, false>
+ {
+ typedef _Tp& type;
+ };
+
+ template<typename _Res, typename _Class>
+ class _Mem_fn<_Res _Class::*>
+ {
+ // This bit of genius is due to Peter Dimov, improved slightly by
+ // Douglas Gregor.
+ template<typename _Tp>
+ _Res&
+ _M_call(_Tp& __object, _Class *) const
+ { return __object.*__pm; }
+
+ template<typename _Tp, typename _Up>
+ _Res&
+ _M_call(_Tp& __object, _Up * const *) const
+ { return (*__object).*__pm; }
+
+ template<typename _Tp, typename _Up>
+ const _Res&
+ _M_call(_Tp& __object, const _Up * const *) const
+ { return (*__object).*__pm; }
+
+ template<typename _Tp>
+ const _Res&
+ _M_call(_Tp& __object, const _Class *) const
+ { return __object.*__pm; }
+
+ template<typename _Tp>
+ const _Res&
+ _M_call(_Tp& __ptr, const volatile void*) const
+ { return (*__ptr).*__pm; }
+
+ template<typename _Tp> static _Tp& __get_ref();
+
+ template<typename _Tp>
+ static __sfinae_types::__one __check_const(_Tp&, _Class*);
+ template<typename _Tp, typename _Up>
+ static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
+ template<typename _Tp, typename _Up>
+ static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
+ template<typename _Tp>
+ static __sfinae_types::__two __check_const(_Tp&, const _Class*);
+ template<typename _Tp>
+ static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
+
+ public:
+ template<typename _Tp>
+ struct _Result_type
+ : _Mem_fn_const_or_non<
+ _Res,
+ (sizeof(__sfinae_types::__two)
+ == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
+ { };
+
+ template<typename _Signature>
+ struct result;
+
+ template<typename _CVMem, typename _Tp>
+ struct result<_CVMem(_Tp)>
+ : public _Result_type<_Tp> { };
+
+ template<typename _CVMem, typename _Tp>
+ struct result<_CVMem(_Tp&)>
+ : public _Result_type<_Tp> { };
+
+ explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
+
+ // Handle objects
+ _Res& operator()(_Class& __object) const
+ { return __object.*__pm; }
+
+ const _Res& operator()(const _Class& __object) const
+ { return __object.*__pm; }
+
+ // Handle pointers
+ _Res& operator()(_Class* __object) const
+ { return __object->*__pm; }
+
+ const _Res&
+ operator()(const _Class* __object) const
+ { return __object->*__pm; }
+
+ // Handle smart pointers and derived
+ template<typename _Tp>
+ typename _Result_type<_Tp>::type
+ operator()(_Tp& __unknown) const
+ { return _M_call(__unknown, &__unknown); }
+
+ private:
+ _Res _Class::*__pm;
+ };
+
+ /**
+ * @brief Returns a function object that forwards to the member
+ * pointer @a pm.
+ */
+ template<typename _Tp, typename _Class>
+ inline _Mem_fn<_Tp _Class::*>
+ mem_fn(_Tp _Class::* __pm)
+ {
+ return _Mem_fn<_Tp _Class::*>(__pm);
+ }
+
+ /**
+ * @brief Determines if the given type _Tp is a function object
+ * should be treated as a subexpression when evaluating calls to
+ * function objects returned by bind(). [TR1 3.6.1]
+ */
+ template<typename _Tp>
+ struct is_bind_expression
+ {
+ static const bool value = false;
+ };
+
+ /**
+ * @brief Determines if the given type _Tp is a placeholder in a
+ * bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
+ */
+ template<typename _Tp>
+ struct is_placeholder
+ {
+ static const int value = 0;
+ };
+
+ /**
+ * @if maint
+ * The type of placeholder objects defined by libstdc++.
+ * @endif
+ */
+ template<int _Num> struct _Placeholder { };
+
+ /**
+ * @if maint
+ * Partial specialization of is_placeholder that provides the placeholder
+ * number for the placeholder objects defined by libstdc++.
+ * @endif
+ */
+ template<int _Num>
+ struct is_placeholder<_Placeholder<_Num> >
+ {
+ static const int value = _Num;
+ };
+
+ /**
+ * @if maint
+ * Maps an argument to bind() into an actual argument to the bound
+ * function object [TR1 3.6.3/5]. Only the first parameter should
+ * be specified: the rest are used to determine among the various
+ * implementations. Note that, although this class is a function
+ * object, isn't not entirely normal because it takes only two
+ * parameters regardless of the number of parameters passed to the
+ * bind expression. The first parameter is the bound argument and
+ * the second parameter is a tuple containing references to the
+ * rest of the arguments.
+ * @endif
+ */
+ template<typename _Arg,
+ bool _IsBindExp = is_bind_expression<_Arg>::value,
+ bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
+ class _Mu;
+
+ /**
+ * @if maint
+ * If the argument is reference_wrapper<_Tp>, returns the
+ * underlying reference. [TR1 3.6.3/5 bullet 1]
+ * @endif
+ */
+ template<typename _Tp>
+ class _Mu<reference_wrapper<_Tp>, false, false>
+ {
+ public:
+ typedef _Tp& result_type;
+
+ /* Note: This won't actually work for const volatile
+ * reference_wrappers, because reference_wrapper::get() is const
+ * but not volatile-qualified. This might be a defect in the TR.
+ */
+ template<typename _CVRef, typename _Tuple>
+ result_type
+ operator()(_CVRef& __arg, const _Tuple&) const volatile
+ { return __arg.get(); }
+ };
+
+ /**
+ * @if maint
+ * If the argument is a bind expression, we invoke the underlying
+ * function object with the same cv-qualifiers as we are given and
+ * pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
+ * @endif
+ */
+ template<typename _Arg>
+ class _Mu<_Arg, true, false>
+ {
+ public:
+ template<typename _Signature> class result;
+
+#define _GLIBCXX_REPEAT_HEADER <tr1/mu_iterate.h>
+# include <tr1/repeat.h>
+#undef _GLIBCXX_REPEAT_HEADER
+ };
+
+ /**
+ * @if maint
+ * If the argument is a placeholder for the Nth argument, returns
+ * a reference to the Nth argument to the bind function object.
+ * [TR1 3.6.3/5 bullet 3]
+ * @endif
+ */
+ template<typename _Arg>
+ class _Mu<_Arg, false, true>
+ {
+ public:
+ template<typename _Signature> class result;
+
+ template<typename _CVMu, typename _CVArg, typename _Tuple>
+ class result<_CVMu(_CVArg, _Tuple)>
+ {
+ // Add a reference, if it hasn't already been done for us.
+ // This allows us to be a little bit sloppy in constructing
+ // the tuple that we pass to result_of<...>.
+ typedef typename tuple_element<(is_placeholder<_Arg>::value - 1),
+ _Tuple>::type __base_type;
+
+ public:
+ typedef typename add_reference<__base_type>::type type;
+ };
+
+ template<typename _Tuple>
+ typename result<_Mu(_Arg, _Tuple)>::type
+ operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
+ {
+ return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
+ }
+ };
+
+ /**
+ * @if maint
+ * If the argument is just a value, returns a reference to that
+ * value. The cv-qualifiers on the reference are the same as the
+ * cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
+ * @endif
+ */
+ template<typename _Arg>
+ class _Mu<_Arg, false, false>
+ {
+ public:
+ template<typename _Signature> struct result;
+
+ template<typename _CVMu, typename _CVArg, typename _Tuple>
+ struct result<_CVMu(_CVArg, _Tuple)>
+ {
+ typedef typename add_reference<_CVArg>::type type;
+ };
+
+ // Pick up the cv-qualifiers of the argument
+ template<typename _CVArg, typename _Tuple>
+ _CVArg& operator()(_CVArg& __arg, const _Tuple&) const volatile
+ { return __arg; }
+ };
+
+ /**
+ * @if maint
+ * Maps member pointers into instances of _Mem_fn but leaves all
+ * other function objects untouched. Used by tr1::bind(). The
+ * primary template handles the non--member-pointer case.
+ * @endif
+ */
+ template<typename _Tp>
+ struct _Maybe_wrap_member_pointer
+ {
+ typedef _Tp type;
+ static const _Tp& __do_wrap(const _Tp& __x) { return __x; }
+ };
+
+ /**
+ * @if maint
+ * Maps member pointers into instances of _Mem_fn but leaves all
+ * other function objects untouched. Used by tr1::bind(). This
+ * partial specialization handles the member pointer case.
+ * @endif
+ */
+ template<typename _Tp, typename _Class>
+ struct _Maybe_wrap_member_pointer<_Tp _Class::*>
+ {
+ typedef _Mem_fn<_Tp _Class::*> type;
+ static type __do_wrap(_Tp _Class::* __pm) { return type(__pm); }
+ };
+
+ /**
+ * @if maint
+ * Type of the function object returned from bind().
+ * @endif
+ */
+ template<typename _Signature>
+ struct _Bind;
+
+ /**
+ * @if maint
+ * Type of the function object returned from bind<R>().
+ * @endif
+ */
+ template<typename _Result, typename _Signature>
+ struct _Bind_result;
+
+ /**
+ * @if maint
+ * Class template _Bind is always a bind expression.
+ * @endif
+ */
+ template<typename _Signature>
+ struct is_bind_expression<_Bind<_Signature> >
+ {
+ static const bool value = true;
+ };
+
+ /**
+ * @if maint
+ * Class template _Bind_result is always a bind expression.
+ * @endif
+ */
+ template<typename _Result, typename _Signature>
+ struct is_bind_expression<_Bind_result<_Result, _Signature> >
+ {
+ static const bool value = true;
+ };
+
+ /**
+ * @brief Exception class thrown when class template function's
+ * operator() is called with an empty target.
+ *
+ */
+ class bad_function_call : public std::exception { };
+
+ /**
+ * @if maint
+ * The integral constant expression 0 can be converted into a
+ * pointer to this type. It is used by the function template to
+ * accept NULL pointers.
+ * @endif
+ */
+ struct _M_clear_type;
+
+ /**
+ * @if maint
+ * Trait identifying "location-invariant" types, meaning that the
+ * address of the object (or any of its members) will not escape.
+ * Also implies a trivial copy constructor and assignment operator.
+ * @endif
+ */
+ template<typename _Tp>
+ struct __is_location_invariant
+ : integral_constant<bool,
+ (is_pointer<_Tp>::value
+ || is_member_pointer<_Tp>::value)>
+ {
+ };
+
+ class _Undefined_class;
+
+ union _Nocopy_types
+ {
+ void* _M_object;
+ const void* _M_const_object;
+ void (*_M_function_pointer)();
+ void (_Undefined_class::*_M_member_pointer)();
+ };
+
+ union _Any_data {
+ void* _M_access() { return &_M_pod_data[0]; }
+ const void* _M_access() const { return &_M_pod_data[0]; }
+
+ template<typename _Tp> _Tp& _M_access()
+ { return *static_cast<_Tp*>(_M_access()); }
+
+ template<typename _Tp> const _Tp& _M_access() const
+ { return *static_cast<const _Tp*>(_M_access()); }
+
+ _Nocopy_types _M_unused;
+ char _M_pod_data[sizeof(_Nocopy_types)];
+ };
+
+ enum _Manager_operation
+ {
+ __get_type_info,
+ __get_functor_ptr,
+ __clone_functor,
+ __destroy_functor
+ };
+
+ /* Simple type wrapper that helps avoid annoying const problems
+ when casting between void pointers and pointers-to-pointers. */
+ template<typename _Tp>
+ struct _Simple_type_wrapper
+ {
+ _Simple_type_wrapper(_Tp __value) : __value(__value) { }
+
+ _Tp __value;
+ };
+
+ template<typename _Tp>
+ struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
+ : __is_location_invariant<_Tp>
+ {
+ };
+
+ // Converts a reference to a function object into a callable
+ // function object.
+ template<typename _Functor>
+ inline _Functor& __callable_functor(_Functor& __f) { return __f; }
+
+ template<typename _Member, typename _Class>
+ inline _Mem_fn<_Member _Class::*>
+ __callable_functor(_Member _Class::* &__p)
+ { return mem_fn(__p); }
+
+ template<typename _Member, typename _Class>
+ inline _Mem_fn<_Member _Class::*>
+ __callable_functor(_Member _Class::* const &__p)
+ { return mem_fn(__p); }
+
+ template<typename _Signature, typename _Functor>
+ class _Function_handler;
+
+ template<typename _Signature>
+ class function;
+
+
+ /**
+ * @if maint
+ * Base class of all polymorphic function object wrappers.
+ * @endif
+ */
+ class _Function_base
+ {
+ public:
+ static const std::size_t _M_max_size = sizeof(_Nocopy_types);
+ static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
+
+ template<typename _Functor>
+ class _Base_manager
+ {
+ protected:
+ static const bool __stored_locally =
+ (__is_location_invariant<_Functor>::value
+ && sizeof(_Functor) <= _M_max_size
+ && __alignof__(_Functor) <= _M_max_align
+ && (_M_max_align % __alignof__(_Functor) == 0));
+ typedef integral_constant<bool, __stored_locally> _Local_storage;
+
+ // Retrieve a pointer to the function object
+ static _Functor* _M_get_pointer(const _Any_data& __source)
+ {
+ const _Functor* __ptr =
+ __stored_locally? &__source._M_access<_Functor>()
+ /* have stored a pointer */ : __source._M_access<_Functor*>();
+ return const_cast<_Functor*>(__ptr);
+ }
+
+ // Clone a location-invariant function object that fits within
+ // an _Any_data structure.
+ static void
+ _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
+ {
+ new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
+ }
+
+ // Clone a function object that is not location-invariant or
+ // that cannot fit into an _Any_data structure.
+ static void
+ _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
+ {
+ __dest._M_access<_Functor*>() =
+ new _Functor(*__source._M_access<_Functor*>());
+ }
+
+ // Destroying a location-invariant object may still require
+ // destruction.
+ static void
+ _M_destroy(_Any_data& __victim, true_type)
+ {
+ __victim._M_access<_Functor>().~_Functor();
+ }
+
+ // Destroying an object located on the heap.
+ static void
+ _M_destroy(_Any_data& __victim, false_type)
+ {
+ delete __victim._M_access<_Functor*>();
+ }
+
+ public:
+ static bool
+ _M_manager(_Any_data& __dest, const _Any_data& __source,
+ _Manager_operation __op)
+ {
+ switch (__op) {
+ case __get_type_info:
+ __dest._M_access<const type_info*>() = &typeid(_Functor);
+ break;
+
+ case __get_functor_ptr:
+ __dest._M_access<_Functor*>() = _M_get_pointer(__source);
+ break;
+
+ case __clone_functor:
+ _M_clone(__dest, __source, _Local_storage());
+ break;
+
+ case __destroy_functor:
+ _M_destroy(__dest, _Local_storage());
+ break;
+ }
+ return false;
+ }
+
+ static void
+ _M_init_functor(_Any_data& __functor, const _Functor& __f)
+ {
+ _M_init_functor(__functor, __f, _Local_storage());
+ }
+
+ template<typename _Signature>
+ static bool
+ _M_not_empty_function(const function<_Signature>& __f)
+ {
+ return __f;
+ }
+
+ template<typename _Tp>
+ static bool
+ _M_not_empty_function(const _Tp*& __fp)
+ {
+ return __fp;
+ }
+
+ template<typename _Class, typename _Tp>
+ static bool
+ _M_not_empty_function(_Tp _Class::* const& __mp)
+ {
+ return __mp;
+ }
+
+ template<typename _Tp>
+ static bool
+ _M_not_empty_function(const _Tp&)
+ {
+ return true;
+ }
+
+ private:
+ static void
+ _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
+ {
+ new (__functor._M_access()) _Functor(__f);
+ }
+
+ static void
+ _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
+ {
+ __functor._M_access<_Functor*>() = new _Functor(__f);
+ }
+ };
+
+ template<typename _Functor>
+ class _Ref_manager : public _Base_manager<_Functor*>
+ {
+ typedef _Function_base::_Base_manager<_Functor*> _Base;
+
+ public:
+ static bool
+ _M_manager(_Any_data& __dest, const _Any_data& __source,
+ _Manager_operation __op)
+ {
+ switch (__op) {
+ case __get_type_info:
+ __dest._M_access<const type_info*>() = &typeid(_Functor);
+ break;
+
+ case __get_functor_ptr:
+ __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
+ return is_const<_Functor>::value;
+ break;
+
+ default:
+ _Base::_M_manager(__dest, __source, __op);
+ }
+ return false;
+ }
+
+ static void
+ _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
+ {
+ // TBD: Use address_of function instead
+ _Base::_M_init_functor(__functor, &__f.get());
+ }
+ };
+
+ _Function_base() : _M_manager(0) { }
+
+ ~_Function_base()
+ {
+ if (_M_manager)
+ {
+ _M_manager(_M_functor, _M_functor, __destroy_functor);
+ }
+ }
+
+
+ bool _M_empty() const { return !_M_manager; }
+
+ typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
+ _Manager_operation);
+
+ _Any_data _M_functor;
+ _Manager_type _M_manager;
+ };
+
+ // [3.7.2.7] null pointer comparisons
+
+ /**
+ * @brief Compares a polymorphic function object wrapper against 0
+ * (the NULL pointer).
+ * @returns @c true if the wrapper has no target, @c false otherwise
+ *
+ * This function will not throw an exception.
+ */
+ template<typename _Signature>
+ inline bool
+ operator==(const function<_Signature>& __f, _M_clear_type*)
+ {
+ return !__f;
+ }
+
+ /**
+ * @overload
+ */
+ template<typename _Signature>
+ inline bool
+ operator==(_M_clear_type*, const function<_Signature>& __f)
+ {
+ return !__f;
+ }
+
+ /**
+ * @brief Compares a polymorphic function object wrapper against 0
+ * (the NULL pointer).
+ * @returns @c false if the wrapper has no target, @c true otherwise
+ *
+ * This function will not throw an exception.
+ */
+ template<typename _Signature>
+ inline bool
+ operator!=(const function<_Signature>& __f, _M_clear_type*)
+ {
+ return __f;
+ }
+
+ /**
+ * @overload
+ */
+ template<typename _Signature>
+ inline bool
+ operator!=(_M_clear_type*, const function<_Signature>& __f)
+ {
+ return __f;
+ }
+
+ // [3.7.2.8] specialized algorithms
+
+ /**
+ * @brief Swap the targets of two polymorphic function object wrappers.
+ *
+ * This function will not throw an exception.
+ */
+ template<typename _Signature>
+ inline void
+ swap(function<_Signature>& __x, function<_Signature>& __y)
+ {
+ __x.swap(__y);
+ }
+
+#define _GLIBCXX_JOIN(X,Y) _GLIBCXX_JOIN2( X , Y )
+#define _GLIBCXX_JOIN2(X,Y) _GLIBCXX_JOIN3(X,Y)
+#define _GLIBCXX_JOIN3(X,Y) X##Y
+#define _GLIBCXX_REPEAT_HEADER <tr1/functional_iterate.h>
+#include <tr1/repeat.h>
+#undef _GLIBCXX_REPEAT_HEADER
+#undef _GLIBCXX_JOIN3
+#undef _GLIBCXX_JOIN2
+#undef _GLIBCXX_JOIN
+
+ // Definition of default hash function std::tr1::hash<>. The types for
+ // which std::tr1::hash<T> is defined is in clause 6.3.3. of the PDTR.
+ template<typename T>
+ struct hash;
+
+#define tr1_hashtable_define_trivial_hash(T) \
+ template<> \
+ struct hash<T> \
+ : public std::unary_function<T, std::size_t> \
+ { \
+ std::size_t \
+ operator()(T val) const \
+ { return static_cast<std::size_t>(val); } \
+ }
+
+ tr1_hashtable_define_trivial_hash(bool);
+ tr1_hashtable_define_trivial_hash(char);
+ tr1_hashtable_define_trivial_hash(signed char);
+ tr1_hashtable_define_trivial_hash(unsigned char);
+ tr1_hashtable_define_trivial_hash(wchar_t);
+ tr1_hashtable_define_trivial_hash(short);
+ tr1_hashtable_define_trivial_hash(int);
+ tr1_hashtable_define_trivial_hash(long);
+ tr1_hashtable_define_trivial_hash(unsigned short);
+ tr1_hashtable_define_trivial_hash(unsigned int);
+ tr1_hashtable_define_trivial_hash(unsigned long);
+ tr1_hashtable_define_trivial_hash(long long);
+ tr1_hashtable_define_trivial_hash(unsigned long long);
+
+#undef tr1_hashtable_define_trivial_hash
+
+ template<typename T>
+ struct hash<T*>
+ : public std::unary_function<T*, std::size_t>
+ {
+ std::size_t
+ operator()(T* p) const
+ { return reinterpret_cast<std::size_t>(p); }
+ };
+
+ // Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
+ // (used by the next specializations of std::tr1::hash<>)
+
+ // Dummy generic implementation (for sizeof(size_t) != 4, 8).
+ template<std::size_t = sizeof(std::size_t)>
+ struct Fnv_hash
+ {
+ static std::size_t
+ hash(const char* first, std::size_t length)
+ {
+ std::size_t result = 0;
+ for (; length > 0; --length)
+ result = (result * 131) + *first++;
+ return result;
+ }
+ };
+
+ template<>
+ struct Fnv_hash<4>
+ {
+ static std::size_t
+ hash(const char* first, std::size_t length)
+ {
+ std::size_t result = static_cast<std::size_t>(2166136261UL);
+ for (; length > 0; --length)
+ {
+ result ^= (std::size_t)*first++;
+ result *= 16777619UL;
+ }
+ return result;
+ }
+ };
+
+ template<>
+ struct Fnv_hash<8>
+ {
+ static std::size_t
+ hash(const char* first, std::size_t length)
+ {
+ std::size_t result = static_cast<std::size_t>(14695981039346656037ULL);
+ for (; length > 0; --length)
+ {
+ result ^= (std::size_t)*first++;
+ result *= 1099511628211ULL;
+ }
+ return result;
+ }
+ };
+
+ // XXX String and floating point hashes probably shouldn't be inline
+ // member functions, since are nontrivial. Once we have the framework
+ // for TR1 .cc files, these should go in one.
+ template<>
+ struct hash<std::string>
+ : public std::unary_function<std::string, std::size_t>
+ {
+ std::size_t
+ operator()(const std::string& s) const
+ { return Fnv_hash<>::hash(s.data(), s.length()); }
+ };
+
+#ifdef _GLIBCXX_USE_WCHAR_T
+ template<>
+ struct hash<std::wstring>
+ : public std::unary_function<std::wstring, std::size_t>
+ {
+ std::size_t
+ operator()(const std::wstring& s) const
+ {
+ return Fnv_hash<>::hash(reinterpret_cast<const char*>(s.data()),
+ s.length() * sizeof(wchar_t));
+ }
+ };
+#endif
+
+ template<>
+ struct hash<float>
+ : public std::unary_function<float, std::size_t>
+ {
+ std::size_t
+ operator()(float fval) const
+ {
+ std::size_t result = 0;
+
+ // 0 and -0 both hash to zero.
+ if (fval != 0.0f)
+ result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&fval),
+ sizeof(fval));
+ return result;
+ }
+ };
+
+ template<>
+ struct hash<double>
+ : public std::unary_function<double, std::size_t>
+ {
+ std::size_t
+ operator()(double dval) const
+ {
+ std::size_t result = 0;
+
+ // 0 and -0 both hash to zero.
+ if (dval != 0.0)
+ result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&dval),
+ sizeof(dval));
+ return result;
+ }
+ };
+
+ // For long double, careful with random padding bits (e.g., on x86,
+ // 10 bytes -> 12 bytes) and resort to frexp.
+ template<>
+ struct hash<long double>
+ : public std::unary_function<long double, std::size_t>
+ {
+ std::size_t
+ operator()(long double ldval) const
+ {
+ std::size_t result = 0;
+
+ int exponent;
+ ldval = std::frexp(ldval, &exponent);
+ ldval = ldval < 0.0l ? -(ldval + 0.5l) : ldval;
+
+ const long double mult = std::numeric_limits<std::size_t>::max() + 1.0l;
+ ldval *= mult;
+
+ // Try to use all the bits of the mantissa (really necessary only
+ // on 32-bit targets, at least for 80-bit floating point formats).
+ const std::size_t hibits = (std::size_t)ldval;
+ ldval = (ldval - (long double)hibits) * mult;
+
+ const std::size_t coeff =
+ (std::numeric_limits<std::size_t>::max()
+ / std::numeric_limits<long double>::max_exponent);
+
+ result = hibits + (std::size_t)ldval + coeff * exponent;
+
+ return result;
+ }
+ };
+}
+}
+
+#endif