From beda57247513aceedd14702216c55b1da1fcd470 Mon Sep 17 00:00:00 2001 From: Vincent Batts Date: Fri, 17 Jul 2015 09:39:21 -0400 Subject: [PATCH] fixes missed on initial push of 1.5beta1 --- golang-1.2-remove-ECC-p224.patch | 1165 ++++++++++++++++++++++++++++++ golang.spec | 5 +- sources | 2 +- 3 files changed, 1170 insertions(+), 2 deletions(-) diff --git a/golang-1.2-remove-ECC-p224.patch b/golang-1.2-remove-ECC-p224.patch index e69de29..a1dc26d 100644 --- a/golang-1.2-remove-ECC-p224.patch +++ b/golang-1.2-remove-ECC-p224.patch @@ -0,0 +1,1165 @@ +diff --git a/api/go1.txt b/api/go1.txt +index 5e3dea5..1a1ee83 100644 +--- a/api/go1.txt ++++ b/api/go1.txt +@@ -412,7 +412,6 @@ pkg crypto/ecdsa, type PublicKey struct, Y *big.Int + pkg crypto/ecdsa, type PublicKey struct, embedded elliptic.Curve + pkg crypto/elliptic, func GenerateKey(Curve, io.Reader) ([]uint8, *big.Int, *big.Int, error) + pkg crypto/elliptic, func Marshal(Curve, *big.Int, *big.Int) []uint8 +-pkg crypto/elliptic, func P224() Curve + pkg crypto/elliptic, func P256() Curve + pkg crypto/elliptic, func P384() Curve + pkg crypto/elliptic, func P521() Curve +diff --git a/src/crypto/ecdsa/ecdsa_test.go b/src/crypto/ecdsa/ecdsa_test.go +index 169944d..c653464 100644 +--- a/src/crypto/ecdsa/ecdsa_test.go ++++ b/src/crypto/ecdsa/ecdsa_test.go +@@ -33,11 +33,10 @@ func testKeyGeneration(t *testing.T, c elliptic.Curve, tag string) { + } + + func TestKeyGeneration(t *testing.T) { +- testKeyGeneration(t, elliptic.P224(), "p224") ++ testKeyGeneration(t, elliptic.P256(), "p256") + if testing.Short() { + return + } +- testKeyGeneration(t, elliptic.P256(), "p256") + testKeyGeneration(t, elliptic.P384(), "p384") + testKeyGeneration(t, elliptic.P521(), "p521") + } +@@ -63,11 +62,10 @@ func testSignAndVerify(t *testing.T, c elliptic.Curve, tag string) { + } + + func TestSignAndVerify(t *testing.T) { +- testSignAndVerify(t, elliptic.P224(), "p224") ++ testSignAndVerify(t, elliptic.P256(), "p256") + if testing.Short() { + return + } +- testSignAndVerify(t, elliptic.P256(), "p256") + testSignAndVerify(t, elliptic.P384(), "p384") + testSignAndVerify(t, elliptic.P521(), "p521") + } +@@ -100,11 +98,10 @@ func testNonceSafety(t *testing.T, c elliptic.Curve, tag string) { + } + + func TestNonceSafety(t *testing.T) { +- testNonceSafety(t, elliptic.P224(), "p224") ++ testNonceSafety(t, elliptic.P256(), "p256") + if testing.Short() { + return + } +- testNonceSafety(t, elliptic.P256(), "p256") + testNonceSafety(t, elliptic.P384(), "p384") + testNonceSafety(t, elliptic.P521(), "p521") + } +@@ -135,11 +132,10 @@ func testINDCCA(t *testing.T, c elliptic.Curve, tag string) { + } + + func TestINDCCA(t *testing.T) { +- testINDCCA(t, elliptic.P224(), "p224") ++ testINDCCA(t, elliptic.P256(), "p256") + if testing.Short() { + return + } +- testINDCCA(t, elliptic.P256(), "p256") + testINDCCA(t, elliptic.P384(), "p384") + testINDCCA(t, elliptic.P521(), "p521") + } +@@ -201,8 +197,6 @@ func TestVectors(t *testing.T) { + parts := strings.SplitN(line, ",", 2) + + switch parts[0] { +- case "P-224": +- pub.Curve = elliptic.P224() + case "P-256": + pub.Curve = elliptic.P256() + case "P-384": +diff --git a/src/crypto/elliptic/bottombits.go b/src/crypto/elliptic/bottombits.go +new file mode 100644 +index 0000000..4544722 +--- /dev/null ++++ b/src/crypto/elliptic/bottombits.go +@@ -0,0 +1,4 @@ ++package elliptic ++ ++const bottom28Bits = 0xfffffff ++const two31m3 = 1<<31 - 1<<3 +diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go +index f3b84e1..ca0b7cf 100644 +--- a/src/crypto/elliptic/elliptic.go ++++ b/src/crypto/elliptic/elliptic.go +@@ -331,7 +331,6 @@ var p384 *CurveParams + var p521 *CurveParams + + func initAll() { +- initP224() + initP256() + initP384() + initP521() +diff --git a/src/crypto/elliptic/elliptic_test.go b/src/crypto/elliptic/elliptic_test.go +index 7e27913..0051d53 100644 +--- a/src/crypto/elliptic/elliptic_test.go ++++ b/src/crypto/elliptic/elliptic_test.go +@@ -6,27 +6,25 @@ package elliptic + + import ( + "crypto/rand" +- "encoding/hex" +- "fmt" + "math/big" + "testing" + ) + + func TestOnCurve(t *testing.T) { +- p224 := P224() +- if !p224.IsOnCurve(p224.Params().Gx, p224.Params().Gy) { ++ p256 := P256() ++ if !p256.IsOnCurve(p256.Params().Gx, p256.Params().Gy) { + t.Errorf("FAIL") + } + } + + func TestOffCurve(t *testing.T) { +- p224 := P224() ++ p256 := P256() + x, y := new(big.Int).SetInt64(1), new(big.Int).SetInt64(1) +- if p224.IsOnCurve(x, y) { ++ if p256.IsOnCurve(x, y) { + t.Errorf("FAIL: point off curve is claimed to be on the curve") + } +- b := Marshal(p224, x, y) +- x1, y1 := Unmarshal(p224, b) ++ b := Marshal(p256, x, y) ++ x1, y1 := Unmarshal(p256, b) + if x1 != nil || y1 != nil { + t.Errorf("FAIL: unmarshalling a point not on the curve succeeded") + } +@@ -37,7 +35,7 @@ type baseMultTest struct { + x, y string + } + +-var p224BaseMultTests = []baseMultTest{ ++var p256BaseMultTests = []baseMultTest{ + { + "1", + "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", +@@ -300,47 +298,12 @@ var p224BaseMultTests = []baseMultTest{ + }, + } + +-func TestBaseMult(t *testing.T) { +- p224 := P224() +- for i, e := range p224BaseMultTests { +- k, ok := new(big.Int).SetString(e.k, 10) +- if !ok { +- t.Errorf("%d: bad value for k: %s", i, e.k) +- } +- x, y := p224.ScalarBaseMult(k.Bytes()) +- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { +- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) +- } +- if testing.Short() && i > 5 { +- break +- } +- } +-} +- +-func TestGenericBaseMult(t *testing.T) { +- // We use the P224 CurveParams directly in order to test the generic implementation. +- p224 := P224().Params() +- for i, e := range p224BaseMultTests { +- k, ok := new(big.Int).SetString(e.k, 10) +- if !ok { +- t.Errorf("%d: bad value for k: %s", i, e.k) +- } +- x, y := p224.ScalarBaseMult(k.Bytes()) +- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { +- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) +- } +- if testing.Short() && i > 5 { +- break +- } +- } +-} +- + func TestP256BaseMult(t *testing.T) { + p256 := P256() + p256Generic := p256.Params() + +- scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1) +- for _, e := range p224BaseMultTests { ++ scalars := make([]*big.Int, 0, len(p256BaseMultTests)+1) ++ for _, e := range p256BaseMultTests { + k, _ := new(big.Int).SetString(e.k, 10) + scalars = append(scalars, k) + } +@@ -365,7 +328,7 @@ func TestP256Mult(t *testing.T) { + p256 := P256() + p256Generic := p256.Params() + +- for i, e := range p224BaseMultTests { ++ for i, e := range p256BaseMultTests { + x, _ := new(big.Int).SetString(e.x, 16) + y, _ := new(big.Int).SetString(e.y, 16) + k, _ := new(big.Int).SetString(e.k, 10) +@@ -386,7 +349,6 @@ func TestInfinity(t *testing.T) { + name string + curve Curve + }{ +- {"p224", P224()}, + {"p256", P256()}, + } + +@@ -419,21 +381,10 @@ func TestInfinity(t *testing.T) { + } + } + +-func BenchmarkBaseMult(b *testing.B) { +- b.ResetTimer() +- p224 := P224() +- e := p224BaseMultTests[25] +- k, _ := new(big.Int).SetString(e.k, 10) +- b.StartTimer() +- for i := 0; i < b.N; i++ { +- p224.ScalarBaseMult(k.Bytes()) +- } +-} +- + func BenchmarkBaseMultP256(b *testing.B) { + b.ResetTimer() + p256 := P256() +- e := p224BaseMultTests[25] ++ e := p256BaseMultTests[25] + k, _ := new(big.Int).SetString(e.k, 10) + b.StartTimer() + for i := 0; i < b.N; i++ { +@@ -442,14 +393,14 @@ func BenchmarkBaseMultP256(b *testing.B) { + } + + func TestMarshal(t *testing.T) { +- p224 := P224() +- _, x, y, err := GenerateKey(p224, rand.Reader) ++ p254 := P254() ++ _, x, y, err := GenerateKey(p254, rand.Reader) + if err != nil { + t.Error(err) + return + } +- serialized := Marshal(p224, x, y) +- xx, yy := Unmarshal(p224, serialized) ++ serialized := Marshal(p254, x, y) ++ xx, yy := Unmarshal(p254, serialized) + if xx == nil { + t.Error("failed to unmarshal") + return +@@ -459,13 +410,3 @@ func TestMarshal(t *testing.T) { + return + } + } +- +-func TestP224Overflow(t *testing.T) { +- // This tests for a specific bug in the P224 implementation. +- p224 := P224() +- pointData, _ := hex.DecodeString("049B535B45FB0A2072398A6831834624C7E32CCFD5A4B933BCEAF77F1DD945E08BBE5178F5EDF5E733388F196D2A631D2E075BB16CBFEEA15B") +- x, y := Unmarshal(p224, pointData) +- if !p224.IsOnCurve(x, y) { +- t.Error("P224 failed to validate a correct point") +- } +-} +diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go +deleted file mode 100644 +index 2d3fac7..0000000 +--- a/src/crypto/elliptic/p224.go ++++ /dev/null +@@ -1,765 +0,0 @@ +-// Copyright 2012 The Go Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style +-// license that can be found in the LICENSE file. +- +-package elliptic +- +-// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, +-// section D.2.2. +-// +-// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. +- +-import ( +- "math/big" +-) +- +-var p224 p224Curve +- +-type p224Curve struct { +- *CurveParams +- gx, gy, b p224FieldElement +-} +- +-func initP224() { +- // See FIPS 186-3, section D.2.2 +- p224.CurveParams = &CurveParams{Name: "P-224"} +- p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) +- p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) +- p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) +- p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) +- p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) +- p224.BitSize = 224 +- +- p224FromBig(&p224.gx, p224.Gx) +- p224FromBig(&p224.gy, p224.Gy) +- p224FromBig(&p224.b, p224.B) +-} +- +-// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) +-func P224() Curve { +- initonce.Do(initAll) +- return p224 +-} +- +-func (curve p224Curve) Params() *CurveParams { +- return curve.CurveParams +-} +- +-func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { +- var x, y p224FieldElement +- p224FromBig(&x, bigX) +- p224FromBig(&y, bigY) +- +- // y² = x³ - 3x + b +- var tmp p224LargeFieldElement +- var x3 p224FieldElement +- p224Square(&x3, &x, &tmp) +- p224Mul(&x3, &x3, &x, &tmp) +- +- for i := 0; i < 8; i++ { +- x[i] *= 3 +- } +- p224Sub(&x3, &x3, &x) +- p224Reduce(&x3) +- p224Add(&x3, &x3, &curve.b) +- p224Contract(&x3, &x3) +- +- p224Square(&y, &y, &tmp) +- p224Contract(&y, &y) +- +- for i := 0; i < 8; i++ { +- if y[i] != x3[i] { +- return false +- } +- } +- return true +-} +- +-func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { +- var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement +- +- p224FromBig(&x1, bigX1) +- p224FromBig(&y1, bigY1) +- if bigX1.Sign() != 0 || bigY1.Sign() != 0 { +- z1[0] = 1 +- } +- p224FromBig(&x2, bigX2) +- p224FromBig(&y2, bigY2) +- if bigX2.Sign() != 0 || bigY2.Sign() != 0 { +- z2[0] = 1 +- } +- +- p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) +- return p224ToAffine(&x3, &y3, &z3) +-} +- +-func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { +- var x1, y1, z1, x2, y2, z2 p224FieldElement +- +- p224FromBig(&x1, bigX1) +- p224FromBig(&y1, bigY1) +- z1[0] = 1 +- +- p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) +- return p224ToAffine(&x2, &y2, &z2) +-} +- +-func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { +- var x1, y1, z1, x2, y2, z2 p224FieldElement +- +- p224FromBig(&x1, bigX1) +- p224FromBig(&y1, bigY1) +- z1[0] = 1 +- +- p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) +- return p224ToAffine(&x2, &y2, &z2) +-} +- +-func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { +- var z1, x2, y2, z2 p224FieldElement +- +- z1[0] = 1 +- p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) +- return p224ToAffine(&x2, &y2, &z2) +-} +- +-// Field element functions. +-// +-// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. +-// +-// Field elements are represented by a FieldElement, which is a typedef to an +-// array of 8 uint32's. The value of a FieldElement, a, is: +-// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] +-// +-// Using 28-bit limbs means that there's only 4 bits of headroom, which is less +-// than we would really like. But it has the useful feature that we hit 2**224 +-// exactly, making the reflections during a reduce much nicer. +-type p224FieldElement [8]uint32 +- +-// p224P is the order of the field, represented as a p224FieldElement. +-var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} +- +-// p224IsZero returns 1 if a == 0 mod p and 0 otherwise. +-// +-// a[i] < 2**29 +-func p224IsZero(a *p224FieldElement) uint32 { +- // Since a p224FieldElement contains 224 bits there are two possible +- // representations of 0: 0 and p. +- var minimal p224FieldElement +- p224Contract(&minimal, a) +- +- var isZero, isP uint32 +- for i, v := range minimal { +- isZero |= v +- isP |= v - p224P[i] +- } +- +- // If either isZero or isP is 0, then we should return 1. +- isZero |= isZero >> 16 +- isZero |= isZero >> 8 +- isZero |= isZero >> 4 +- isZero |= isZero >> 2 +- isZero |= isZero >> 1 +- +- isP |= isP >> 16 +- isP |= isP >> 8 +- isP |= isP >> 4 +- isP |= isP >> 2 +- isP |= isP >> 1 +- +- // For isZero and isP, the LSB is 0 iff all the bits are zero. +- result := isZero & isP +- result = (^result) & 1 +- +- return result +-} +- +-// p224Add computes *out = a+b +-// +-// a[i] + b[i] < 2**32 +-func p224Add(out, a, b *p224FieldElement) { +- for i := 0; i < 8; i++ { +- out[i] = a[i] + b[i] +- } +-} +- +-const two31p3 = 1<<31 + 1<<3 +-const two31m3 = 1<<31 - 1<<3 +-const two31m15m3 = 1<<31 - 1<<15 - 1<<3 +- +-// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can +-// subtract smaller amounts without underflow. See the section "Subtraction" in +-// [1] for reasoning. +-var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} +- +-// p224Sub computes *out = a-b +-// +-// a[i], b[i] < 2**30 +-// out[i] < 2**32 +-func p224Sub(out, a, b *p224FieldElement) { +- for i := 0; i < 8; i++ { +- out[i] = a[i] + p224ZeroModP31[i] - b[i] +- } +-} +- +-// LargeFieldElement also represents an element of the field. The limbs are +-// still spaced 28-bits apart and in little-endian order. So the limbs are at +-// 0, 28, 56, ..., 392 bits, each 64-bits wide. +-type p224LargeFieldElement [15]uint64 +- +-const two63p35 = 1<<63 + 1<<35 +-const two63m35 = 1<<63 - 1<<35 +-const two63m35m19 = 1<<63 - 1<<35 - 1<<19 +- +-// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section +-// "Subtraction" in [1] for why. +-var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} +- +-const bottom12Bits = 0xfff +-const bottom28Bits = 0xfffffff +- +-// p224Mul computes *out = a*b +-// +-// a[i] < 2**29, b[i] < 2**30 (or vice versa) +-// out[i] < 2**29 +-func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { +- for i := 0; i < 15; i++ { +- tmp[i] = 0 +- } +- +- for i := 0; i < 8; i++ { +- for j := 0; j < 8; j++ { +- tmp[i+j] += uint64(a[i]) * uint64(b[j]) +- } +- } +- +- p224ReduceLarge(out, tmp) +-} +- +-// Square computes *out = a*a +-// +-// a[i] < 2**29 +-// out[i] < 2**29 +-func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { +- for i := 0; i < 15; i++ { +- tmp[i] = 0 +- } +- +- for i := 0; i < 8; i++ { +- for j := 0; j <= i; j++ { +- r := uint64(a[i]) * uint64(a[j]) +- if i == j { +- tmp[i+j] += r +- } else { +- tmp[i+j] += r << 1 +- } +- } +- } +- +- p224ReduceLarge(out, tmp) +-} +- +-// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. +-// +-// in[i] < 2**62 +-func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { +- for i := 0; i < 8; i++ { +- in[i] += p224ZeroModP63[i] +- } +- +- // Eliminate the coefficients at 2**224 and greater. +- for i := 14; i >= 8; i-- { +- in[i-8] -= in[i] +- in[i-5] += (in[i] & 0xffff) << 12 +- in[i-4] += in[i] >> 16 +- } +- in[8] = 0 +- // in[0..8] < 2**64 +- +- // As the values become small enough, we start to store them in |out| +- // and use 32-bit operations. +- for i := 1; i < 8; i++ { +- in[i+1] += in[i] >> 28 +- out[i] = uint32(in[i] & bottom28Bits) +- } +- in[0] -= in[8] +- out[3] += uint32(in[8]&0xffff) << 12 +- out[4] += uint32(in[8] >> 16) +- // in[0] < 2**64 +- // out[3] < 2**29 +- // out[4] < 2**29 +- // out[1,2,5..7] < 2**28 +- +- out[0] = uint32(in[0] & bottom28Bits) +- out[1] += uint32((in[0] >> 28) & bottom28Bits) +- out[2] += uint32(in[0] >> 56) +- // out[0] < 2**28 +- // out[1..4] < 2**29 +- // out[5..7] < 2**28 +-} +- +-// Reduce reduces the coefficients of a to smaller bounds. +-// +-// On entry: a[i] < 2**31 + 2**30 +-// On exit: a[i] < 2**29 +-func p224Reduce(a *p224FieldElement) { +- for i := 0; i < 7; i++ { +- a[i+1] += a[i] >> 28 +- a[i] &= bottom28Bits +- } +- top := a[7] >> 28 +- a[7] &= bottom28Bits +- +- // top < 2**4 +- mask := top +- mask |= mask >> 2 +- mask |= mask >> 1 +- mask <<= 31 +- mask = uint32(int32(mask) >> 31) +- // Mask is all ones if top != 0, all zero otherwise +- +- a[0] -= top +- a[3] += top << 12 +- +- // We may have just made a[0] negative but, if we did, then we must +- // have added something to a[3], this it's > 2**12. Therefore we can +- // carry down to a[0]. +- a[3] -= 1 & mask +- a[2] += mask & (1<<28 - 1) +- a[1] += mask & (1<<28 - 1) +- a[0] += mask & (1 << 28) +-} +- +-// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), +-// i.e. Fermat's little theorem. +-func p224Invert(out, in *p224FieldElement) { +- var f1, f2, f3, f4 p224FieldElement +- var c p224LargeFieldElement +- +- p224Square(&f1, in, &c) // 2 +- p224Mul(&f1, &f1, in, &c) // 2**2 - 1 +- p224Square(&f1, &f1, &c) // 2**3 - 2 +- p224Mul(&f1, &f1, in, &c) // 2**3 - 1 +- p224Square(&f2, &f1, &c) // 2**4 - 2 +- p224Square(&f2, &f2, &c) // 2**5 - 4 +- p224Square(&f2, &f2, &c) // 2**6 - 8 +- p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 +- p224Square(&f2, &f1, &c) // 2**7 - 2 +- for i := 0; i < 5; i++ { // 2**12 - 2**6 +- p224Square(&f2, &f2, &c) +- } +- p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 +- p224Square(&f3, &f2, &c) // 2**13 - 2 +- for i := 0; i < 11; i++ { // 2**24 - 2**12 +- p224Square(&f3, &f3, &c) +- } +- p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 +- p224Square(&f3, &f2, &c) // 2**25 - 2 +- for i := 0; i < 23; i++ { // 2**48 - 2**24 +- p224Square(&f3, &f3, &c) +- } +- p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 +- p224Square(&f4, &f3, &c) // 2**49 - 2 +- for i := 0; i < 47; i++ { // 2**96 - 2**48 +- p224Square(&f4, &f4, &c) +- } +- p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 +- p224Square(&f4, &f3, &c) // 2**97 - 2 +- for i := 0; i < 23; i++ { // 2**120 - 2**24 +- p224Square(&f4, &f4, &c) +- } +- p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 +- for i := 0; i < 6; i++ { // 2**126 - 2**6 +- p224Square(&f2, &f2, &c) +- } +- p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 +- p224Square(&f1, &f1, &c) // 2**127 - 2 +- p224Mul(&f1, &f1, in, &c) // 2**127 - 1 +- for i := 0; i < 97; i++ { // 2**224 - 2**97 +- p224Square(&f1, &f1, &c) +- } +- p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 +-} +- +-// p224Contract converts a FieldElement to its unique, minimal form. +-// +-// On entry, in[i] < 2**29 +-// On exit, in[i] < 2**28 +-func p224Contract(out, in *p224FieldElement) { +- copy(out[:], in[:]) +- +- for i := 0; i < 7; i++ { +- out[i+1] += out[i] >> 28 +- out[i] &= bottom28Bits +- } +- top := out[7] >> 28 +- out[7] &= bottom28Bits +- +- out[0] -= top +- out[3] += top << 12 +- +- // We may just have made out[i] negative. So we carry down. If we made +- // out[0] negative then we know that out[3] is sufficiently positive +- // because we just added to it. +- for i := 0; i < 3; i++ { +- mask := uint32(int32(out[i]) >> 31) +- out[i] += (1 << 28) & mask +- out[i+1] -= 1 & mask +- } +- +- // We might have pushed out[3] over 2**28 so we perform another, partial, +- // carry chain. +- for i := 3; i < 7; i++ { +- out[i+1] += out[i] >> 28 +- out[i] &= bottom28Bits +- } +- top = out[7] >> 28 +- out[7] &= bottom28Bits +- +- // Eliminate top while maintaining the same value mod p. +- out[0] -= top +- out[3] += top << 12 +- +- // There are two cases to consider for out[3]: +- // 1) The first time that we eliminated top, we didn't push out[3] over +- // 2**28. In this case, the partial carry chain didn't change any values +- // and top is zero. +- // 2) We did push out[3] over 2**28 the first time that we eliminated top. +- // The first value of top was in [0..16), therefore, prior to eliminating +- // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after +- // overflowing and being reduced by the second carry chain, out[3] <= +- // 0xf000. Thus it cannot have overflowed when we eliminated top for the +- // second time. +- +- // Again, we may just have made out[0] negative, so do the same carry down. +- // As before, if we made out[0] negative then we know that out[3] is +- // sufficiently positive. +- for i := 0; i < 3; i++ { +- mask := uint32(int32(out[i]) >> 31) +- out[i] += (1 << 28) & mask +- out[i+1] -= 1 & mask +- } +- +- // Now we see if the value is >= p and, if so, subtract p. +- +- // First we build a mask from the top four limbs, which must all be +- // equal to bottom28Bits if the whole value is >= p. If top4AllOnes +- // ends up with any zero bits in the bottom 28 bits, then this wasn't +- // true. +- top4AllOnes := uint32(0xffffffff) +- for i := 4; i < 8; i++ { +- top4AllOnes &= out[i] +- } +- top4AllOnes |= 0xf0000000 +- // Now we replicate any zero bits to all the bits in top4AllOnes. +- top4AllOnes &= top4AllOnes >> 16 +- top4AllOnes &= top4AllOnes >> 8 +- top4AllOnes &= top4AllOnes >> 4 +- top4AllOnes &= top4AllOnes >> 2 +- top4AllOnes &= top4AllOnes >> 1 +- top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) +- +- // Now we test whether the bottom three limbs are non-zero. +- bottom3NonZero := out[0] | out[1] | out[2] +- bottom3NonZero |= bottom3NonZero >> 16 +- bottom3NonZero |= bottom3NonZero >> 8 +- bottom3NonZero |= bottom3NonZero >> 4 +- bottom3NonZero |= bottom3NonZero >> 2 +- bottom3NonZero |= bottom3NonZero >> 1 +- bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) +- +- // Everything depends on the value of out[3]. +- // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p +- // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, +- // then the whole value is >= p +- // If it's < 0xffff000, then the whole value is < p +- n := out[3] - 0xffff000 +- out3Equal := n +- out3Equal |= out3Equal >> 16 +- out3Equal |= out3Equal >> 8 +- out3Equal |= out3Equal >> 4 +- out3Equal |= out3Equal >> 2 +- out3Equal |= out3Equal >> 1 +- out3Equal = ^uint32(int32(out3Equal<<31) >> 31) +- +- // If out[3] > 0xffff000 then n's MSB will be zero. +- out3GT := ^uint32(int32(n) >> 31) +- +- mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) +- out[0] -= 1 & mask +- out[3] -= 0xffff000 & mask +- out[4] -= 0xfffffff & mask +- out[5] -= 0xfffffff & mask +- out[6] -= 0xfffffff & mask +- out[7] -= 0xfffffff & mask +-} +- +-// Group element functions. +-// +-// These functions deal with group elements. The group is an elliptic curve +-// group with a = -3 defined in FIPS 186-3, section D.2.2. +- +-// p224AddJacobian computes *out = a+b where a != b. +-func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { +- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl +- var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement +- var c p224LargeFieldElement +- +- z1IsZero := p224IsZero(z1) +- z2IsZero := p224IsZero(z2) +- +- // Z1Z1 = Z1² +- p224Square(&z1z1, z1, &c) +- // Z2Z2 = Z2² +- p224Square(&z2z2, z2, &c) +- // U1 = X1*Z2Z2 +- p224Mul(&u1, x1, &z2z2, &c) +- // U2 = X2*Z1Z1 +- p224Mul(&u2, x2, &z1z1, &c) +- // S1 = Y1*Z2*Z2Z2 +- p224Mul(&s1, z2, &z2z2, &c) +- p224Mul(&s1, y1, &s1, &c) +- // S2 = Y2*Z1*Z1Z1 +- p224Mul(&s2, z1, &z1z1, &c) +- p224Mul(&s2, y2, &s2, &c) +- // H = U2-U1 +- p224Sub(&h, &u2, &u1) +- p224Reduce(&h) +- xEqual := p224IsZero(&h) +- // I = (2*H)² +- for j := 0; j < 8; j++ { +- i[j] = h[j] << 1 +- } +- p224Reduce(&i) +- p224Square(&i, &i, &c) +- // J = H*I +- p224Mul(&j, &h, &i, &c) +- // r = 2*(S2-S1) +- p224Sub(&r, &s2, &s1) +- p224Reduce(&r) +- yEqual := p224IsZero(&r) +- if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { +- p224DoubleJacobian(x3, y3, z3, x1, y1, z1) +- return +- } +- for i := 0; i < 8; i++ { +- r[i] <<= 1 +- } +- p224Reduce(&r) +- // V = U1*I +- p224Mul(&v, &u1, &i, &c) +- // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H +- p224Add(&z1z1, &z1z1, &z2z2) +- p224Add(&z2z2, z1, z2) +- p224Reduce(&z2z2) +- p224Square(&z2z2, &z2z2, &c) +- p224Sub(z3, &z2z2, &z1z1) +- p224Reduce(z3) +- p224Mul(z3, z3, &h, &c) +- // X3 = r²-J-2*V +- for i := 0; i < 8; i++ { +- z1z1[i] = v[i] << 1 +- } +- p224Add(&z1z1, &j, &z1z1) +- p224Reduce(&z1z1) +- p224Square(x3, &r, &c) +- p224Sub(x3, x3, &z1z1) +- p224Reduce(x3) +- // Y3 = r*(V-X3)-2*S1*J +- for i := 0; i < 8; i++ { +- s1[i] <<= 1 +- } +- p224Mul(&s1, &s1, &j, &c) +- p224Sub(&z1z1, &v, x3) +- p224Reduce(&z1z1) +- p224Mul(&z1z1, &z1z1, &r, &c) +- p224Sub(y3, &z1z1, &s1) +- p224Reduce(y3) +- +- p224CopyConditional(x3, x2, z1IsZero) +- p224CopyConditional(x3, x1, z2IsZero) +- p224CopyConditional(y3, y2, z1IsZero) +- p224CopyConditional(y3, y1, z2IsZero) +- p224CopyConditional(z3, z2, z1IsZero) +- p224CopyConditional(z3, z1, z2IsZero) +-} +- +-// p224DoubleJacobian computes *out = a+a. +-func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { +- var delta, gamma, beta, alpha, t p224FieldElement +- var c p224LargeFieldElement +- +- p224Square(&delta, z1, &c) +- p224Square(&gamma, y1, &c) +- p224Mul(&beta, x1, &gamma, &c) +- +- // alpha = 3*(X1-delta)*(X1+delta) +- p224Add(&t, x1, &delta) +- for i := 0; i < 8; i++ { +- t[i] += t[i] << 1 +- } +- p224Reduce(&t) +- p224Sub(&alpha, x1, &delta) +- p224Reduce(&alpha) +- p224Mul(&alpha, &alpha, &t, &c) +- +- // Z3 = (Y1+Z1)²-gamma-delta +- p224Add(z3, y1, z1) +- p224Reduce(z3) +- p224Square(z3, z3, &c) +- p224Sub(z3, z3, &gamma) +- p224Reduce(z3) +- p224Sub(z3, z3, &delta) +- p224Reduce(z3) +- +- // X3 = alpha²-8*beta +- for i := 0; i < 8; i++ { +- delta[i] = beta[i] << 3 +- } +- p224Reduce(&delta) +- p224Square(x3, &alpha, &c) +- p224Sub(x3, x3, &delta) +- p224Reduce(x3) +- +- // Y3 = alpha*(4*beta-X3)-8*gamma² +- for i := 0; i < 8; i++ { +- beta[i] <<= 2 +- } +- p224Sub(&beta, &beta, x3) +- p224Reduce(&beta) +- p224Square(&gamma, &gamma, &c) +- for i := 0; i < 8; i++ { +- gamma[i] <<= 3 +- } +- p224Reduce(&gamma) +- p224Mul(y3, &alpha, &beta, &c) +- p224Sub(y3, y3, &gamma) +- p224Reduce(y3) +-} +- +-// p224CopyConditional sets *out = *in iff the least-significant-bit of control +-// is true, and it runs in constant time. +-func p224CopyConditional(out, in *p224FieldElement, control uint32) { +- control <<= 31 +- control = uint32(int32(control) >> 31) +- +- for i := 0; i < 8; i++ { +- out[i] ^= (out[i] ^ in[i]) & control +- } +-} +- +-func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { +- var xx, yy, zz p224FieldElement +- for i := 0; i < 8; i++ { +- outX[i] = 0 +- outY[i] = 0 +- outZ[i] = 0 +- } +- +- for _, byte := range scalar { +- for bitNum := uint(0); bitNum < 8; bitNum++ { +- p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) +- bit := uint32((byte >> (7 - bitNum)) & 1) +- p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) +- p224CopyConditional(outX, &xx, bit) +- p224CopyConditional(outY, &yy, bit) +- p224CopyConditional(outZ, &zz, bit) +- } +- } +-} +- +-// p224ToAffine converts from Jacobian to affine form. +-func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { +- var zinv, zinvsq, outx, outy p224FieldElement +- var tmp p224LargeFieldElement +- +- if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { +- return new(big.Int), new(big.Int) +- } +- +- p224Invert(&zinv, z) +- p224Square(&zinvsq, &zinv, &tmp) +- p224Mul(x, x, &zinvsq, &tmp) +- p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) +- p224Mul(y, y, &zinvsq, &tmp) +- +- p224Contract(&outx, x) +- p224Contract(&outy, y) +- return p224ToBig(&outx), p224ToBig(&outy) +-} +- +-// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, +-// where buf is interpreted as a big-endian number. +-func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { +- var ret uint32 +- +- for i := uint(0); i < 4; i++ { +- var b byte +- if l := len(buf); l > 0 { +- b = buf[l-1] +- // We don't remove the byte if we're about to return and we're not +- // reading all of it. +- if i != 3 || shift == 4 { +- buf = buf[:l-1] +- } +- } +- ret |= uint32(b) << (8 * i) >> shift +- } +- ret &= bottom28Bits +- return ret, buf +-} +- +-// p224FromBig sets *out = *in. +-func p224FromBig(out *p224FieldElement, in *big.Int) { +- bytes := in.Bytes() +- out[0], bytes = get28BitsFromEnd(bytes, 0) +- out[1], bytes = get28BitsFromEnd(bytes, 4) +- out[2], bytes = get28BitsFromEnd(bytes, 0) +- out[3], bytes = get28BitsFromEnd(bytes, 4) +- out[4], bytes = get28BitsFromEnd(bytes, 0) +- out[5], bytes = get28BitsFromEnd(bytes, 4) +- out[6], bytes = get28BitsFromEnd(bytes, 0) +- out[7], bytes = get28BitsFromEnd(bytes, 4) +-} +- +-// p224ToBig returns in as a big.Int. +-func p224ToBig(in *p224FieldElement) *big.Int { +- var buf [28]byte +- buf[27] = byte(in[0]) +- buf[26] = byte(in[0] >> 8) +- buf[25] = byte(in[0] >> 16) +- buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) +- +- buf[23] = byte(in[1] >> 4) +- buf[22] = byte(in[1] >> 12) +- buf[21] = byte(in[1] >> 20) +- +- buf[20] = byte(in[2]) +- buf[19] = byte(in[2] >> 8) +- buf[18] = byte(in[2] >> 16) +- buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) +- +- buf[16] = byte(in[3] >> 4) +- buf[15] = byte(in[3] >> 12) +- buf[14] = byte(in[3] >> 20) +- +- buf[13] = byte(in[4]) +- buf[12] = byte(in[4] >> 8) +- buf[11] = byte(in[4] >> 16) +- buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) +- +- buf[9] = byte(in[5] >> 4) +- buf[8] = byte(in[5] >> 12) +- buf[7] = byte(in[5] >> 20) +- +- buf[6] = byte(in[6]) +- buf[5] = byte(in[6] >> 8) +- buf[4] = byte(in[6] >> 16) +- buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) +- +- buf[2] = byte(in[7] >> 4) +- buf[1] = byte(in[7] >> 12) +- buf[0] = byte(in[7] >> 20) +- +- return new(big.Int).SetBytes(buf[:]) +-} +diff --git a/src/crypto/elliptic/p224_test.go b/src/crypto/elliptic/p224_test.go +deleted file mode 100644 +index 4b26d16..0000000 +--- a/src/crypto/elliptic/p224_test.go ++++ /dev/null +@@ -1,47 +0,0 @@ +-// Copyright 2012 The Go Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style +-// license that can be found in the LICENSE file. +- +-package elliptic +- +-import ( +- "math/big" +- "testing" +-) +- +-var toFromBigTests = []string{ +- "0", +- "1", +- "23", +- "b70e0cb46bb4bf7f321390b94a03c1d356c01122343280d6105c1d21", +- "706a46d476dcb76798e6046d89474788d164c18032d268fd10704fa6", +-} +- +-func p224AlternativeToBig(in *p224FieldElement) *big.Int { +- ret := new(big.Int) +- tmp := new(big.Int) +- +- for i := uint(0); i < 8; i++ { +- tmp.SetInt64(int64(in[i])) +- tmp.Lsh(tmp, 28*i) +- ret.Add(ret, tmp) +- } +- ret.Mod(ret, p224.P) +- return ret +-} +- +-func TestToFromBig(t *testing.T) { +- for i, test := range toFromBigTests { +- n, _ := new(big.Int).SetString(test, 16) +- var x p224FieldElement +- p224FromBig(&x, n) +- m := p224ToBig(&x) +- if n.Cmp(m) != 0 { +- t.Errorf("#%d: %x != %x", i, n, m) +- } +- q := p224AlternativeToBig(&x) +- if n.Cmp(q) != 0 { +- t.Errorf("#%d: %x != %x (alternative)", i, n, m) +- } +- } +-} +diff --git a/src/crypto/tls/generate_cert.go b/src/crypto/tls/generate_cert.go +index 83f9916..dea8589 100644 +--- a/src/crypto/tls/generate_cert.go ++++ b/src/crypto/tls/generate_cert.go +@@ -33,7 +33,7 @@ var ( + validFor = flag.Duration("duration", 365*24*time.Hour, "Duration that certificate is valid for") + isCA = flag.Bool("ca", false, "whether this cert should be its own Certificate Authority") + rsaBits = flag.Int("rsa-bits", 2048, "Size of RSA key to generate. Ignored if --ecdsa-curve is set") +- ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P224, P256, P384, P521") ++ ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P256, P384, P521") + ) + + func publicKey(priv interface{}) interface{} { +@@ -75,8 +75,6 @@ func main() { + switch *ecdsaCurve { + case "": + priv, err = rsa.GenerateKey(rand.Reader, *rsaBits) +- case "P224": +- priv, err = ecdsa.GenerateKey(elliptic.P224(), rand.Reader) + case "P256": + priv, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader) + case "P384": +diff --git a/src/crypto/x509/x509.go b/src/crypto/x509/x509.go +index be6c013..aa55f55 100644 +--- a/src/crypto/x509/x509.go ++++ b/src/crypto/x509/x509.go +@@ -308,9 +308,6 @@ func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm + + // RFC 5480, 2.1.1.1. Named Curve + // +-// secp224r1 OBJECT IDENTIFIER ::= { +-// iso(1) identified-organization(3) certicom(132) curve(0) 33 } +-// + // secp256r1 OBJECT IDENTIFIER ::= { + // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) + // prime(1) 7 } +@@ -323,7 +320,6 @@ func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm + // + // NB: secp256r1 is equivalent to prime256v1 + var ( +- oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33} + oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} + oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} + oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} +@@ -331,8 +327,6 @@ var ( + + func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { + switch { +- case oid.Equal(oidNamedCurveP224): +- return elliptic.P224() + case oid.Equal(oidNamedCurveP256): + return elliptic.P256() + case oid.Equal(oidNamedCurveP384): +@@ -345,8 +339,6 @@ func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { + + func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) { + switch curve { +- case elliptic.P224(): +- return oidNamedCurveP224, true + case elliptic.P256(): + return oidNamedCurveP256, true + case elliptic.P384(): +@@ -1466,9 +1458,6 @@ func signingParamsForPublicKey(pub interface{}, requestedSigAlgo SignatureAlgori + pubType = ECDSA + + switch pub.Curve { +- case elliptic.P224(), elliptic.P256(): +- hashFunc = crypto.SHA256 +- sigAlgo.Algorithm = oidSignatureECDSAWithSHA256 + case elliptic.P384(): + hashFunc = crypto.SHA384 + sigAlgo.Algorithm = oidSignatureECDSAWithSHA384 diff --git a/golang.spec b/golang.spec index 08fb4a3..a9bdda2 100644 --- a/golang.spec +++ b/golang.spec @@ -41,7 +41,7 @@ Name: golang Version: 1.4.99 -Release: 1.%{go_version}%{?dist} +Release: 2.%{go_version}%{?dist} Summary: The Go Programming Language License: BSD @@ -408,6 +408,9 @@ fi %changelog +* Fri Jul 10 2015 Vincent Batts - 1.4.99-2.1.5beta1 +- add checksum to sources and fixed one patch + * Fri Jul 10 2015 Vincent Batts - 1.4.99-1.1.5beta1 - updating to go1.5beta1 diff --git a/sources b/sources index c9c38e8..b580140 100644 --- a/sources +++ b/sources @@ -1,2 +1,2 @@ d76dc07e475b2905b5fec1cf319b6356 golang-19087:a15f344a9efa-xattrs.tar -907f85c8fa765d31f7f955836fec4049 go1.4.2.src.tar.gz +aa82b90515edd1fa814e5ecb4ee771a4 go1.5beta1.src.tar.gz