diff --git a/golang-1.2-remove-ECC-p224.patch b/golang-1.2-remove-ECC-p224.patch deleted file mode 100644 index 2b2d1a1..0000000 --- a/golang-1.2-remove-ECC-p224.patch +++ /dev/null @@ -1,1172 +0,0 @@ -diff --git a/api/go1.txt b/api/go1.txt -index 5e3dea5..1a1ee83 100644 ---- a/api/go1.txt -+++ b/api/go1.txt -@@ -412,7 +412,6 @@ pkg crypto/ecdsa, type PublicKey struct, Y *big.Int - pkg crypto/ecdsa, type PublicKey struct, embedded elliptic.Curve - pkg crypto/elliptic, func GenerateKey(Curve, io.Reader) ([]uint8, *big.Int, *big.Int, error) - pkg crypto/elliptic, func Marshal(Curve, *big.Int, *big.Int) []uint8 --pkg crypto/elliptic, func P224() Curve - pkg crypto/elliptic, func P256() Curve - pkg crypto/elliptic, func P384() Curve - pkg crypto/elliptic, func P521() Curve -diff --git a/src/crypto/ecdsa/ecdsa_test.go b/src/crypto/ecdsa/ecdsa_test.go -index fc25fd7..356e617 100644 ---- a/src/crypto/ecdsa/ecdsa_test.go -+++ b/src/crypto/ecdsa/ecdsa_test.go -@@ -33,11 +33,10 @@ func testKeyGeneration(t *testing.T, c elliptic.Curve, tag string) { - } - - func TestKeyGeneration(t *testing.T) { -- testKeyGeneration(t, elliptic.P224(), "p224") -+ testKeyGeneration(t, elliptic.P256(), "p256") - if testing.Short() { - return - } -- testKeyGeneration(t, elliptic.P256(), "p256") - testKeyGeneration(t, elliptic.P384(), "p384") - testKeyGeneration(t, elliptic.P521(), "p521") - } -@@ -98,11 +97,10 @@ func testSignAndVerify(t *testing.T, c elliptic.Curve, tag string) { - } - - func TestSignAndVerify(t *testing.T) { -- testSignAndVerify(t, elliptic.P224(), "p224") -+ testSignAndVerify(t, elliptic.P256(), "p256") - if testing.Short() { - return - } -- testSignAndVerify(t, elliptic.P256(), "p256") - testSignAndVerify(t, elliptic.P384(), "p384") - testSignAndVerify(t, elliptic.P521(), "p521") - } -@@ -135,11 +133,10 @@ func testNonceSafety(t *testing.T, c elliptic.Curve, tag string) { - } - - func TestNonceSafety(t *testing.T) { -- testNonceSafety(t, elliptic.P224(), "p224") -+ testNonceSafety(t, elliptic.P256(), "p256") - if testing.Short() { - return - } -- testNonceSafety(t, elliptic.P256(), "p256") - testNonceSafety(t, elliptic.P384(), "p384") - testNonceSafety(t, elliptic.P521(), "p521") - } -@@ -170,11 +167,10 @@ func testINDCCA(t *testing.T, c elliptic.Curve, tag string) { - } - - func TestINDCCA(t *testing.T) { -- testINDCCA(t, elliptic.P224(), "p224") -+ testINDCCA(t, elliptic.P256(), "p256") - if testing.Short() { - return - } -- testINDCCA(t, elliptic.P256(), "p256") - testINDCCA(t, elliptic.P384(), "p384") - testINDCCA(t, elliptic.P521(), "p521") - } -@@ -236,8 +232,6 @@ func TestVectors(t *testing.T) { - parts := strings.SplitN(line, ",", 2) - - switch parts[0] { -- case "P-224": -- pub.Curve = elliptic.P224() - case "P-256": - pub.Curve = elliptic.P256() - case "P-384": -@@ -314,7 +308,6 @@ func testNegativeInputs(t *testing.T, curve elliptic.Curve, tag string) { - } - - func TestNegativeInputs(t *testing.T) { -- testNegativeInputs(t, elliptic.P224(), "p224") - testNegativeInputs(t, elliptic.P256(), "p256") - testNegativeInputs(t, elliptic.P384(), "p384") - testNegativeInputs(t, elliptic.P521(), "p521") -diff --git a/src/crypto/elliptic/bottombits.go b/src/crypto/elliptic/bottombits.go -new file mode 100644 -index 0000000..4544722 ---- /dev/null -+++ b/src/crypto/elliptic/bottombits.go -@@ -0,0 +1,4 @@ -+package elliptic -+ -+const bottom28Bits = 0xfffffff -+const two31m3 = 1<<31 - 1<<3 -diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go -index c02df45..f713ad7 100644 ---- a/src/crypto/elliptic/elliptic.go -+++ b/src/crypto/elliptic/elliptic.go -@@ -338,7 +338,6 @@ var p384 *CurveParams - var p521 *CurveParams - - func initAll() { -- initP224() - initP256() - initP384() - initP521() -diff --git a/src/crypto/elliptic/elliptic_test.go b/src/crypto/elliptic/elliptic_test.go -index 7f3f1a2..833668e 100644 ---- a/src/crypto/elliptic/elliptic_test.go -+++ b/src/crypto/elliptic/elliptic_test.go -@@ -6,27 +6,25 @@ package elliptic - - import ( - "crypto/rand" -- "encoding/hex" -- "fmt" - "math/big" - "testing" - ) - - func TestOnCurve(t *testing.T) { -- p224 := P224() -- if !p224.IsOnCurve(p224.Params().Gx, p224.Params().Gy) { -+ p256 := P256() -+ if !p256.IsOnCurve(p256.Params().Gx, p256.Params().Gy) { - t.Errorf("FAIL") - } - } - - func TestOffCurve(t *testing.T) { -- p224 := P224() -+ p256 := P256() - x, y := new(big.Int).SetInt64(1), new(big.Int).SetInt64(1) -- if p224.IsOnCurve(x, y) { -+ if p256.IsOnCurve(x, y) { - t.Errorf("FAIL: point off curve is claimed to be on the curve") - } -- b := Marshal(p224, x, y) -- x1, y1 := Unmarshal(p224, b) -+ b := Marshal(p256, x, y) -+ x1, y1 := Unmarshal(p256, b) - if x1 != nil || y1 != nil { - t.Errorf("FAIL: unmarshalling a point not on the curve succeeded") - } -@@ -37,7 +35,7 @@ type baseMultTest struct { - x, y string - } - --var p224BaseMultTests = []baseMultTest{ -+var p256BaseMultTests = []baseMultTest{ - { - "1", - "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", -@@ -300,47 +298,12 @@ var p224BaseMultTests = []baseMultTest{ - }, - } - --func TestBaseMult(t *testing.T) { -- p224 := P224() -- for i, e := range p224BaseMultTests { -- k, ok := new(big.Int).SetString(e.k, 10) -- if !ok { -- t.Errorf("%d: bad value for k: %s", i, e.k) -- } -- x, y := p224.ScalarBaseMult(k.Bytes()) -- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { -- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) -- } -- if testing.Short() && i > 5 { -- break -- } -- } --} -- --func TestGenericBaseMult(t *testing.T) { -- // We use the P224 CurveParams directly in order to test the generic implementation. -- p224 := P224().Params() -- for i, e := range p224BaseMultTests { -- k, ok := new(big.Int).SetString(e.k, 10) -- if !ok { -- t.Errorf("%d: bad value for k: %s", i, e.k) -- } -- x, y := p224.ScalarBaseMult(k.Bytes()) -- if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { -- t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) -- } -- if testing.Short() && i > 5 { -- break -- } -- } --} -- - func TestP256BaseMult(t *testing.T) { - p256 := P256() - p256Generic := p256.Params() - -- scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1) -- for _, e := range p224BaseMultTests { -+ scalars := make([]*big.Int, 0, len(p256BaseMultTests)+1) -+ for _, e := range p256BaseMultTests { - k, _ := new(big.Int).SetString(e.k, 10) - scalars = append(scalars, k) - } -@@ -365,7 +328,7 @@ func TestP256Mult(t *testing.T) { - p256 := P256() - p256Generic := p256.Params() - -- for i, e := range p224BaseMultTests { -+ for i, e := range p256BaseMultTests { - x, _ := new(big.Int).SetString(e.x, 16) - y, _ := new(big.Int).SetString(e.y, 16) - k, _ := new(big.Int).SetString(e.k, 10) -@@ -386,7 +349,6 @@ func TestInfinity(t *testing.T) { - name string - curve Curve - }{ -- {"p224", P224()}, - {"p256", P256()}, - } - -@@ -419,21 +381,10 @@ func TestInfinity(t *testing.T) { - } - } - --func BenchmarkBaseMult(b *testing.B) { -- b.ResetTimer() -- p224 := P224() -- e := p224BaseMultTests[25] -- k, _ := new(big.Int).SetString(e.k, 10) -- b.StartTimer() -- for i := 0; i < b.N; i++ { -- p224.ScalarBaseMult(k.Bytes()) -- } --} -- - func BenchmarkBaseMultP256(b *testing.B) { - b.ResetTimer() - p256 := P256() -- e := p224BaseMultTests[25] -+ e := p256BaseMultTests[25] - k, _ := new(big.Int).SetString(e.k, 10) - b.StartTimer() - for i := 0; i < b.N; i++ { -@@ -454,14 +405,14 @@ func BenchmarkScalarMultP256(b *testing.B) { - } - - func TestMarshal(t *testing.T) { -- p224 := P224() -- _, x, y, err := GenerateKey(p224, rand.Reader) -+ p256 := P256() -+ _, x, y, err := GenerateKey(p256, rand.Reader) - if err != nil { - t.Error(err) - return - } -- serialized := Marshal(p224, x, y) -- xx, yy := Unmarshal(p224, serialized) -+ serialized := Marshal(p256, x, y) -+ xx, yy := Unmarshal(p256, serialized) - if xx == nil { - t.Error("failed to unmarshal") - return -@@ -471,13 +422,3 @@ func TestMarshal(t *testing.T) { - return - } - } -- --func TestP224Overflow(t *testing.T) { -- // This tests for a specific bug in the P224 implementation. -- p224 := P224() -- pointData, _ := hex.DecodeString("049B535B45FB0A2072398A6831834624C7E32CCFD5A4B933BCEAF77F1DD945E08BBE5178F5EDF5E733388F196D2A631D2E075BB16CBFEEA15B") -- x, y := Unmarshal(p224, pointData) -- if !p224.IsOnCurve(x, y) { -- t.Error("P224 failed to validate a correct point") -- } --} -diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go -deleted file mode 100644 -index de266ca..0000000 ---- a/src/crypto/elliptic/p224.go -+++ /dev/null -@@ -1,765 +0,0 @@ --// Copyright 2012 The Go Authors. All rights reserved. --// Use of this source code is governed by a BSD-style --// license that can be found in the LICENSE file. -- --package elliptic -- --// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, --// section D.2.2. --// --// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. -- --import ( -- "math/big" --) -- --var p224 p224Curve -- --type p224Curve struct { -- *CurveParams -- gx, gy, b p224FieldElement --} -- --func initP224() { -- // See FIPS 186-3, section D.2.2 -- p224.CurveParams = &CurveParams{Name: "P-224"} -- p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) -- p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) -- p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) -- p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) -- p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) -- p224.BitSize = 224 -- -- p224FromBig(&p224.gx, p224.Gx) -- p224FromBig(&p224.gy, p224.Gy) -- p224FromBig(&p224.b, p224.B) --} -- --// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) --func P224() Curve { -- initonce.Do(initAll) -- return p224 --} -- --func (curve p224Curve) Params() *CurveParams { -- return curve.CurveParams --} -- --func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { -- var x, y p224FieldElement -- p224FromBig(&x, bigX) -- p224FromBig(&y, bigY) -- -- // y² = x³ - 3x + b -- var tmp p224LargeFieldElement -- var x3 p224FieldElement -- p224Square(&x3, &x, &tmp) -- p224Mul(&x3, &x3, &x, &tmp) -- -- for i := 0; i < 8; i++ { -- x[i] *= 3 -- } -- p224Sub(&x3, &x3, &x) -- p224Reduce(&x3) -- p224Add(&x3, &x3, &curve.b) -- p224Contract(&x3, &x3) -- -- p224Square(&y, &y, &tmp) -- p224Contract(&y, &y) -- -- for i := 0; i < 8; i++ { -- if y[i] != x3[i] { -- return false -- } -- } -- return true --} -- --func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { -- var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement -- -- p224FromBig(&x1, bigX1) -- p224FromBig(&y1, bigY1) -- if bigX1.Sign() != 0 || bigY1.Sign() != 0 { -- z1[0] = 1 -- } -- p224FromBig(&x2, bigX2) -- p224FromBig(&y2, bigY2) -- if bigX2.Sign() != 0 || bigY2.Sign() != 0 { -- z2[0] = 1 -- } -- -- p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) -- return p224ToAffine(&x3, &y3, &z3) --} -- --func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { -- var x1, y1, z1, x2, y2, z2 p224FieldElement -- -- p224FromBig(&x1, bigX1) -- p224FromBig(&y1, bigY1) -- z1[0] = 1 -- -- p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) -- return p224ToAffine(&x2, &y2, &z2) --} -- --func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { -- var x1, y1, z1, x2, y2, z2 p224FieldElement -- -- p224FromBig(&x1, bigX1) -- p224FromBig(&y1, bigY1) -- z1[0] = 1 -- -- p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) -- return p224ToAffine(&x2, &y2, &z2) --} -- --func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { -- var z1, x2, y2, z2 p224FieldElement -- -- z1[0] = 1 -- p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) -- return p224ToAffine(&x2, &y2, &z2) --} -- --// Field element functions. --// --// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. --// --// Field elements are represented by a FieldElement, which is a typedef to an --// array of 8 uint32's. The value of a FieldElement, a, is: --// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] --// --// Using 28-bit limbs means that there's only 4 bits of headroom, which is less --// than we would really like. But it has the useful feature that we hit 2**224 --// exactly, making the reflections during a reduce much nicer. --type p224FieldElement [8]uint32 -- --// p224P is the order of the field, represented as a p224FieldElement. --var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} -- --// p224IsZero returns 1 if a == 0 mod p and 0 otherwise. --// --// a[i] < 2**29 --func p224IsZero(a *p224FieldElement) uint32 { -- // Since a p224FieldElement contains 224 bits there are two possible -- // representations of 0: 0 and p. -- var minimal p224FieldElement -- p224Contract(&minimal, a) -- -- var isZero, isP uint32 -- for i, v := range minimal { -- isZero |= v -- isP |= v - p224P[i] -- } -- -- // If either isZero or isP is 0, then we should return 1. -- isZero |= isZero >> 16 -- isZero |= isZero >> 8 -- isZero |= isZero >> 4 -- isZero |= isZero >> 2 -- isZero |= isZero >> 1 -- -- isP |= isP >> 16 -- isP |= isP >> 8 -- isP |= isP >> 4 -- isP |= isP >> 2 -- isP |= isP >> 1 -- -- // For isZero and isP, the LSB is 0 iff all the bits are zero. -- result := isZero & isP -- result = (^result) & 1 -- -- return result --} -- --// p224Add computes *out = a+b --// --// a[i] + b[i] < 2**32 --func p224Add(out, a, b *p224FieldElement) { -- for i := 0; i < 8; i++ { -- out[i] = a[i] + b[i] -- } --} -- --const two31p3 = 1<<31 + 1<<3 --const two31m3 = 1<<31 - 1<<3 --const two31m15m3 = 1<<31 - 1<<15 - 1<<3 -- --// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can --// subtract smaller amounts without underflow. See the section "Subtraction" in --// [1] for reasoning. --var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} -- --// p224Sub computes *out = a-b --// --// a[i], b[i] < 2**30 --// out[i] < 2**32 --func p224Sub(out, a, b *p224FieldElement) { -- for i := 0; i < 8; i++ { -- out[i] = a[i] + p224ZeroModP31[i] - b[i] -- } --} -- --// LargeFieldElement also represents an element of the field. The limbs are --// still spaced 28-bits apart and in little-endian order. So the limbs are at --// 0, 28, 56, ..., 392 bits, each 64-bits wide. --type p224LargeFieldElement [15]uint64 -- --const two63p35 = 1<<63 + 1<<35 --const two63m35 = 1<<63 - 1<<35 --const two63m35m19 = 1<<63 - 1<<35 - 1<<19 -- --// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section --// "Subtraction" in [1] for why. --var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} -- --const bottom12Bits = 0xfff --const bottom28Bits = 0xfffffff -- --// p224Mul computes *out = a*b --// --// a[i] < 2**29, b[i] < 2**30 (or vice versa) --// out[i] < 2**29 --func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { -- for i := 0; i < 15; i++ { -- tmp[i] = 0 -- } -- -- for i := 0; i < 8; i++ { -- for j := 0; j < 8; j++ { -- tmp[i+j] += uint64(a[i]) * uint64(b[j]) -- } -- } -- -- p224ReduceLarge(out, tmp) --} -- --// Square computes *out = a*a --// --// a[i] < 2**29 --// out[i] < 2**29 --func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { -- for i := 0; i < 15; i++ { -- tmp[i] = 0 -- } -- -- for i := 0; i < 8; i++ { -- for j := 0; j <= i; j++ { -- r := uint64(a[i]) * uint64(a[j]) -- if i == j { -- tmp[i+j] += r -- } else { -- tmp[i+j] += r << 1 -- } -- } -- } -- -- p224ReduceLarge(out, tmp) --} -- --// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. --// --// in[i] < 2**62 --func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { -- for i := 0; i < 8; i++ { -- in[i] += p224ZeroModP63[i] -- } -- -- // Eliminate the coefficients at 2**224 and greater. -- for i := 14; i >= 8; i-- { -- in[i-8] -= in[i] -- in[i-5] += (in[i] & 0xffff) << 12 -- in[i-4] += in[i] >> 16 -- } -- in[8] = 0 -- // in[0..8] < 2**64 -- -- // As the values become small enough, we start to store them in |out| -- // and use 32-bit operations. -- for i := 1; i < 8; i++ { -- in[i+1] += in[i] >> 28 -- out[i] = uint32(in[i] & bottom28Bits) -- } -- in[0] -= in[8] -- out[3] += uint32(in[8]&0xffff) << 12 -- out[4] += uint32(in[8] >> 16) -- // in[0] < 2**64 -- // out[3] < 2**29 -- // out[4] < 2**29 -- // out[1,2,5..7] < 2**28 -- -- out[0] = uint32(in[0] & bottom28Bits) -- out[1] += uint32((in[0] >> 28) & bottom28Bits) -- out[2] += uint32(in[0] >> 56) -- // out[0] < 2**28 -- // out[1..4] < 2**29 -- // out[5..7] < 2**28 --} -- --// Reduce reduces the coefficients of a to smaller bounds. --// --// On entry: a[i] < 2**31 + 2**30 --// On exit: a[i] < 2**29 --func p224Reduce(a *p224FieldElement) { -- for i := 0; i < 7; i++ { -- a[i+1] += a[i] >> 28 -- a[i] &= bottom28Bits -- } -- top := a[7] >> 28 -- a[7] &= bottom28Bits -- -- // top < 2**4 -- mask := top -- mask |= mask >> 2 -- mask |= mask >> 1 -- mask <<= 31 -- mask = uint32(int32(mask) >> 31) -- // Mask is all ones if top != 0, all zero otherwise -- -- a[0] -= top -- a[3] += top << 12 -- -- // We may have just made a[0] negative but, if we did, then we must -- // have added something to a[3], this it's > 2**12. Therefore we can -- // carry down to a[0]. -- a[3] -= 1 & mask -- a[2] += mask & (1<<28 - 1) -- a[1] += mask & (1<<28 - 1) -- a[0] += mask & (1 << 28) --} -- --// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), --// i.e. Fermat's little theorem. --func p224Invert(out, in *p224FieldElement) { -- var f1, f2, f3, f4 p224FieldElement -- var c p224LargeFieldElement -- -- p224Square(&f1, in, &c) // 2 -- p224Mul(&f1, &f1, in, &c) // 2**2 - 1 -- p224Square(&f1, &f1, &c) // 2**3 - 2 -- p224Mul(&f1, &f1, in, &c) // 2**3 - 1 -- p224Square(&f2, &f1, &c) // 2**4 - 2 -- p224Square(&f2, &f2, &c) // 2**5 - 4 -- p224Square(&f2, &f2, &c) // 2**6 - 8 -- p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 -- p224Square(&f2, &f1, &c) // 2**7 - 2 -- for i := 0; i < 5; i++ { // 2**12 - 2**6 -- p224Square(&f2, &f2, &c) -- } -- p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 -- p224Square(&f3, &f2, &c) // 2**13 - 2 -- for i := 0; i < 11; i++ { // 2**24 - 2**12 -- p224Square(&f3, &f3, &c) -- } -- p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 -- p224Square(&f3, &f2, &c) // 2**25 - 2 -- for i := 0; i < 23; i++ { // 2**48 - 2**24 -- p224Square(&f3, &f3, &c) -- } -- p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 -- p224Square(&f4, &f3, &c) // 2**49 - 2 -- for i := 0; i < 47; i++ { // 2**96 - 2**48 -- p224Square(&f4, &f4, &c) -- } -- p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 -- p224Square(&f4, &f3, &c) // 2**97 - 2 -- for i := 0; i < 23; i++ { // 2**120 - 2**24 -- p224Square(&f4, &f4, &c) -- } -- p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 -- for i := 0; i < 6; i++ { // 2**126 - 2**6 -- p224Square(&f2, &f2, &c) -- } -- p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 -- p224Square(&f1, &f1, &c) // 2**127 - 2 -- p224Mul(&f1, &f1, in, &c) // 2**127 - 1 -- for i := 0; i < 97; i++ { // 2**224 - 2**97 -- p224Square(&f1, &f1, &c) -- } -- p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 --} -- --// p224Contract converts a FieldElement to its unique, minimal form. --// --// On entry, in[i] < 2**29 --// On exit, in[i] < 2**28 --func p224Contract(out, in *p224FieldElement) { -- copy(out[:], in[:]) -- -- for i := 0; i < 7; i++ { -- out[i+1] += out[i] >> 28 -- out[i] &= bottom28Bits -- } -- top := out[7] >> 28 -- out[7] &= bottom28Bits -- -- out[0] -= top -- out[3] += top << 12 -- -- // We may just have made out[i] negative. So we carry down. If we made -- // out[0] negative then we know that out[3] is sufficiently positive -- // because we just added to it. -- for i := 0; i < 3; i++ { -- mask := uint32(int32(out[i]) >> 31) -- out[i] += (1 << 28) & mask -- out[i+1] -= 1 & mask -- } -- -- // We might have pushed out[3] over 2**28 so we perform another, partial, -- // carry chain. -- for i := 3; i < 7; i++ { -- out[i+1] += out[i] >> 28 -- out[i] &= bottom28Bits -- } -- top = out[7] >> 28 -- out[7] &= bottom28Bits -- -- // Eliminate top while maintaining the same value mod p. -- out[0] -= top -- out[3] += top << 12 -- -- // There are two cases to consider for out[3]: -- // 1) The first time that we eliminated top, we didn't push out[3] over -- // 2**28. In this case, the partial carry chain didn't change any values -- // and top is zero. -- // 2) We did push out[3] over 2**28 the first time that we eliminated top. -- // The first value of top was in [0..16), therefore, prior to eliminating -- // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after -- // overflowing and being reduced by the second carry chain, out[3] <= -- // 0xf000. Thus it cannot have overflowed when we eliminated top for the -- // second time. -- -- // Again, we may just have made out[0] negative, so do the same carry down. -- // As before, if we made out[0] negative then we know that out[3] is -- // sufficiently positive. -- for i := 0; i < 3; i++ { -- mask := uint32(int32(out[i]) >> 31) -- out[i] += (1 << 28) & mask -- out[i+1] -= 1 & mask -- } -- -- // Now we see if the value is >= p and, if so, subtract p. -- -- // First we build a mask from the top four limbs, which must all be -- // equal to bottom28Bits if the whole value is >= p. If top4AllOnes -- // ends up with any zero bits in the bottom 28 bits, then this wasn't -- // true. -- top4AllOnes := uint32(0xffffffff) -- for i := 4; i < 8; i++ { -- top4AllOnes &= out[i] -- } -- top4AllOnes |= 0xf0000000 -- // Now we replicate any zero bits to all the bits in top4AllOnes. -- top4AllOnes &= top4AllOnes >> 16 -- top4AllOnes &= top4AllOnes >> 8 -- top4AllOnes &= top4AllOnes >> 4 -- top4AllOnes &= top4AllOnes >> 2 -- top4AllOnes &= top4AllOnes >> 1 -- top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) -- -- // Now we test whether the bottom three limbs are non-zero. -- bottom3NonZero := out[0] | out[1] | out[2] -- bottom3NonZero |= bottom3NonZero >> 16 -- bottom3NonZero |= bottom3NonZero >> 8 -- bottom3NonZero |= bottom3NonZero >> 4 -- bottom3NonZero |= bottom3NonZero >> 2 -- bottom3NonZero |= bottom3NonZero >> 1 -- bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) -- -- // Everything depends on the value of out[3]. -- // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p -- // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, -- // then the whole value is >= p -- // If it's < 0xffff000, then the whole value is < p -- n := out[3] - 0xffff000 -- out3Equal := n -- out3Equal |= out3Equal >> 16 -- out3Equal |= out3Equal >> 8 -- out3Equal |= out3Equal >> 4 -- out3Equal |= out3Equal >> 2 -- out3Equal |= out3Equal >> 1 -- out3Equal = ^uint32(int32(out3Equal<<31) >> 31) -- -- // If out[3] > 0xffff000 then n's MSB will be zero. -- out3GT := ^uint32(int32(n) >> 31) -- -- mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) -- out[0] -= 1 & mask -- out[3] -= 0xffff000 & mask -- out[4] -= 0xfffffff & mask -- out[5] -= 0xfffffff & mask -- out[6] -= 0xfffffff & mask -- out[7] -= 0xfffffff & mask --} -- --// Group element functions. --// --// These functions deal with group elements. The group is an elliptic curve --// group with a = -3 defined in FIPS 186-3, section D.2.2. -- --// p224AddJacobian computes *out = a+b where a != b. --func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { -- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl -- var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement -- var c p224LargeFieldElement -- -- z1IsZero := p224IsZero(z1) -- z2IsZero := p224IsZero(z2) -- -- // Z1Z1 = Z1² -- p224Square(&z1z1, z1, &c) -- // Z2Z2 = Z2² -- p224Square(&z2z2, z2, &c) -- // U1 = X1*Z2Z2 -- p224Mul(&u1, x1, &z2z2, &c) -- // U2 = X2*Z1Z1 -- p224Mul(&u2, x2, &z1z1, &c) -- // S1 = Y1*Z2*Z2Z2 -- p224Mul(&s1, z2, &z2z2, &c) -- p224Mul(&s1, y1, &s1, &c) -- // S2 = Y2*Z1*Z1Z1 -- p224Mul(&s2, z1, &z1z1, &c) -- p224Mul(&s2, y2, &s2, &c) -- // H = U2-U1 -- p224Sub(&h, &u2, &u1) -- p224Reduce(&h) -- xEqual := p224IsZero(&h) -- // I = (2*H)² -- for j := 0; j < 8; j++ { -- i[j] = h[j] << 1 -- } -- p224Reduce(&i) -- p224Square(&i, &i, &c) -- // J = H*I -- p224Mul(&j, &h, &i, &c) -- // r = 2*(S2-S1) -- p224Sub(&r, &s2, &s1) -- p224Reduce(&r) -- yEqual := p224IsZero(&r) -- if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { -- p224DoubleJacobian(x3, y3, z3, x1, y1, z1) -- return -- } -- for i := 0; i < 8; i++ { -- r[i] <<= 1 -- } -- p224Reduce(&r) -- // V = U1*I -- p224Mul(&v, &u1, &i, &c) -- // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H -- p224Add(&z1z1, &z1z1, &z2z2) -- p224Add(&z2z2, z1, z2) -- p224Reduce(&z2z2) -- p224Square(&z2z2, &z2z2, &c) -- p224Sub(z3, &z2z2, &z1z1) -- p224Reduce(z3) -- p224Mul(z3, z3, &h, &c) -- // X3 = r²-J-2*V -- for i := 0; i < 8; i++ { -- z1z1[i] = v[i] << 1 -- } -- p224Add(&z1z1, &j, &z1z1) -- p224Reduce(&z1z1) -- p224Square(x3, &r, &c) -- p224Sub(x3, x3, &z1z1) -- p224Reduce(x3) -- // Y3 = r*(V-X3)-2*S1*J -- for i := 0; i < 8; i++ { -- s1[i] <<= 1 -- } -- p224Mul(&s1, &s1, &j, &c) -- p224Sub(&z1z1, &v, x3) -- p224Reduce(&z1z1) -- p224Mul(&z1z1, &z1z1, &r, &c) -- p224Sub(y3, &z1z1, &s1) -- p224Reduce(y3) -- -- p224CopyConditional(x3, x2, z1IsZero) -- p224CopyConditional(x3, x1, z2IsZero) -- p224CopyConditional(y3, y2, z1IsZero) -- p224CopyConditional(y3, y1, z2IsZero) -- p224CopyConditional(z3, z2, z1IsZero) -- p224CopyConditional(z3, z1, z2IsZero) --} -- --// p224DoubleJacobian computes *out = a+a. --func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { -- var delta, gamma, beta, alpha, t p224FieldElement -- var c p224LargeFieldElement -- -- p224Square(&delta, z1, &c) -- p224Square(&gamma, y1, &c) -- p224Mul(&beta, x1, &gamma, &c) -- -- // alpha = 3*(X1-delta)*(X1+delta) -- p224Add(&t, x1, &delta) -- for i := 0; i < 8; i++ { -- t[i] += t[i] << 1 -- } -- p224Reduce(&t) -- p224Sub(&alpha, x1, &delta) -- p224Reduce(&alpha) -- p224Mul(&alpha, &alpha, &t, &c) -- -- // Z3 = (Y1+Z1)²-gamma-delta -- p224Add(z3, y1, z1) -- p224Reduce(z3) -- p224Square(z3, z3, &c) -- p224Sub(z3, z3, &gamma) -- p224Reduce(z3) -- p224Sub(z3, z3, &delta) -- p224Reduce(z3) -- -- // X3 = alpha²-8*beta -- for i := 0; i < 8; i++ { -- delta[i] = beta[i] << 3 -- } -- p224Reduce(&delta) -- p224Square(x3, &alpha, &c) -- p224Sub(x3, x3, &delta) -- p224Reduce(x3) -- -- // Y3 = alpha*(4*beta-X3)-8*gamma² -- for i := 0; i < 8; i++ { -- beta[i] <<= 2 -- } -- p224Sub(&beta, &beta, x3) -- p224Reduce(&beta) -- p224Square(&gamma, &gamma, &c) -- for i := 0; i < 8; i++ { -- gamma[i] <<= 3 -- } -- p224Reduce(&gamma) -- p224Mul(y3, &alpha, &beta, &c) -- p224Sub(y3, y3, &gamma) -- p224Reduce(y3) --} -- --// p224CopyConditional sets *out = *in iff the least-significant-bit of control --// is true, and it runs in constant time. --func p224CopyConditional(out, in *p224FieldElement, control uint32) { -- control <<= 31 -- control = uint32(int32(control) >> 31) -- -- for i := 0; i < 8; i++ { -- out[i] ^= (out[i] ^ in[i]) & control -- } --} -- --func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { -- var xx, yy, zz p224FieldElement -- for i := 0; i < 8; i++ { -- outX[i] = 0 -- outY[i] = 0 -- outZ[i] = 0 -- } -- -- for _, byte := range scalar { -- for bitNum := uint(0); bitNum < 8; bitNum++ { -- p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) -- bit := uint32((byte >> (7 - bitNum)) & 1) -- p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) -- p224CopyConditional(outX, &xx, bit) -- p224CopyConditional(outY, &yy, bit) -- p224CopyConditional(outZ, &zz, bit) -- } -- } --} -- --// p224ToAffine converts from Jacobian to affine form. --func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { -- var zinv, zinvsq, outx, outy p224FieldElement -- var tmp p224LargeFieldElement -- -- if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { -- return new(big.Int), new(big.Int) -- } -- -- p224Invert(&zinv, z) -- p224Square(&zinvsq, &zinv, &tmp) -- p224Mul(x, x, &zinvsq, &tmp) -- p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) -- p224Mul(y, y, &zinvsq, &tmp) -- -- p224Contract(&outx, x) -- p224Contract(&outy, y) -- return p224ToBig(&outx), p224ToBig(&outy) --} -- --// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, --// where buf is interpreted as a big-endian number. --func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { -- var ret uint32 -- -- for i := uint(0); i < 4; i++ { -- var b byte -- if l := len(buf); l > 0 { -- b = buf[l-1] -- // We don't remove the byte if we're about to return and we're not -- // reading all of it. -- if i != 3 || shift == 4 { -- buf = buf[:l-1] -- } -- } -- ret |= uint32(b) << (8 * i) >> shift -- } -- ret &= bottom28Bits -- return ret, buf --} -- --// p224FromBig sets *out = *in. --func p224FromBig(out *p224FieldElement, in *big.Int) { -- bytes := in.Bytes() -- out[0], bytes = get28BitsFromEnd(bytes, 0) -- out[1], bytes = get28BitsFromEnd(bytes, 4) -- out[2], bytes = get28BitsFromEnd(bytes, 0) -- out[3], bytes = get28BitsFromEnd(bytes, 4) -- out[4], bytes = get28BitsFromEnd(bytes, 0) -- out[5], bytes = get28BitsFromEnd(bytes, 4) -- out[6], bytes = get28BitsFromEnd(bytes, 0) -- out[7], bytes = get28BitsFromEnd(bytes, 4) --} -- --// p224ToBig returns in as a big.Int. --func p224ToBig(in *p224FieldElement) *big.Int { -- var buf [28]byte -- buf[27] = byte(in[0]) -- buf[26] = byte(in[0] >> 8) -- buf[25] = byte(in[0] >> 16) -- buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) -- -- buf[23] = byte(in[1] >> 4) -- buf[22] = byte(in[1] >> 12) -- buf[21] = byte(in[1] >> 20) -- -- buf[20] = byte(in[2]) -- buf[19] = byte(in[2] >> 8) -- buf[18] = byte(in[2] >> 16) -- buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) -- -- buf[16] = byte(in[3] >> 4) -- buf[15] = byte(in[3] >> 12) -- buf[14] = byte(in[3] >> 20) -- -- buf[13] = byte(in[4]) -- buf[12] = byte(in[4] >> 8) -- buf[11] = byte(in[4] >> 16) -- buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) -- -- buf[9] = byte(in[5] >> 4) -- buf[8] = byte(in[5] >> 12) -- buf[7] = byte(in[5] >> 20) -- -- buf[6] = byte(in[6]) -- buf[5] = byte(in[6] >> 8) -- buf[4] = byte(in[6] >> 16) -- buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) -- -- buf[2] = byte(in[7] >> 4) -- buf[1] = byte(in[7] >> 12) -- buf[0] = byte(in[7] >> 20) -- -- return new(big.Int).SetBytes(buf[:]) --} -diff --git a/src/crypto/elliptic/p224_test.go b/src/crypto/elliptic/p224_test.go -deleted file mode 100644 -index 8b4fa04..0000000 ---- a/src/crypto/elliptic/p224_test.go -+++ /dev/null -@@ -1,47 +0,0 @@ --// Copyright 2012 The Go Authors. All rights reserved. --// Use of this source code is governed by a BSD-style --// license that can be found in the LICENSE file. -- --package elliptic -- --import ( -- "math/big" -- "testing" --) -- --var toFromBigTests = []string{ -- "0", -- "1", -- "23", -- "b70e0cb46bb4bf7f321390b94a03c1d356c01122343280d6105c1d21", -- "706a46d476dcb76798e6046d89474788d164c18032d268fd10704fa6", --} -- --func p224AlternativeToBig(in *p224FieldElement) *big.Int { -- ret := new(big.Int) -- tmp := new(big.Int) -- -- for i := uint(0); i < 8; i++ { -- tmp.SetInt64(int64(in[i])) -- tmp.Lsh(tmp, 28*i) -- ret.Add(ret, tmp) -- } -- ret.Mod(ret, p224.P) -- return ret --} -- --func TestToFromBig(t *testing.T) { -- for i, test := range toFromBigTests { -- n, _ := new(big.Int).SetString(test, 16) -- var x p224FieldElement -- p224FromBig(&x, n) -- m := p224ToBig(&x) -- if n.Cmp(m) != 0 { -- t.Errorf("#%d: %x != %x", i, n, m) -- } -- q := p224AlternativeToBig(&x) -- if n.Cmp(q) != 0 { -- t.Errorf("#%d: %x != %x (alternative)", i, n, m) -- } -- } --} -diff --git a/src/crypto/tls/generate_cert.go b/src/crypto/tls/generate_cert.go -index 83f9916..dea8589 100644 ---- a/src/crypto/tls/generate_cert.go -+++ b/src/crypto/tls/generate_cert.go -@@ -33,7 +33,7 @@ var ( - validFor = flag.Duration("duration", 365*24*time.Hour, "Duration that certificate is valid for") - isCA = flag.Bool("ca", false, "whether this cert should be its own Certificate Authority") - rsaBits = flag.Int("rsa-bits", 2048, "Size of RSA key to generate. Ignored if --ecdsa-curve is set") -- ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P224, P256, P384, P521") -+ ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P256, P384, P521") - ) - - func publicKey(priv interface{}) interface{} { -@@ -75,8 +75,6 @@ func main() { - switch *ecdsaCurve { - case "": - priv, err = rsa.GenerateKey(rand.Reader, *rsaBits) -- case "P224": -- priv, err = ecdsa.GenerateKey(elliptic.P224(), rand.Reader) - case "P256": - priv, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader) - case "P384": -diff --git a/src/crypto/x509/x509.go b/src/crypto/x509/x509.go -index 9e6d67d..580831e 100644 ---- a/src/crypto/x509/x509.go -+++ b/src/crypto/x509/x509.go -@@ -340,9 +340,6 @@ func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm - - // RFC 5480, 2.1.1.1. Named Curve - // --// secp224r1 OBJECT IDENTIFIER ::= { --// iso(1) identified-organization(3) certicom(132) curve(0) 33 } --// - // secp256r1 OBJECT IDENTIFIER ::= { - // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) - // prime(1) 7 } -@@ -355,7 +352,6 @@ func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm - // - // NB: secp256r1 is equivalent to prime256v1 - var ( -- oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33} - oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} - oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} - oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} -@@ -363,8 +359,6 @@ var ( - - func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { - switch { -- case oid.Equal(oidNamedCurveP224): -- return elliptic.P224() - case oid.Equal(oidNamedCurveP256): - return elliptic.P256() - case oid.Equal(oidNamedCurveP384): -@@ -377,8 +371,6 @@ func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { - - func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) { - switch curve { -- case elliptic.P224(): -- return oidNamedCurveP224, true - case elliptic.P256(): - return oidNamedCurveP256, true - case elliptic.P384(): -@@ -1508,7 +1500,7 @@ func signingParamsForPublicKey(pub interface{}, requestedSigAlgo SignatureAlgori - pubType = ECDSA - - switch pub.Curve { -- case elliptic.P224(), elliptic.P256(): -+ case elliptic.P256(): - hashFunc = crypto.SHA256 - sigAlgo.Algorithm = oidSignatureECDSAWithSHA256 - case elliptic.P384(): diff --git a/golang.spec b/golang.spec index 4e30243..8afdcd8 100644 --- a/golang.spec +++ b/golang.spec @@ -91,7 +91,7 @@ Name: golang Version: 1.7.3 -Release: 1%{?dist} +Release: 2%{?dist} Summary: The Go Programming Language # source tree includes several copies of Mark.Twain-Tom.Sawyer.txt under Public Domain License: BSD and Public Domain @@ -119,9 +119,6 @@ Requires: go-srpm-macros Patch0: golang-1.2-verbose-build.patch -# https://bugzilla.redhat.com/show_bug.cgi?id=1038683 -Patch1: golang-1.2-remove-ECC-p224.patch - # use the arch dependent path in the bootstrap Patch212: golang-1.5-bootstrap-binary-path.patch @@ -254,9 +251,6 @@ Summary: Golang shared object libraries # increase verbosity of build %patch0 -p1 -b .verbose -# remove the P224 curve -%patch1 -p1 -b .curve - # use the arch dependent path in the bootstrap %patch212 -p1 -b .bootstrap @@ -486,6 +480,9 @@ fi %endif %changelog +* Thu Nov 17 2016 Tom Callaway - 1.7.3-2 +- re-enable the NIST P-224 curve + * Thu Oct 20 2016 Jakub Čajka - 1.7.3-1 - Resolves: BZ#1387067 - golang-1.7.3 is available - added fix for tests failing with latest tzdata