ghostscript/ghostscript-glyph-stretch-691920.patch

52 lines
2.1 KiB
Diff
Raw Normal View History

2011-02-02 13:21:55 +00:00
diff -up ghostscript-9.00/psi/fapi_ft.c.glyph-stretch-691920 ghostscript-9.00/psi/fapi_ft.c
--- ghostscript-9.00/psi/fapi_ft.c.glyph-stretch-691920 2010-09-14 15:56:26.000000000 +0100
+++ ghostscript-9.00/psi/fapi_ft.c 2011-02-02 13:20:51.736932787 +0000
@@ -652,12 +652,43 @@ transform_decompose(FT_Matrix *a_transfo
{
double scalex, scaley, fact = 1.0;
FT_Matrix ftscale_mat;
- FT_UInt xres = *xresp;
- FT_UInt yres = *yresp;
+ FT_UInt xres;
+ FT_UInt yres;
+ FT_Vector vectx, vecty;
- scalex = hypot ((double)a_transform->xx, (double)a_transform->xy) / 65536.0;
- scaley = hypot ((double)a_transform->yx, (double)a_transform->yy) / 65536.0;
+ scalex = hypot ((double)a_transform->xx, (double)a_transform->xy);
+ scaley = hypot ((double)a_transform->yx, (double)a_transform->yy);
+ if (*xresp != *yresp) {
+ /* We need to give the resolution in "glyph space", taking account of rotation and
+ * shearing, so that makes life a little complicated when non-square resolutions
+ * are used.
+ */
+ ftscale_mat.xx = scalex;
+ ftscale_mat.xy = ftscale_mat.yx = 0;
+ ftscale_mat.yy = scaley;
+
+ FT_Matrix_Invert(&ftscale_mat);
+
+ FT_Matrix_Multiply (a_transform, &ftscale_mat);
+
+ vectx.x = *xresp << 16;
+ vecty.y = *yresp << 16;
+ vectx.y = vecty.x = 0;
+
+ FT_Vector_Transform (&vectx, &ftscale_mat);
+ FT_Vector_Transform (&vecty, &ftscale_mat);
+ xres = (FT_UInt)((hypot ((double)vectx.x, (double)vecty.x) / 65536.0) + 0.5);
+ yres = (FT_UInt)((hypot ((double)vectx.y, (double)vecty.y) / 65536.0) + 0.5);
+ }
+ else {
+ /* Life is considerably easier when square resolutions are in use! */
+ xres = *xresp;
+ yres = *yresp;
+ }
+
+ scalex /= 65536.0;
+ scaley /= 65536.0;
/* FT clamps the width and height to a lower limit of 1.0 units
* (note: as FT stores it in 64ths of a unit, that is 64)
* So if either the width or the height are <1.0 here, we scale