forked from rpms/openssl
172 lines
5.8 KiB
Diff
172 lines
5.8 KiB
Diff
From 30c22fa8b1d840036b8e203585738df62a03cec8 Mon Sep 17 00:00:00 2001
|
|
From: Billy Brumley <bbrumley@gmail.com>
|
|
Date: Thu, 5 Sep 2019 21:25:37 +0300
|
|
Subject: [PATCH] [crypto/ec] for ECC parameters with NULL or zero cofactor,
|
|
compute it
|
|
|
|
The cofactor argument to EC_GROUP_set_generator is optional, and SCA
|
|
mitigations for ECC currently use it. So the library currently falls
|
|
back to very old SCA-vulnerable code if the cofactor is not present.
|
|
|
|
This PR allows EC_GROUP_set_generator to compute the cofactor for all
|
|
curves of cryptographic interest. Steering scalar multiplication to more
|
|
SCA-robust code.
|
|
|
|
This issue affects persisted private keys in explicit parameter form,
|
|
where the (optional) cofactor field is zero or absent.
|
|
|
|
It also affects curves not built-in to the library, but constructed
|
|
programatically with explicit parameters, then calling
|
|
EC_GROUP_set_generator with a nonsensical value (NULL, zero).
|
|
|
|
The very old scalar multiplication code is known to be vulnerable to
|
|
local uarch attacks, outside of the OpenSSL threat model. New results
|
|
suggest the code path is also vulnerable to traditional wall clock
|
|
timing attacks.
|
|
|
|
CVE-2019-1547
|
|
|
|
Reviewed-by: Matt Caswell <matt@openssl.org>
|
|
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
|
|
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
|
|
(Merged from https://github.com/openssl/openssl/pull/9781)
|
|
---
|
|
crypto/ec/ec_lib.c | 103 ++++++++++++++++++++++++++++++++++++++++++---
|
|
1 file changed, 96 insertions(+), 7 deletions(-)
|
|
|
|
diff --git a/crypto/ec/ec_lib.c b/crypto/ec/ec_lib.c
|
|
index 8cab5a5061..1289c8608e 100644
|
|
--- a/crypto/ec/ec_lib.c
|
|
+++ b/crypto/ec/ec_lib.c
|
|
@@ -265,6 +265,67 @@ int EC_METHOD_get_field_type(const EC_METHOD *meth)
|
|
|
|
static int ec_precompute_mont_data(EC_GROUP *);
|
|
|
|
+/*-
|
|
+ * Try computing cofactor from the generator order (n) and field cardinality (q).
|
|
+ * This works for all curves of cryptographic interest.
|
|
+ *
|
|
+ * Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q)
|
|
+ * h_min = (q + 1 - 2*sqrt(q))/n
|
|
+ * h_max = (q + 1 + 2*sqrt(q))/n
|
|
+ * h_max - h_min = 4*sqrt(q)/n
|
|
+ * So if n > 4*sqrt(q) holds, there is only one possible value for h:
|
|
+ * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
|
|
+ *
|
|
+ * Otherwise, zero cofactor and return success.
|
|
+ */
|
|
+static int ec_guess_cofactor(EC_GROUP *group) {
|
|
+ int ret = 0;
|
|
+ BN_CTX *ctx = NULL;
|
|
+ BIGNUM *q = NULL;
|
|
+
|
|
+ /*-
|
|
+ * If the cofactor is too large, we cannot guess it.
|
|
+ * The RHS of below is a strict overestimate of lg(4 * sqrt(q))
|
|
+ */
|
|
+ if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) {
|
|
+ /* default to 0 */
|
|
+ BN_zero(group->cofactor);
|
|
+ /* return success */
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ if ((ctx = BN_CTX_new()) == NULL)
|
|
+ return 0;
|
|
+
|
|
+ BN_CTX_start(ctx);
|
|
+ if ((q = BN_CTX_get(ctx)) == NULL)
|
|
+ goto err;
|
|
+
|
|
+ /* set q = 2**m for binary fields; q = p otherwise */
|
|
+ if (group->meth->field_type == NID_X9_62_characteristic_two_field) {
|
|
+ BN_zero(q);
|
|
+ if (!BN_set_bit(q, BN_num_bits(group->field) - 1))
|
|
+ goto err;
|
|
+ } else {
|
|
+ if (!BN_copy(q, group->field))
|
|
+ goto err;
|
|
+ }
|
|
+
|
|
+ /* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */
|
|
+ if (!BN_rshift1(group->cofactor, group->order) /* n/2 */
|
|
+ || !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */
|
|
+ /* q + 1 + n/2 */
|
|
+ || !BN_add(group->cofactor, group->cofactor, BN_value_one())
|
|
+ /* (q + 1 + n/2)/n */
|
|
+ || !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx))
|
|
+ goto err;
|
|
+ ret = 1;
|
|
+ err:
|
|
+ BN_CTX_end(ctx);
|
|
+ BN_CTX_free(ctx);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
const BIGNUM *order, const BIGNUM *cofactor)
|
|
{
|
|
@@ -273,6 +334,34 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
return 0;
|
|
}
|
|
|
|
+ /* require group->field >= 1 */
|
|
+ if (group->field == NULL || BN_is_zero(group->field)
|
|
+ || BN_is_negative(group->field)) {
|
|
+ ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /*-
|
|
+ * - require order >= 1
|
|
+ * - enforce upper bound due to Hasse thm: order can be no more than one bit
|
|
+ * longer than field cardinality
|
|
+ */
|
|
+ if (order == NULL || BN_is_zero(order) || BN_is_negative(order)
|
|
+ || BN_num_bits(order) > BN_num_bits(group->field) + 1) {
|
|
+ ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /*-
|
|
+ * Unfortunately the cofactor is an optional field in many standards.
|
|
+ * Internally, the lib uses 0 cofactor as a marker for "unknown cofactor".
|
|
+ * So accept cofactor == NULL or cofactor >= 0.
|
|
+ */
|
|
+ if (cofactor != NULL && BN_is_negative(cofactor)) {
|
|
+ ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
if (group->generator == NULL) {
|
|
group->generator = EC_POINT_new(group);
|
|
if (group->generator == NULL)
|
|
@@ -281,17 +370,17 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
if (!EC_POINT_copy(group->generator, generator))
|
|
return 0;
|
|
|
|
- if (order != NULL) {
|
|
- if (!BN_copy(group->order, order))
|
|
- return 0;
|
|
- } else
|
|
- BN_zero(group->order);
|
|
+ if (!BN_copy(group->order, order))
|
|
+ return 0;
|
|
|
|
- if (cofactor != NULL) {
|
|
+ /* Either take the provided positive cofactor, or try to compute it */
|
|
+ if (cofactor != NULL && !BN_is_zero(cofactor)) {
|
|
if (!BN_copy(group->cofactor, cofactor))
|
|
return 0;
|
|
- } else
|
|
+ } else if (!ec_guess_cofactor(group)) {
|
|
BN_zero(group->cofactor);
|
|
+ return 0;
|
|
+ }
|
|
|
|
/*
|
|
* Some groups have an order with
|
|
--
|
|
2.20.1
|
|
|