livemedia-creator¶
Authors: | Brian C. Lane <bcl@redhat.com> |
---|
livemedia-creator uses Anaconda, kickstart and Lorax to create bootable media that use the same install path as a normal system installation. It can be used to make live isos, bootable (partitioned) disk images, tarfiles, and filesystem images for use with virtualization and container solutions like libvirt, docker, and OpenStack.
The general idea is to use qemu with kickstart and an Anaconda boot.iso to install into a disk image and then use the disk image to create the bootable media.
livemedia-creator –help will describe all of the options available. At the minimum you need:
--make-iso
to create a final bootable .iso or one of the other --make-*
options.
--iso
to specify the Anaconda install media to use with qemu.
--ks
to select the kickstart file describing what to install.
To use livemedia-creator with virtualization you will need to have qemu installed.
If you are going to be using Anaconda directly, with --no-virt
mode, make sure
you have the anaconda-tui package installed.
Conventions used in this document:
lmc
is an abbreviation for livemedia-creator.
builder
is the system where livemedia-creator is being run
image
is the disk image being created by running livemedia-creator
livemedia-creator cmdline arguments¶
Create Live Install Media
usage: livemedia-creator [-h]
(--make-iso | --make-disk | --make-fsimage | --make-appliance | --make-ami | --make-tar | --make-pxe-live | --make-ostree-live | --make-oci | --make-vagrant)
[--iso ISO] [--iso-only] [--iso-name ISO_NAME]
[--ks KS] [--image-only] [--no-virt] [--proxy PROXY]
[--anaconda-arg ANACONDA_ARGS]
[--armplatform ARMPLATFORM] [--location LOCATION]
[--logfile LOGFILE]
[--lorax-templates LORAX_TEMPLATES] [--tmp TMP]
[--resultdir RESULT_DIR] [--macboot] [--nomacboot]
[--disk-image DISK_IMAGE] [--keep-image]
[--fs-image FS_IMAGE] [--image-name IMAGE_NAME]
[--fs-label FS_LABEL] [--image-type IMAGE_TYPE]
[--qemu-arg QEMU_ARGS] [--qcow2]
[--qcow2-arg QEMU_ARGS] [--compression COMPRESSION]
[--compress-arg COMPRESS_ARGS] [--app-name APP_NAME]
[--app-template APP_TEMPLATE] [--app-file APP_FILE]
[--ram MEMORY] [--vcpus VCPUS] [--vnc VNC]
[--arch ARCH] [--kernel-args KERNEL_ARGS]
[--ovmf-path OVMF_PATH] [--virt-uefi] [--no-kvm]
[--with-rng WITH_RNG] [--dracut-arg DRACUT_ARGS]
[--live-rootfs-size LIVE_ROOTFS_SIZE]
[--live-rootfs-keep-size] [--oci-config OCI_CONFIG]
[--oci-runtime OCI_RUNTIME]
[--vagrant-metadata VAGRANT_METADATA]
[--vagrantfile VAGRANTFILE] [--title TITLE]
[--project PROJECT] [--releasever RELEASEVER]
[--volid VOLID] [--squashfs_args SQUASHFS_ARGS]
[--timeout TIMEOUT] [-V]
Named Arguments¶
--make-iso | Build a live iso Default: False |
--make-disk | Build a partitioned disk image Default: False |
--make-fsimage | Build a filesystem image Default: False |
--make-appliance | |
Build an appliance image and XML description Default: False | |
--make-ami | Build an ami image Default: False |
--make-tar | Build a tar of the root filesystem Default: False |
--make-pxe-live | |
Build a live pxe boot squashfs image Default: False | |
--make-ostree-live | |
Build a live pxe boot squashfs image of Atomic Host Default: False | |
--make-oci | Build an Open Container Initiative image Default: False |
--make-vagrant | Build a Vagrant Box image Default: False |
--iso | Anaconda installation .iso path to use for qemu |
--iso-only | Remove all iso creation artifacts except the boot.iso, combine with –iso-name to rename the boot.iso Default: False |
--iso-name | Name of output iso file for –iso-only. Default is boot.iso |
--ks | Kickstart file defining the install. |
--image-only | Exit after creating fs/disk image. Default: False |
--no-virt | Run anaconda directly on host instead of using qemu Default: False |
--proxy | proxy URL to use for the install |
--anaconda-arg | Additional argument to pass to anaconda (no-virt mode). Pass once for each argument |
--armplatform | the platform to use when creating images for ARM, i.e., highbank, mvebu, omap, tegra, etc. |
--location | location of iso directory tree with initrd.img and vmlinuz. Used to run qemu with a newer initrd than the iso. |
--logfile | Name and path for primary logfile, other logs will be created in the same directory. Default: ./livemedia.log |
--lorax-templates | |
Path to mako templates for lorax | |
--tmp | Top level temporary directory Default: /var/tmp |
--resultdir | Directory to copy the resulting images and iso into. Defaults to the temporary working directory |
--macboot | Default: True |
--nomacboot | Default: True |
--title | Substituted for @TITLE@ in bootloader config files Default: “Linux Live Media” |
--project | substituted for @PROJECT@ in bootloader config files Default: “Linux” |
--releasever | substituted for @VERSION@ in bootloader config files Default: “29” |
--volid | volume id |
--squashfs_args | |
additional squashfs args | |
--timeout | Cancel installer after X minutes |
-V | show program’s version number and exit |
disk/fs image arguments¶
--disk-image | Path to existing disk image to use for creating final image. |
--keep-image | Keep raw disk image after .iso creation Default: False |
--fs-image | Path to existing filesystem image to use for creating final image. |
--image-name | Name of output file to create. Used for tar, fs and disk image. Default is a random name. |
--fs-label | Label to set on fsimage, default is ‘Anaconda’ Default: “Anaconda” |
--image-type | Create an image with qemu-img. See qemu-img –help for supported formats. |
--qemu-arg | Arguments to pass to qemu-img. Pass once for each argument, they will be used for ALL calls to qemu-img. Default: [] |
--qcow2 | Create qcow2 image instead of raw sparse image when making disk images. Default: False |
--qcow2-arg | Arguments to pass to qemu-img. Pass once for each argument, they will be used for ALL calls to qemu-img. Default: [] |
--compression | Compression binary for make-tar. xz, lzma, gzip, and bzip2 are supported. xz is the default. Default: “xz” |
--compress-arg | Arguments to pass to compression. Pass once for each argument Default: [] |
appliance arguments¶
--app-name | Name of appliance to pass to template |
--app-template | Path to template to use for appliance data. |
--app-file | Appliance template results file. Default: “appliance.xml” |
qemu arguments¶
--ram | Memory to allocate for installer in megabytes. Default: 2048 |
--vcpus | Passed to qemu -smp command |
--vnc | Passed to qemu -display command. eg. vnc=127.0.0.1:5, default is to choose the first unused vnc port. |
--arch | System arch to build for. Used to select qemu-system-* command. Defaults to qemu-system-<arch> |
--kernel-args | Additional argument to pass to the installation kernel |
--ovmf-path | Path to OVMF firmware Default: “/usr/share/edk2/ovmf/” |
--virt-uefi | Use OVMF firmware to boot the VM in UEFI mode Default: False |
--no-kvm | Skip using kvm with qemu even if it is available. Default: False |
--with-rng | RNG device for QEMU (none for no RNG) Default: “/dev/random” |
dracut arguments¶
--dracut-arg | Argument to pass to dracut when rebuilding the initramfs. Pass this once for each argument. NOTE: this overrides the default. (default: ) |
pxe to live arguments¶
--live-rootfs-size | |
Size of root filesystem of live image in GiB Default: 0 | |
--live-rootfs-keep-size | |
Keep the original size of root filesystem in live image Default: False |
OCI arguments¶
--oci-config | config.json OCI configuration file |
--oci-runtime | runtime.json OCI configuration file |
Vagrant arguments¶
--vagrant-metadata | |
optional metadata.json file | |
--vagrantfile | optional vagrantfile |
Quickstart¶
Run this to create a bootable live iso:
sudo livemedia-creator --make-iso \
--iso=/extra/iso/boot.iso --ks=./docs/fedora-livemedia.ks
You can run it directly from the lorax git repo like this:
sudo PATH=./src/sbin/:$PATH PYTHONPATH=./src/ ./src/sbin/livemedia-creator \
--make-iso --iso=/extra/iso/boot.iso \
--ks=./docs/fedora-livemedia.ks --lorax-templates=./share/
You can observe the installation using vnc. The logs will show what port was
chosen, or you can use a specific port by passing it. eg. --vnc vnc:127.0.0.1:5
This is usually a good idea when testing changes to the kickstart. lmc tries to monitor the logs for fatal errors, but may not catch everything.
How ISO creation works¶
There are 2 stages, the install stage which produces a disk or filesystem image
as its output, and the boot media creation which uses the image as its input.
Normally you would run both stages, but it is possible to stop after the
install stage, by using --image-only
, or to skip the install stage and use
a previously created disk image by passing --disk-image
or --fs-image
When creating an iso qemu boots using the passed Anaconda installer iso
and installs the system based on the kickstart. The %post
section of the
kickstart is used to customize the installed system in the same way that
current spin-kickstarts do.
livemedia-creator monitors the install process for problems by watching the install logs. They are written to the current directory or to the base directory specified by the –logfile command. You can also monitor the install by using a vnc client. This is recommended when first modifying a kickstart, since there are still places where Anaconda may get stuck without the log monitor catching it.
The output from this process is a partitioned disk image. kpartx can be used to mount and examine it when there is a problem with the install. It can also be booted using kvm.
When creating an iso the disk image’s / partition is copied into a formatted filesystem image which is then used as the input to lorax for creation of the final media.
The final image is created by lorax, using the templates in /usr/share/lorax/live/
or the live directory below the directory specified by --lorax-templates
. The
templates are written using the Mako template system with some extra commands
added by lorax.
Note
The output from –make-iso includes the artifacts used to create the boot.iso;
the kernel, initrd, the squashfs filesystem, etc. If you only want the
boot.iso you can pass --iso-only
and the other files will be removed. You
can also name the iso by using --iso-name my-live.iso
.
Kickstarts¶
The docs/ directory includes several example kickstarts, one to create a live desktop iso using GNOME, and another to create a minimal disk image. When creating your own kickstarts you should start with the minimal example, it includes several needed packages that are not always included by dependencies.
Or you can use existing spin kickstarts to create live media with a few changes. Here are the steps I used to convert the Fedora XFCE spin.
Flatten the xfce kickstart using ksflatten
Add zerombr so you don’t get the disk init dialog
Add clearpart –all
Add swap partition
bootloader target
Add shutdown to the kickstart
Add network –bootproto=dhcp –activate to activate the network This works for F16 builds but for F15 and before you need to pass something on the cmdline that activate the network, like sshd:
livemedia-creator --kernel-args="sshd"
Add a root password:
rootpw rootme network --bootproto=dhcp --activate zerombr clearpart --all bootloader --location=mbr part swap --size=512 shutdown
In the livesys script section of the %post remove the root password. This really depends on how the spin wants to work. You could add the live user that you create to the %wheel group so that sudo works if you wanted to.
passwd -d root > /dev/null
Remove /etc/fstab in %post, dracut handles mounting the rootfs
cat /dev/null > /dev/fstab
Do this only for live iso’s, the filesystem will be mounted read only if there is no /etc/fstab
Don’t delete initramfs files from /boot in %post
When creating live iso’s you need to have, at least, these packages in the %package section:: dracut-config-generic dracut-live -dracut-config-rescue grub2-efi memtest86+ syslinux
User created repositories¶
If you are using your own repositories and installing groups (eg. @core) make
sure you create the repodata with groups like this createrepo -g
/path/to/groups.xml /path/to/rpms
Using a Proxy with repos¶
One drawback to using qemu is that it pulls the packages from the repo each time you run it. To speed things up you either need a local mirror of the packages, or you can use a caching proxy. When using a proxy you pass it to livemedia-creator like this:
--proxy=http://proxy.yourdomain.com:3128
You also need to use a specific mirror instead of mirrormanager so that the packages will get cached, so your kickstart url would look like:
url --url="http://dl.fedoraproject.org/pub/fedora/linux/development/rawhide/x86_64/os/"
You can also add an update repo, but don’t name it updates. Add –proxy to it
as well. You can use all of the kickstart commands in your kickstart. Make sure there
is only one url
command, other repos have to use the repo
command and cannot be
named updates
which is reserved for Anaconda’s use. eg.:
url --url=PRIMARY-REPO-URL --proxy=PROXY-URL
repo --name="repo1" --baseurl=FIRST-REPO-URL --proxy=PROXY-URL
repo --name="repo2" --baseurl=SECOND-REPO_URL --proxy=PROXY-URL
Anaconda image install (no-virt)¶
You can create images without using qemu by passing --no-virt
on the
cmdline. This will use Anaconda’s directory install feature to handle the
install. There are a couple of things to keep in mind when doing this:
- It will be most reliable when building images for the same release that the host is running. Because Anaconda has expectations about the system it is running under you may encounter strange bugs if you try to build newer or older releases.
- Make sure selinux is set to permissive or disabled. It won’t install correctly with selinux set to enforcing yet.
- It may totally trash your host. So far I haven’t had this happen, but the possibility exists that a bug in Anaconda could result in it operating on real devices. I recommend running it in a virt or on a system that you can afford to lose all data from.
The logs from anaconda will be placed in an ./anaconda/ directory in either the current directory or in the directory used for –logfile
Example cmdline:
sudo livemedia-creator --make-iso --no-virt --ks=./fedora-livemedia.ks
Note
Using no-virt to create a partitioned disk image (eg. –make-disk or –make-vagrant) will only create disks usable on the host platform (BIOS or UEFI). You can create BIOS partitioned disk images on UEFI by using virt.
AMI Images¶
Amazon EC2 images can be created by using the –make-ami switch and an appropriate kickstart file. All of the work to customize the image is handled by the kickstart. The example currently included was modified from the cloud-kickstarts version so that it would work with livemedia-creator.
Example cmdline:
sudo livemedia-creator --make-ami --iso=/path/to/boot.iso --ks=./docs/fedora-livemedia-ec2.ks
This will produce an ami-root.img file in the working directory.
At this time I have not tested the image with EC2. Feedback would be welcome.
Appliance Creation¶
livemedia-creator can now replace appliance-tools by using the –make-appliance switch. This will create the partitioned disk image and an XML file that can be used with virt-image to setup a virtual system.
The XML is generated using the Mako template from
/usr/share/lorax/appliance/libvirt.xml You can use a different template by
passing --app-template <template path>
Documentation on the Mako template system can be found at the Mako site
The name of the final output XML is appliance.xml, this can be changed with
--app-file <file path>
The following variables are passed to the template:
disks
A list of disk_info about each disk. Each entry has the following attributes:
name
base name of the disk image file
format
“raw”
checksum_type
“sha256”
checksum
sha256 checksum of the disk image
name
Name of appliance, from –app-name argument
arch
Architecture
memory
Memory in KB (from--ram
)
vcpus
from--vcpus
networks
list of networks from the kickstart or []
title
from--title
project
from--project
releasever
from--releasever
The created image can be imported into libvirt using:
virt-image appliance.xml
You can also create qcow2 appliance images using --image-type=qcow2
, for example:
sudo livemedia-creator --make-appliance --iso=/path/to/boot.iso --ks=./docs/fedora-minimal.ks \
--image-type=qcow2 --app-file=minimal-test.xml --image-name=minimal-test.img
Filesystem Image Creation¶
livemedia-creator can be used to create un-partitined filesystem images using
the --make-fsimage
option. As of version 21.8 this works with both qemu and
no-virt modes of operation. Previously it was only available with no-virt.
Kickstarts should have a single / partition with no extra mountpoints.
livemedia-creator --make-fsimage --iso=/path/to/boot.iso --ks=./docs/fedora-minimal.ks
You can name the output image with --image-name
and set a label on the filesystem with --fs-label
TAR File Creation¶
The --make-tar
command can be used to create a tar of the root filesystem. By
default it is compressed using xz, but this can be changed using the
--compression
and --compress-arg
options. This option works with both virt and
no-virt install methods.
As with --make-fsimage
the kickstart should be limited to a single / partition.
For example:
livemedia-creator --make-tar --iso=/path/to/boot.iso --ks=./docs/fedora-minimal.ks \
--image-name=fedora-root.tar.xz
Live Image for PXE Boot¶
The --make-pxe-live
command will produce squashfs image containing live root
filesystem that can be used for pxe boot. Directory with results will contain
the live image, kernel image, initrd image and template of pxe configuration
for the images.
Atomic Live Image for PXE Boot¶
The --make-ostree-live
command will produce the same result as --make-pxe-live
for installations of Atomic Host. Example kickstart for such an installation
using Atomic installer iso with local repo included in the image can be found
in docs/rhel-atomic-pxe-live.ks.
The PXE images can also be created with --no-virt
by using the example
kickstart in docs/fedora-atomic-pxe-live-novirt.ks. This also works inside the
mock environment.
Using Mock and –no-virt to Create Images¶
As of lorax version 22.2 you can use livemedia-creator and anaconda version 22.15 inside of a mock chroot with –make-iso and –make-fsimage.
Note
As of mock 1.3.4 you need to use --old-chroot
with mock. Mock now defaults to using systemd-nspawn
which cannot create the needed loop device nodes. Passing --old-chroot
will use the old system
where /dev/loop*
is setup for you.
On the host system:
yum install -y mock
Add a user to the mock group to use for running mock. eg. builder
Create a new /etc/mock/ config file based on the rawhide one, or modify the existing one so that the following options are setup:
config_opts['chroot_setup_cmd'] = 'install @buildsys-build anaconda-tui lorax' # build results go into /home/builder/results/ config_opts['plugin_conf']['bind_mount_opts']['dirs'].append(('/home/builder/results','/results/'))
If you are creating images for a branched release of Fedora you should also enable the updates-testing repository so that you get the latest builds in your mock chroot.
The following steps are run as the builder user who is a member of the mock group.
Make a directory for results matching the bind mount above
mkdir ~/results/
Copy the example kickstarts
cp /usr/share/docs/lorax/*ks .
Make sure tar and dracut-network are in the %packages section and that the
url points to the correct repo
Init the mock
mock -r fedora-rawhide-x86_64 --old-chroot --init
Copy the kickstart inside the mock
mock -r fedora-rawhide-x86_64 --old-chroot --copyin ./fedora-minimal.ks /root/
Make a minimal iso:
mock -r fedora-rawhide-x86_64 --old-chroot --chroot -- livemedia-creator --no-virt \ --resultdir=/results/try-1 --logfile=/results/logs/try-1/try-1.log \ --make-iso --ks /root/fedora-minimal.ks
Results will be in ./results/try-1 and logs under /results/logs/try-1/ including anaconda logs and livemedia-creator logs. The new iso will be located at ~/results/try-1/images/boot.iso, and the ~/results/try-1/ directory tree will also contain the vmlinuz, initrd, etc.
Using Mock and qemu to Create Images¶
Version 25.0 of livemedia-creator switches to using qemu for virtualization. This allows creation of all image types, and use of the KVM on the host if /dev/kvm is present in the mock environment.
On the host system:
yum install -y mock
Add a user to the mock group to use for running mock. eg. builder
Create a new /etc/mock/ config file based on the rawhide one, or modify the existing one so that the following options are setup:
config_opts['chroot_setup_cmd'] = 'install @buildsys-build lorax qemu' # build results go into /home/builder/results/ config_opts['plugin_conf']['bind_mount_opts']['dirs'].append(('/home/builder/results','/results/'))
If you are creating images for a branched release of Fedora you should also enable the updates-testing repository so that you get the latest builds in your mock chroot.
The following steps are run as the builder user who is a member of the mock group.
Make a directory for results matching the bind mount above
mkdir ~/results/
Copy the example kickstarts
cp /usr/share/docs/lorax/*ks .
Make sure tar and dracut-network are in the %packages section and that the
url points to the correct repo
Init the mock
mock -r fedora-rawhide-x86_64 --old-chroot --init
Copy the kickstart inside the mock
mock -r fedora-rawhide-x86_64 --old-chroot --copyin ./fedora-minimal.ks /root/
Copy the Anaconda boot.iso inside the mock
mock -r fedora-rawhide-x86_64 --old-chroot --copyin ./boot.iso /root/
Make a minimal iso:
mock -r fedora-rawhide-x86_64 --old-chroot --chroot -- livemedia-creator \ --resultdir=/results/try-1 --logfile=/results/logs/try-1/try-1.log \ --make-iso --ks /root/fedora-minimal.ks --iso /root/boot.iso
Results will be in ./results/try-1 and logs under /results/logs/try-1/ including anaconda logs and livemedia-creator logs. The new iso will be located at ~/results/try-1/images/boot.iso, and the ~/results/try-1/ directory tree will also contain the vmlinuz, initrd, etc.
This will run qemu without kvm support, which is going to be very slow. You can
add mknod /dev/kvm c 10 232;
to create the device node before running lmc.
OpenStack Image Creation¶
OpenStack supports partitioned disk images so --make-disk
can be used to
create images for importing into glance, OpenStack’s image storage component.
You need to have access to an OpenStack provider that allows image uploads, or
setup your own using the instructions from the RDO Project.
The example kickstart, fedora-openstack.ks, is only slightly different than the fedora-minimal.ks one. It adds the cloud-init and cloud-utils-growpart packages. OpenStack supports setting up the image using cloud-init, and cloud-utils-growpart will grow the image to fit the instance’s disk size.
Create a qcow2 image using the kickstart like this:
sudo livemedia-creator --make-disk --iso=/path/to/boot.iso --ks=/path/to/fedora-openstack.ks --image-type=qcow2
Note
On the RHEL7 version of lmc --image-type
isn’t supported. You can only create a bare partitioned disk image.
Import the resulting disk image into the OpenStack system, either via the web UI, or glance on the cmdline:
glance image-create --name "fedora-openstack" --is-public true --disk-format qcow2 \
--container-format bare --file ./fedora-openstack.qcow2
If qcow2 wasn’t used then --disk-format
should be set to raw.
Docker Image Creation¶
Use lmc to create a tarfile as described in the TAR File Creation section, but substitute the fedora-docker.ks example kickstart which removes the requirement for core files and the kernel.
You can then import the tarfile into docker like this (as root):
cat /var/tmp/fedora-root.tar.xz | docker import - fedora-root
And then run bash inside of it:
sudo docker run -i -t fedora-root /bin/bash
Open Container Initiative Image Creation¶
The OCI is a new specification that is still being worked on. You can read more about it at the Open Container Initiative website. You can create OCI images using the following command:
sudo livemedia-creator --make-oci --oci-config /path/to/config.json --oci-runtime /path/to/runtime.json \
--iso=/path/to/boot.iso --ks=/path/to/fedora-minimal.ks
You must provide the config.json and runtime.json files to be included in the bundle, their specifications can be found on the OCI github project output will be in the results directory with a default name of bundle.tar.xz
This will work with --no-virt
and inside a mock since it doesn’t use any
partitioned disk images.
Vagrant Image Creation¶
Vagrant images can be created using the following command:
sudo livemedia-creator --make-vagrant --vagrant-metadata /path/to/metadata.json \
--iso=/path/to/boot.iso --ks=/path/to/fedora-vagrant.ks
The image created is a vagrant-libvirt provider image and needs to have vagrant setup with libvirt before you can use it.
The --vagrant-metadata
file is optional, it will create a minimal one by
default, and if one is passed it will make sure the disk size is setup
correctly. If you pass a --vagrant-vagrantfile
it will be included in the
image verbatim. By default no vagrantfile is created.
There is an example Vagrant kickstart file in the docs directory that sets up the vagrant user with the default insecure SSH pubkey and a few useful utilities.
This also works with --no-virt
, but will not work inside a mock due to its
use of partitioned disk images and qcow2.
Creating UEFI disk images with virt¶
Partitioned disk images can only be created for the same platform as the host system (BIOS or UEFI). You can use virt to create BIOS images on UEFI systems, and it is also possible to create UEFI images on BIOS systems using OVMF. You first need to setup your system with the OVMF firmware. The details can be found here linux-kvm OVMF page but it amounts to:
- Download the firmware.repo from Gerd Hoffmann and install it in /etc/yum.repos.d/
- Install the edk2.git-ovmf-x64 package
- Copy /usr/share/edk2.git/ovmf-x64/OVMF_CODE-pure-efi.fd to /usr/share/OVMF/OVMF_CODE.fd
- Copy /usr/share/edk2.git/ovmf-x64/OVMF_VARS-pure-efi.fd to /usr/share/OVMF/OVMF_VARS.fd
Now you can run livemedia-creator with --virt-uefi
to boot and install using UEFI:
sudo livemedia-creator --make-disk --virt-uefi --iso=/path/to/boot.iso \
--ks=/path/to/fedora-minimal.ks
Make sure that the kickstart you are using creates a /boot/efi partition by including this:
part /boot/efi --fstype="efi" --size=500
Note
When using the resulting image with the current version of OVMF (edk2.git-ovmf-x64-0-20151103.b1295.ge5cffca) it will not boot automatically because there is a problem with the fallback path. You can boot it by entering the UEFI shell and running EFI/fedora/shim.efi and then using efibootmgr to setup the correct boot entry.
Debugging problems¶
Sometimes an installation will get stuck. When using qemu the logs will be written to ./virt-install.log and most of the time any problems that happen will be near the end of the file. lmc tries to detect common errors and will cancel the installation when they happen. But not everything can be caught. When creating a new kickstart it is helpful to use vnc so that you can monitor the installation as it happens, and if it gets stuck without lmc detecting the problem you can switch to tty1 and examine the system directly.
If you suspect problems with %pre or %post sections you can redirect the output to the terminal and examine it by logging into the VM. eg.:
%pre
chvt
exec < /dev/tty3 > /dev/tty3 2>/dev/tty3
#do stuff
echo hello world
%end
If it does get stuck the best way to cancel is to use kill -9 on the qemu pid, lmc will detect that the process died and cleanup.
If lmc didn’t handle the cleanup for some reason you can do this:
1. sudo umount /tmp/lmc-XXXX
to unmount the iso from its mountpoint.
2. sudo rm -rf /tmp/lmc-XXXX
3. sudo rm /var/tmp/lmc-disk-XXXXX
to remove the disk image.
Note that lmc uses the lmc- prefix for all of its temporary files and directories to make it easier to find and clean up leftovers.
The logs from the qemu run are stored in virt-install.log, logs from livemedia-creator are in livemedia.log and program.log
You can add --image-only
to skip the .iso creation and examine the resulting
disk image. Or you can pass --keep-image
to keep it around after the iso has
been created.
Cleaning up aborted --no-virt
installs can sometimes be accomplished by
running the anaconda-cleanup
script. As of Fedora 18 anaconda is
multi-threaded and it can sometimes become stuck and refuse to exit. When this
happens you can usually clean up by first killing the anaconda process then
running anaconda-cleanup
.