1985 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1985 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
| 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
 | |
| 	<http://rt2x00.serialmonkey.com>
 | |
| 
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 	Module: rt2500usb
 | |
| 	Abstract: rt2500usb device specific routines.
 | |
| 	Supported chipsets: RT2570.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/usb.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2x00usb.h"
 | |
| #include "rt2500usb.h"
 | |
| 
 | |
| /*
 | |
|  * Allow hardware encryption to be disabled.
 | |
|  */
 | |
| static bool modparam_nohwcrypt;
 | |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
 | |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
 | |
| 
 | |
| /*
 | |
|  * Register access.
 | |
|  * All access to the CSR registers will go through the methods
 | |
|  * rt2500usb_register_read and rt2500usb_register_write.
 | |
|  * BBP and RF register require indirect register access,
 | |
|  * and use the CSR registers BBPCSR and RFCSR to achieve this.
 | |
|  * These indirect registers work with busy bits,
 | |
|  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
 | |
|  * the register while taking a REGISTER_BUSY_DELAY us delay
 | |
|  * between each attampt. When the busy bit is still set at that time,
 | |
|  * the access attempt is considered to have failed,
 | |
|  * and we will print an error.
 | |
|  * If the csr_mutex is already held then the _lock variants must
 | |
|  * be used instead.
 | |
|  */
 | |
| static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 | |
| 				   const unsigned int offset)
 | |
| {
 | |
| 	__le16 reg;
 | |
| 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
 | |
| 				      USB_VENDOR_REQUEST_IN, offset,
 | |
| 				      ®, sizeof(reg));
 | |
| 	return le16_to_cpu(reg);
 | |
| }
 | |
| 
 | |
| static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
 | |
| 					const unsigned int offset)
 | |
| {
 | |
| 	__le16 reg;
 | |
| 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
 | |
| 				       USB_VENDOR_REQUEST_IN, offset,
 | |
| 				       ®, sizeof(reg), REGISTER_TIMEOUT);
 | |
| 	return le16_to_cpu(reg);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 | |
| 					    const unsigned int offset,
 | |
| 					    u16 value)
 | |
| {
 | |
| 	__le16 reg = cpu_to_le16(value);
 | |
| 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 | |
| 				      USB_VENDOR_REQUEST_OUT, offset,
 | |
| 				      ®, sizeof(reg));
 | |
| }
 | |
| 
 | |
| static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
 | |
| 						 const unsigned int offset,
 | |
| 						 u16 value)
 | |
| {
 | |
| 	__le16 reg = cpu_to_le16(value);
 | |
| 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
 | |
| 				       USB_VENDOR_REQUEST_OUT, offset,
 | |
| 				       ®, sizeof(reg), REGISTER_TIMEOUT);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
 | |
| 						 const unsigned int offset,
 | |
| 						 void *value, const u16 length)
 | |
| {
 | |
| 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 | |
| 				      USB_VENDOR_REQUEST_OUT, offset,
 | |
| 				      value, length);
 | |
| }
 | |
| 
 | |
| static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
 | |
| 				  const unsigned int offset,
 | |
| 				  struct rt2x00_field16 field,
 | |
| 				  u16 *reg)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 | |
| 		*reg = rt2500usb_register_read_lock(rt2x00dev, offset);
 | |
| 		if (!rt2x00_get_field16(*reg, field))
 | |
| 			return 1;
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 | |
| 		   offset, *reg);
 | |
| 	*reg = ~0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define WAIT_FOR_BBP(__dev, __reg) \
 | |
| 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 | |
| #define WAIT_FOR_RF(__dev, __reg) \
 | |
| 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 | |
| 
 | |
| static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 | |
| 				const unsigned int word, const u8 value)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field16(®, PHY_CSR7_DATA, value);
 | |
| 		rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
 | |
| 		rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0);
 | |
| 
 | |
| 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const unsigned int word)
 | |
| {
 | |
| 	u16 reg;
 | |
| 	u8 value;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the read request into the register.
 | |
| 	 * After the data has been written, we wait until hardware
 | |
| 	 * returns the correct value, if at any time the register
 | |
| 	 * doesn't become available in time, reg will be 0xffffffff
 | |
| 	 * which means we return 0xff to the caller.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
 | |
| 		rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1);
 | |
| 
 | |
| 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 | |
| 
 | |
| 		if (WAIT_FOR_BBP(rt2x00dev, ®))
 | |
| 			reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
 | |
| 	}
 | |
| 
 | |
| 	value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			       const unsigned int word, const u32 value)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RF becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RF(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value);
 | |
| 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 | |
| 
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16);
 | |
| 		rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 | |
| 		rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0);
 | |
| 		rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1);
 | |
| 
 | |
| 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 | |
| 		rt2x00_rf_write(rt2x00dev, word, value);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 | |
| 				     const unsigned int offset)
 | |
| {
 | |
| 	return rt2500usb_register_read(rt2x00dev, offset);
 | |
| }
 | |
| 
 | |
| static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 | |
| 				      const unsigned int offset,
 | |
| 				      u32 value)
 | |
| {
 | |
| 	rt2500usb_register_write(rt2x00dev, offset, value);
 | |
| }
 | |
| 
 | |
| static const struct rt2x00debug rt2500usb_rt2x00debug = {
 | |
| 	.owner	= THIS_MODULE,
 | |
| 	.csr	= {
 | |
| 		.read		= _rt2500usb_register_read,
 | |
| 		.write		= _rt2500usb_register_write,
 | |
| 		.flags		= RT2X00DEBUGFS_OFFSET,
 | |
| 		.word_base	= CSR_REG_BASE,
 | |
| 		.word_size	= sizeof(u16),
 | |
| 		.word_count	= CSR_REG_SIZE / sizeof(u16),
 | |
| 	},
 | |
| 	.eeprom	= {
 | |
| 		.read		= rt2x00_eeprom_read,
 | |
| 		.write		= rt2x00_eeprom_write,
 | |
| 		.word_base	= EEPROM_BASE,
 | |
| 		.word_size	= sizeof(u16),
 | |
| 		.word_count	= EEPROM_SIZE / sizeof(u16),
 | |
| 	},
 | |
| 	.bbp	= {
 | |
| 		.read		= rt2500usb_bbp_read,
 | |
| 		.write		= rt2500usb_bbp_write,
 | |
| 		.word_base	= BBP_BASE,
 | |
| 		.word_size	= sizeof(u8),
 | |
| 		.word_count	= BBP_SIZE / sizeof(u8),
 | |
| 	},
 | |
| 	.rf	= {
 | |
| 		.read		= rt2x00_rf_read,
 | |
| 		.write		= rt2500usb_rf_write,
 | |
| 		.word_base	= RF_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= RF_SIZE / sizeof(u32),
 | |
| 	},
 | |
| };
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| 
 | |
| static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 | |
| 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 | |
| 				     enum led_brightness brightness)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	unsigned int enabled = brightness != LED_OFF;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
 | |
| 
 | |
| 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 | |
| 		rt2x00_set_field16(®, MAC_CSR20_LINK, enabled);
 | |
| 	else if (led->type == LED_TYPE_ACTIVITY)
 | |
| 		rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled);
 | |
| 
 | |
| 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 | |
| }
 | |
| 
 | |
| static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 | |
| 			       unsigned long *delay_on,
 | |
| 			       unsigned long *delay_off)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	u16 reg;
 | |
| 
 | |
| 	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
 | |
| 	rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on);
 | |
| 	rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off);
 | |
| 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct rt2x00_led *led,
 | |
| 			       enum led_type type)
 | |
| {
 | |
| 	led->rt2x00dev = rt2x00dev;
 | |
| 	led->type = type;
 | |
| 	led->led_dev.brightness_set = rt2500usb_brightness_set;
 | |
| 	led->led_dev.blink_set = rt2500usb_blink_set;
 | |
| 	led->flags = LED_INITIALIZED;
 | |
| }
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| /*
 | |
|  * Configuration handlers.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * rt2500usb does not differentiate between shared and pairwise
 | |
|  * keys, so we should use the same function for both key types.
 | |
|  */
 | |
| static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct rt2x00lib_crypto *crypto,
 | |
| 				struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	u32 mask;
 | |
| 	u16 reg;
 | |
| 	enum cipher curr_cipher;
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		/*
 | |
| 		 * Disallow to set WEP key other than with index 0,
 | |
| 		 * it is known that not work at least on some hardware.
 | |
| 		 * SW crypto will be used in that case.
 | |
| 		 */
 | |
| 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 | |
| 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 | |
| 		    key->keyidx != 0)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		/*
 | |
| 		 * Pairwise key will always be entry 0, but this
 | |
| 		 * could collide with a shared key on the same
 | |
| 		 * position...
 | |
| 		 */
 | |
| 		mask = TXRX_CSR0_KEY_ID.bit_mask;
 | |
| 
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 | |
| 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 | |
| 		reg &= mask;
 | |
| 
 | |
| 		if (reg && reg == mask)
 | |
| 			return -ENOSPC;
 | |
| 
 | |
| 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 | |
| 
 | |
| 		key->hw_key_idx += reg ? ffz(reg) : 0;
 | |
| 		/*
 | |
| 		 * Hardware requires that all keys use the same cipher
 | |
| 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 | |
| 		 * If this is not the first key, compare the cipher with the
 | |
| 		 * first one and fall back to SW crypto if not the same.
 | |
| 		 */
 | |
| 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 | |
| 					      crypto->key, sizeof(crypto->key));
 | |
| 
 | |
| 		/*
 | |
| 		 * The driver does not support the IV/EIV generation
 | |
| 		 * in hardware. However it demands the data to be provided
 | |
| 		 * both separately as well as inside the frame.
 | |
| 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 | |
| 		 * to ensure rt2x00lib will not strip the data from the
 | |
| 		 * frame after the copy, now we must tell mac80211
 | |
| 		 * to generate the IV/EIV data.
 | |
| 		 */
 | |
| 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 | |
| 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 | |
| 	 * a particular key is valid.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 | |
| 
 | |
| 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 | |
| 	if (crypto->cmd == SET_KEY)
 | |
| 		mask |= 1 << key->hw_key_idx;
 | |
| 	else if (crypto->cmd == DISABLE_KEY)
 | |
| 		mask &= ~(1 << key->hw_key_idx);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 | |
| 				    const unsigned int filter_flags)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start configuration steps.
 | |
| 	 * Note that the version error will always be dropped
 | |
| 	 * and broadcast frames will always be accepted since
 | |
| 	 * there is no filter for it at this time.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC,
 | |
| 			   !(filter_flags & FIF_FCSFAIL));
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL,
 | |
| 			   !(filter_flags & FIF_PLCPFAIL));
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME,
 | |
| 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS,
 | |
| 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 | |
| 			   !rt2x00dev->intf_ap_count);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST,
 | |
| 			   !(filter_flags & FIF_ALLMULTI));
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct rt2x00_intf *intf,
 | |
| 				  struct rt2x00intf_conf *conf,
 | |
| 				  const unsigned int flags)
 | |
| {
 | |
| 	unsigned int bcn_preload;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_TYPE) {
 | |
| 		/*
 | |
| 		 * Enable beacon config
 | |
| 		 */
 | |
| 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW,
 | |
| 				   2 * (conf->type != NL80211_IFTYPE_STATION));
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable synchronisation.
 | |
| 		 */
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 | |
| 
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_MAC)
 | |
| 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 | |
| 					      (3 * sizeof(__le16)));
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_BSSID)
 | |
| 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 | |
| 					      (3 * sizeof(__le16)));
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct rt2x00lib_erp *erp,
 | |
| 				 u32 changed)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 | |
| 				   !!erp->short_preamble);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BASIC_RATES)
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 | |
| 					 erp->basic_rates);
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BEACON_INT) {
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR18_INTERVAL,
 | |
| 				   erp->beacon_int * 4);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_ERP_SLOT) {
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct antenna_setup *ant)
 | |
| {
 | |
| 	u8 r2;
 | |
| 	u8 r14;
 | |
| 	u16 csr5;
 | |
| 	u16 csr6;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should never come here because rt2x00lib is supposed
 | |
| 	 * to catch this and send us the correct antenna explicitely.
 | |
| 	 */
 | |
| 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 | |
| 	       ant->tx == ANTENNA_SW_DIVERSITY);
 | |
| 
 | |
| 	r2 = rt2500usb_bbp_read(rt2x00dev, 2);
 | |
| 	r14 = rt2500usb_bbp_read(rt2x00dev, 14);
 | |
| 	csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
 | |
| 	csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the TX antenna.
 | |
| 	 */
 | |
| 	switch (ant->tx) {
 | |
| 	case ANTENNA_HW_DIVERSITY:
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 | |
| 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 | |
| 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 | |
| 		break;
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 | |
| 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 | |
| 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 | |
| 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 | |
| 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch (ant->rx) {
 | |
| 	case ANTENNA_HW_DIVERSITY:
 | |
| 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 | |
| 		break;
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * RT2525E and RT5222 need to flip TX I/Q
 | |
| 	 */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 | |
| 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 | |
| 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * RT2525E does not need RX I/Q Flip.
 | |
| 		 */
 | |
| 		if (rt2x00_rf(rt2x00dev, RF2525E))
 | |
| 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 | |
| 	} else {
 | |
| 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 | |
| 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 | |
| 	}
 | |
| 
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
 | |
| 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 | |
| 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 | |
| 				     struct rf_channel *rf, const int txpower)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set TXpower.
 | |
| 	 */
 | |
| 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 | |
| 
 | |
| 	/*
 | |
| 	 * For RT2525E we should first set the channel to half band higher.
 | |
| 	 */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
 | |
| 		static const u32 vals[] = {
 | |
| 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 | |
| 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 | |
| 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 | |
| 			0x00000902, 0x00000906
 | |
| 		};
 | |
| 
 | |
| 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 | |
| 		if (rf->rf4)
 | |
| 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 	}
 | |
| 
 | |
| 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 | |
| 	if (rf->rf4)
 | |
| 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 | |
| 				     const int txpower)
 | |
| {
 | |
| 	u32 rf3;
 | |
| 
 | |
| 	rf3 = rt2x00_rf_read(rt2x00dev, 3);
 | |
| 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 | |
| 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	enum dev_state state =
 | |
| 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 | |
| 		STATE_SLEEP : STATE_AWAKE;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	if (state == STATE_SLEEP) {
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 | |
| 		rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON,
 | |
| 				   rt2x00dev->beacon_int - 20);
 | |
| 		rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 | |
| 				   libconf->conf->listen_interval - 1);
 | |
| 
 | |
| 		/* We must first disable autowake before it can be enabled */
 | |
| 		rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0);
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 | |
| 
 | |
| 		rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1);
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 | |
| 	} else {
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 | |
| 		rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0);
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 | |
| 			     struct rt2x00lib_conf *libconf,
 | |
| 			     const unsigned int flags)
 | |
| {
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 | |
| 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 | |
| 					 libconf->conf->power_level);
 | |
| 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 | |
| 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 | |
| 		rt2500usb_config_txpower(rt2x00dev,
 | |
| 					 libconf->conf->power_level);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_PS)
 | |
| 		rt2500usb_config_ps(rt2x00dev, libconf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link tuning
 | |
|  */
 | |
| static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct link_qual *qual)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update FCS error count from register.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
 | |
| 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update False CCA count from register.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
 | |
| 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 | |
| }
 | |
| 
 | |
| static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct link_qual *qual)
 | |
| {
 | |
| 	u16 eeprom;
 | |
| 	u16 value;
 | |
| 
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 24, value);
 | |
| 
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 25, value);
 | |
| 
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 61, value);
 | |
| 
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 17, value);
 | |
| 
 | |
| 	qual->vgc_level = value;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue handlers.
 | |
|  */
 | |
| static void rt2500usb_start_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500usb_stop_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0);
 | |
| 		rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
 | |
| 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 | |
| 				    USB_MODE_TEST, REGISTER_TIMEOUT);
 | |
| 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 | |
| 				    0x00f0, REGISTER_TIMEOUT);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 | |
| 
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 | |
| 
 | |
| 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
 | |
| 	rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 | |
| 		reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
 | |
| 		rt2x00_set_field16(®, PHY_CSR2_LNA, 0);
 | |
| 	} else {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field16(®, PHY_CSR2_LNA, 1);
 | |
| 		rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3);
 | |
| 	}
 | |
| 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 | |
| 
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
 | |
| 	rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT,
 | |
| 			   rt2x00dev->rx->data_size);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 | |
| 	rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
 | |
| 	rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 | |
| 
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u8 value;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 | |
| 		value = rt2500usb_bbp_read(rt2x00dev, 0);
 | |
| 		if ((value != 0xff) && (value != 0x00))
 | |
| 			return 0;
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u16 eeprom;
 | |
| 	u8 value;
 | |
| 	u8 reg_id;
 | |
| 
 | |
| 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 | |
| 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 | |
| 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 | |
| 
 | |
| 		if (eeprom != 0xffff && eeprom != 0x0000) {
 | |
| 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 | |
| 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 | |
| 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device state switch handlers.
 | |
|  */
 | |
| static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initialize all registers.
 | |
| 	 */
 | |
| 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 | |
| 		     rt2500usb_init_bbp(rt2x00dev)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable synchronisation.
 | |
| 	 */
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 | |
| 
 | |
| 	rt2x00usb_disable_radio(rt2x00dev);
 | |
| }
 | |
| 
 | |
| static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
 | |
| 			       enum dev_state state)
 | |
| {
 | |
| 	u16 reg;
 | |
| 	u16 reg2;
 | |
| 	unsigned int i;
 | |
| 	bool put_to_sleep;
 | |
| 	u8 bbp_state;
 | |
| 	u8 rf_state;
 | |
| 
 | |
| 	put_to_sleep = (state != STATE_AWAKE);
 | |
| 
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state);
 | |
| 	rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state);
 | |
| 	rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 | |
| 	rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Device is not guaranteed to be in the requested state yet.
 | |
| 	 * We must wait until the register indicates that the
 | |
| 	 * device has entered the correct state.
 | |
| 	 */
 | |
| 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 | |
| 		reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
 | |
| 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
 | |
| 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
 | |
| 		if (bbp_state == state && rf_state == state)
 | |
| 			return 0;
 | |
| 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 | |
| 		msleep(30);
 | |
| 	}
 | |
| 
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
 | |
| 				      enum dev_state state)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case STATE_RADIO_ON:
 | |
| 		retval = rt2500usb_enable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_OFF:
 | |
| 		rt2500usb_disable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_IRQ_ON:
 | |
| 	case STATE_RADIO_IRQ_OFF:
 | |
| 		/* No support, but no error either */
 | |
| 		break;
 | |
| 	case STATE_DEEP_SLEEP:
 | |
| 	case STATE_SLEEP:
 | |
| 	case STATE_STANDBY:
 | |
| 	case STATE_AWAKE:
 | |
| 		retval = rt2500usb_set_state(rt2x00dev, state);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -ENOTSUPP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(retval))
 | |
| 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
 | |
| 			   state, retval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX descriptor initialization
 | |
|  */
 | |
| static void rt2500usb_write_tx_desc(struct queue_entry *entry,
 | |
| 				    struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	__le32 *txd = (__le32 *) entry->skb->data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start writing the descriptor words.
 | |
| 	 */
 | |
| 	word = rt2x00_desc_read(txd, 0);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
 | |
| 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_ACK,
 | |
| 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
 | |
| 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_OFDM,
 | |
| 			   (txdesc->rate_mode == RATE_MODE_OFDM));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
 | |
| 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
 | |
| 	rt2x00_desc_write(txd, 0, word);
 | |
| 
 | |
| 	word = rt2x00_desc_read(txd, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
 | |
| 	rt2x00_desc_write(txd, 1, word);
 | |
| 
 | |
| 	word = rt2x00_desc_read(txd, 2);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
 | |
| 			   txdesc->u.plcp.length_low);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
 | |
| 			   txdesc->u.plcp.length_high);
 | |
| 	rt2x00_desc_write(txd, 2, word);
 | |
| 
 | |
| 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
 | |
| 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
 | |
| 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
 | |
| 	skbdesc->desc = txd;
 | |
| 	skbdesc->desc_len = TXD_DESC_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX data initialization
 | |
|  */
 | |
| static void rt2500usb_beacondone(struct urb *urb);
 | |
| 
 | |
| static void rt2500usb_write_beacon(struct queue_entry *entry,
 | |
| 				   struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
 | |
| 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
 | |
| 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
 | |
| 	int length;
 | |
| 	u16 reg, reg0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beaconing while we are reloading the beacon data,
 | |
| 	 * otherwise we might be sending out invalid data.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add space for the descriptor in front of the skb.
 | |
| 	 */
 | |
| 	skb_push(entry->skb, TXD_DESC_SIZE);
 | |
| 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the TX descriptor for the beacon.
 | |
| 	 */
 | |
| 	rt2500usb_write_tx_desc(entry, txdesc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dump beacon to userspace through debugfs.
 | |
| 	 */
 | |
| 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * USB devices cannot blindly pass the skb->len as the
 | |
| 	 * length of the data to usb_fill_bulk_urb. Pass the skb
 | |
| 	 * to the driver to determine what the length should be.
 | |
| 	 */
 | |
| 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
 | |
| 
 | |
| 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
 | |
| 			  entry->skb->data, length, rt2500usb_beacondone,
 | |
| 			  entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Second we need to create the guardian byte.
 | |
| 	 * We only need a single byte, so lets recycle
 | |
| 	 * the 'flags' field we are not using for beacons.
 | |
| 	 */
 | |
| 	bcn_priv->guardian_data = 0;
 | |
| 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
 | |
| 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
 | |
| 			  entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Send out the guardian byte.
 | |
| 	 */
 | |
| 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable beaconing again.
 | |
| 	 */
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
 | |
| 	reg0 = reg;
 | |
| 	rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
 | |
| 	/*
 | |
| 	 * Beacon generation will fail initially.
 | |
| 	 * To prevent this we need to change the TXRX_CSR19
 | |
| 	 * register several times (reg0 is the same as reg
 | |
| 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
 | |
| 	 * and 1 in reg).
 | |
| 	 */
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
 | |
| 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 | |
| }
 | |
| 
 | |
| static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
 | |
| {
 | |
| 	int length;
 | |
| 
 | |
| 	/*
 | |
| 	 * The length _must_ be a multiple of 2,
 | |
| 	 * but it must _not_ be a multiple of the USB packet size.
 | |
| 	 */
 | |
| 	length = roundup(entry->skb->len, 2);
 | |
| 	length += (2 * !(length % entry->queue->usb_maxpacket));
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RX control handlers
 | |
|  */
 | |
| static void rt2500usb_fill_rxdone(struct queue_entry *entry,
 | |
| 				  struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	__le32 *rxd =
 | |
| 	    (__le32 *)(entry->skb->data +
 | |
| 		       (entry_priv->urb->actual_length -
 | |
| 			entry->queue->desc_size));
 | |
| 	u32 word0;
 | |
| 	u32 word1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
 | |
| 	 * frame data in rt2x00usb.
 | |
| 	 */
 | |
| 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
 | |
| 	rxd = (__le32 *)skbdesc->desc;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is now safe to read the descriptor on all architectures.
 | |
| 	 */
 | |
| 	word0 = rt2x00_desc_read(rxd, 0);
 | |
| 	word1 = rt2x00_desc_read(rxd, 1);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
 | |
| 
 | |
| 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
 | |
| 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
 | |
| 
 | |
| 	if (rxdesc->cipher != CIPHER_NONE) {
 | |
| 		rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
 | |
| 		rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
 | |
| 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
 | |
| 
 | |
| 		/* ICV is located at the end of frame */
 | |
| 
 | |
| 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
 | |
| 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
 | |
| 			rxdesc->flags |= RX_FLAG_DECRYPTED;
 | |
| 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
 | |
| 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Obtain the status about this packet.
 | |
| 	 * When frame was received with an OFDM bitrate,
 | |
| 	 * the signal is the PLCP value. If it was received with
 | |
| 	 * a CCK bitrate the signal is the rate in 100kbit/s.
 | |
| 	 */
 | |
| 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
 | |
| 	rxdesc->rssi =
 | |
| 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
 | |
| 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
 | |
| 	else
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
 | |
| 		rxdesc->dev_flags |= RXDONE_MY_BSS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the skb memory window to the frame boundaries.
 | |
| 	 */
 | |
| 	skb_trim(entry->skb, rxdesc->size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt functions.
 | |
|  */
 | |
| static void rt2500usb_beacondone(struct urb *urb)
 | |
| {
 | |
| 	struct queue_entry *entry = (struct queue_entry *)urb->context;
 | |
| 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this was the guardian beacon,
 | |
| 	 * if that was the case we need to send the real beacon now.
 | |
| 	 * Otherwise we should free the sk_buffer, the device
 | |
| 	 * should be doing the rest of the work now.
 | |
| 	 */
 | |
| 	if (bcn_priv->guardian_urb == urb) {
 | |
| 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
 | |
| 	} else if (bcn_priv->urb == urb) {
 | |
| 		dev_kfree_skb(entry->skb);
 | |
| 		entry->skb = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device probe functions.
 | |
|  */
 | |
| static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 word;
 | |
| 	u8 *mac;
 | |
| 	u8 bbp;
 | |
| 
 | |
| 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Start validation of the data that has been read.
 | |
| 	 */
 | |
| 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
 | |
| 	rt2x00lib_set_mac_address(rt2x00dev, mac);
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
 | |
| 				   ANTENNA_SW_DIVERSITY);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
 | |
| 				   ANTENNA_SW_DIVERSITY);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
 | |
| 				   LED_MODE_DEFAULT);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
 | |
| 				   DEFAULT_RSSI_OFFSET);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
 | |
| 				  word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch lower vgc bound to current BBP R17 value,
 | |
| 	 * lower the value a bit for better quality.
 | |
| 	 */
 | |
| 	bbp = rt2500usb_bbp_read(rt2x00dev, 17);
 | |
| 	bbp -= 6;
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
 | |
| 	} else {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
 | |
| 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 reg;
 | |
| 	u16 value;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read EEPROM word for configuration.
 | |
| 	 */
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify RF chipset.
 | |
| 	 */
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
 | |
| 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
 | |
| 
 | |
| 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
 | |
| 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2523) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2524) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2525) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify default antenna configuration.
 | |
| 	 */
 | |
| 	rt2x00dev->default_ant.tx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
 | |
| 	rt2x00dev->default_ant.rx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
 | |
| 	 * I am not 100% sure about this, but the legacy drivers do not
 | |
| 	 * indicate antenna swapping in software is required when
 | |
| 	 * diversity is enabled.
 | |
| 	 */
 | |
| 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
 | |
| 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
 | |
| 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
 | |
| 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
 | |
| 
 | |
| 	/*
 | |
| 	 * Store led mode, for correct led behaviour.
 | |
| 	 */
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
 | |
| 
 | |
| 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
 | |
| 	if (value == LED_MODE_TXRX_ACTIVITY ||
 | |
| 	    value == LED_MODE_DEFAULT ||
 | |
| 	    value == LED_MODE_ASUS)
 | |
| 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
 | |
| 				   LED_TYPE_ACTIVITY);
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect if this device has an hardware controlled radio.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
 | |
| 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the RSSI <-> dBm offset information.
 | |
| 	 */
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
 | |
| 	rt2x00dev->rssi_offset =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2522
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2522[] = {
 | |
| 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
 | |
| 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
 | |
| 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
 | |
| 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
 | |
| 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
 | |
| 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
 | |
| 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
 | |
| 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
 | |
| 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
 | |
| 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
 | |
| 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
 | |
| 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
 | |
| 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
 | |
| 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2523
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2523[] = {
 | |
| 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
 | |
| 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
 | |
| 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
 | |
| 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
 | |
| 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
 | |
| 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
 | |
| 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
 | |
| 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
 | |
| 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
 | |
| 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
 | |
| 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
 | |
| 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
 | |
| 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
 | |
| 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2524
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2524[] = {
 | |
| 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
 | |
| 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
 | |
| 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
 | |
| 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
 | |
| 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
 | |
| 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
 | |
| 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
 | |
| 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
 | |
| 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
 | |
| 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
 | |
| 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
 | |
| 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
 | |
| 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
 | |
| 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2525
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2525[] = {
 | |
| 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
 | |
| 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
 | |
| 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
 | |
| 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
 | |
| 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
 | |
| 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
 | |
| 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
 | |
| 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
 | |
| 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
 | |
| 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
 | |
| 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
 | |
| 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
 | |
| 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
 | |
| 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2525e
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2525e[] = {
 | |
| 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
 | |
| 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
 | |
| 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
 | |
| 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
 | |
| 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
 | |
| 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
 | |
| 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
 | |
| 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
 | |
| 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
 | |
| 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
 | |
| 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
 | |
| 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
 | |
| 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
 | |
| 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF5222
 | |
|  * Supports: 2.4 GHz & 5.2 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_5222[] = {
 | |
| 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
 | |
| 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
 | |
| 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
 | |
| 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
 | |
| 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
 | |
| 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
 | |
| 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
 | |
| 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
 | |
| 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
 | |
| 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
 | |
| 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
 | |
| 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
 | |
| 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
 | |
| 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
 | |
| 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
 | |
| 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
 | |
| 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
 | |
| 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
 | |
| 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
 | |
| 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
 | |
| 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
 | |
| 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
 | |
| 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
 | |
| 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
 | |
| 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
 | |
| 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
 | |
| 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
 | |
| 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
 | |
| 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
 | |
| 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
 | |
| 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
 | |
| 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
 | |
| 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
 | |
| 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
 | |
| };
 | |
| 
 | |
| static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct hw_mode_spec *spec = &rt2x00dev->spec;
 | |
| 	struct channel_info *info;
 | |
| 	u8 *tx_power;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all hw fields.
 | |
| 	 *
 | |
| 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
 | |
| 	 * capable of sending the buffered frames out after the DTIM
 | |
| 	 * transmission using rt2x00lib_beacondone. This will send out
 | |
| 	 * multicast and broadcast traffic immediately instead of buffering it
 | |
| 	 * infinitly and thus dropping it after some time.
 | |
| 	 */
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable powersaving as default.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
 | |
| 
 | |
| 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
 | |
| 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
 | |
| 				rt2x00_eeprom_addr(rt2x00dev,
 | |
| 						   EEPROM_MAC_ADDR_0));
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw_mode information.
 | |
| 	 */
 | |
| 	spec->supported_bands = SUPPORT_BAND_2GHZ;
 | |
| 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2522)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
 | |
| 		spec->channels = rf_vals_bg_2522;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
 | |
| 		spec->channels = rf_vals_bg_2523;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
 | |
| 		spec->channels = rf_vals_bg_2524;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
 | |
| 		spec->channels = rf_vals_bg_2525;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
 | |
| 		spec->channels = rf_vals_bg_2525e;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
 | |
| 		spec->channels = rf_vals_5222;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create channel information array
 | |
| 	 */
 | |
| 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spec->channels_info = info;
 | |
| 
 | |
| 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
 | |
| 	for (i = 0; i < 14; i++) {
 | |
| 		info[i].max_power = MAX_TXPOWER;
 | |
| 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (spec->num_channels > 14) {
 | |
| 		for (i = 14; i < spec->num_channels; i++) {
 | |
| 			info[i].max_power = MAX_TXPOWER;
 | |
| 			info[i].default_power1 = DEFAULT_TXPOWER;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	int retval;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate eeprom data.
 | |
| 	 */
 | |
| 	retval = rt2500usb_validate_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = rt2500usb_init_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable rfkill polling by setting GPIO direction of the
 | |
| 	 * rfkill switch GPIO pin correctly.
 | |
| 	 */
 | |
| 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 | |
| 	rt2x00_set_field16(®, MAC_CSR19_DIR0, 0);
 | |
| 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw specifications.
 | |
| 	 */
 | |
| 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * This device requires the atim queue
 | |
| 	 */
 | |
| 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
 | |
| 	if (!modparam_nohwcrypt) {
 | |
| 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
 | |
| 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
 | |
| 	}
 | |
| 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the rssi offset.
 | |
| 	 */
 | |
| 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct ieee80211_ops rt2500usb_mac80211_ops = {
 | |
| 	.add_chanctx = ieee80211_emulate_add_chanctx,
 | |
| 	.remove_chanctx = ieee80211_emulate_remove_chanctx,
 | |
| 	.change_chanctx = ieee80211_emulate_change_chanctx,
 | |
| 	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
 | |
| 	.tx			= rt2x00mac_tx,
 | |
| 	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
 | |
| 	.start			= rt2x00mac_start,
 | |
| 	.stop			= rt2x00mac_stop,
 | |
| 	.add_interface		= rt2x00mac_add_interface,
 | |
| 	.remove_interface	= rt2x00mac_remove_interface,
 | |
| 	.config			= rt2x00mac_config,
 | |
| 	.configure_filter	= rt2x00mac_configure_filter,
 | |
| 	.set_tim		= rt2x00mac_set_tim,
 | |
| 	.set_key		= rt2x00mac_set_key,
 | |
| 	.sw_scan_start		= rt2x00mac_sw_scan_start,
 | |
| 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
 | |
| 	.get_stats		= rt2x00mac_get_stats,
 | |
| 	.bss_info_changed	= rt2x00mac_bss_info_changed,
 | |
| 	.conf_tx		= rt2x00mac_conf_tx,
 | |
| 	.rfkill_poll		= rt2x00mac_rfkill_poll,
 | |
| 	.flush			= rt2x00mac_flush,
 | |
| 	.set_antenna		= rt2x00mac_set_antenna,
 | |
| 	.get_antenna		= rt2x00mac_get_antenna,
 | |
| 	.get_ringparam		= rt2x00mac_get_ringparam,
 | |
| 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
 | |
| };
 | |
| 
 | |
| static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
 | |
| 	.probe_hw		= rt2500usb_probe_hw,
 | |
| 	.initialize		= rt2x00usb_initialize,
 | |
| 	.uninitialize		= rt2x00usb_uninitialize,
 | |
| 	.clear_entry		= rt2x00usb_clear_entry,
 | |
| 	.set_device_state	= rt2500usb_set_device_state,
 | |
| 	.rfkill_poll		= rt2500usb_rfkill_poll,
 | |
| 	.link_stats		= rt2500usb_link_stats,
 | |
| 	.reset_tuner		= rt2500usb_reset_tuner,
 | |
| 	.watchdog		= rt2x00usb_watchdog,
 | |
| 	.start_queue		= rt2500usb_start_queue,
 | |
| 	.kick_queue		= rt2x00usb_kick_queue,
 | |
| 	.stop_queue		= rt2500usb_stop_queue,
 | |
| 	.flush_queue		= rt2x00usb_flush_queue,
 | |
| 	.write_tx_desc		= rt2500usb_write_tx_desc,
 | |
| 	.write_beacon		= rt2500usb_write_beacon,
 | |
| 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
 | |
| 	.fill_rxdone		= rt2500usb_fill_rxdone,
 | |
| 	.config_shared_key	= rt2500usb_config_key,
 | |
| 	.config_pairwise_key	= rt2500usb_config_key,
 | |
| 	.config_filter		= rt2500usb_config_filter,
 | |
| 	.config_intf		= rt2500usb_config_intf,
 | |
| 	.config_erp		= rt2500usb_config_erp,
 | |
| 	.config_ant		= rt2500usb_config_ant,
 | |
| 	.config			= rt2500usb_config,
 | |
| };
 | |
| 
 | |
| static void rt2500usb_queue_init(struct data_queue *queue)
 | |
| {
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = RXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_BEACON:
 | |
| 		queue->limit = 1;
 | |
| 		queue->data_size = MGMT_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_ATIM:
 | |
| 		queue->limit = 8;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct rt2x00_ops rt2500usb_ops = {
 | |
| 	.name			= KBUILD_MODNAME,
 | |
| 	.max_ap_intf		= 1,
 | |
| 	.eeprom_size		= EEPROM_SIZE,
 | |
| 	.rf_size		= RF_SIZE,
 | |
| 	.tx_queues		= NUM_TX_QUEUES,
 | |
| 	.queue_init		= rt2500usb_queue_init,
 | |
| 	.lib			= &rt2500usb_rt2x00_ops,
 | |
| 	.hw			= &rt2500usb_mac80211_ops,
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| 	.debugfs		= &rt2500usb_rt2x00debug,
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * rt2500usb module information.
 | |
|  */
 | |
| static const struct usb_device_id rt2500usb_device_table[] = {
 | |
| 	/* ASUS */
 | |
| 	{ USB_DEVICE(0x0b05, 0x1706) },
 | |
| 	{ USB_DEVICE(0x0b05, 0x1707) },
 | |
| 	/* Belkin */
 | |
| 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
 | |
| 	{ USB_DEVICE(0x050d, 0x7051) },
 | |
| 	/* Cisco Systems */
 | |
| 	{ USB_DEVICE(0x13b1, 0x000d) },
 | |
| 	{ USB_DEVICE(0x13b1, 0x0011) },
 | |
| 	{ USB_DEVICE(0x13b1, 0x001a) },
 | |
| 	/* Conceptronic */
 | |
| 	{ USB_DEVICE(0x14b2, 0x3c02) },
 | |
| 	/* D-LINK */
 | |
| 	{ USB_DEVICE(0x2001, 0x3c00) },
 | |
| 	/* Gigabyte */
 | |
| 	{ USB_DEVICE(0x1044, 0x8001) },
 | |
| 	{ USB_DEVICE(0x1044, 0x8007) },
 | |
| 	/* Hercules */
 | |
| 	{ USB_DEVICE(0x06f8, 0xe000) },
 | |
| 	/* Melco */
 | |
| 	{ USB_DEVICE(0x0411, 0x005e) },
 | |
| 	{ USB_DEVICE(0x0411, 0x0066) },
 | |
| 	{ USB_DEVICE(0x0411, 0x0067) },
 | |
| 	{ USB_DEVICE(0x0411, 0x008b) },
 | |
| 	{ USB_DEVICE(0x0411, 0x0097) },
 | |
| 	/* MSI */
 | |
| 	{ USB_DEVICE(0x0db0, 0x6861) },
 | |
| 	{ USB_DEVICE(0x0db0, 0x6865) },
 | |
| 	{ USB_DEVICE(0x0db0, 0x6869) },
 | |
| 	/* Ralink */
 | |
| 	{ USB_DEVICE(0x148f, 0x1706) },
 | |
| 	{ USB_DEVICE(0x148f, 0x2570) },
 | |
| 	{ USB_DEVICE(0x148f, 0x9020) },
 | |
| 	/* Sagem */
 | |
| 	{ USB_DEVICE(0x079b, 0x004b) },
 | |
| 	/* Siemens */
 | |
| 	{ USB_DEVICE(0x0681, 0x3c06) },
 | |
| 	/* SMC */
 | |
| 	{ USB_DEVICE(0x0707, 0xee13) },
 | |
| 	/* Spairon */
 | |
| 	{ USB_DEVICE(0x114b, 0x0110) },
 | |
| 	/* SURECOM */
 | |
| 	{ USB_DEVICE(0x0769, 0x11f3) },
 | |
| 	/* Trust */
 | |
| 	{ USB_DEVICE(0x0eb0, 0x9020) },
 | |
| 	/* VTech */
 | |
| 	{ USB_DEVICE(0x0f88, 0x3012) },
 | |
| 	/* Zinwell */
 | |
| 	{ USB_DEVICE(0x5a57, 0x0260) },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
 | |
| MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static int rt2500usb_probe(struct usb_interface *usb_intf,
 | |
| 			   const struct usb_device_id *id)
 | |
| {
 | |
| 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
 | |
| }
 | |
| 
 | |
| static struct usb_driver rt2500usb_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= rt2500usb_device_table,
 | |
| 	.probe		= rt2500usb_probe,
 | |
| 	.disconnect	= rt2x00usb_disconnect,
 | |
| 	.suspend	= rt2x00usb_suspend,
 | |
| 	.resume		= rt2x00usb_resume,
 | |
| 	.reset_resume	= rt2x00usb_resume,
 | |
| 	.disable_hub_initiated_lpm = 1,
 | |
| };
 | |
| 
 | |
| module_usb_driver(rt2500usb_driver);
 |