2145 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2145 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
| 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
 | |
| 	<http://rt2x00.serialmonkey.com>
 | |
| 
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 	Module: rt2500pci
 | |
| 	Abstract: rt2500pci device specific routines.
 | |
| 	Supported chipsets: RT2560.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/eeprom_93cx6.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2x00mmio.h"
 | |
| #include "rt2x00pci.h"
 | |
| #include "rt2500pci.h"
 | |
| 
 | |
| /*
 | |
|  * Register access.
 | |
|  * All access to the CSR registers will go through the methods
 | |
|  * rt2x00mmio_register_read and rt2x00mmio_register_write.
 | |
|  * BBP and RF register require indirect register access,
 | |
|  * and use the CSR registers BBPCSR and RFCSR to achieve this.
 | |
|  * These indirect registers work with busy bits,
 | |
|  * and we will try maximal REGISTER_BUSY_COUNT times to access
 | |
|  * the register while taking a REGISTER_BUSY_DELAY us delay
 | |
|  * between each attampt. When the busy bit is still set at that time,
 | |
|  * the access attempt is considered to have failed,
 | |
|  * and we will print an error.
 | |
|  */
 | |
| #define WAIT_FOR_BBP(__dev, __reg) \
 | |
| 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
 | |
| #define WAIT_FOR_RF(__dev, __reg) \
 | |
| 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
 | |
| 
 | |
| static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
 | |
| 				const unsigned int word, const u8 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, BBPCSR_VALUE, value);
 | |
| 		rt2x00_set_field32(®, BBPCSR_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, BBPCSR_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const unsigned int word)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u8 value;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the read request into the register.
 | |
| 	 * After the data has been written, we wait until hardware
 | |
| 	 * returns the correct value, if at any time the register
 | |
| 	 * doesn't become available in time, reg will be 0xffffffff
 | |
| 	 * which means we return 0xff to the caller.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, BBPCSR_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, BBPCSR_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
 | |
| 
 | |
| 		WAIT_FOR_BBP(rt2x00dev, ®);
 | |
| 	}
 | |
| 
 | |
| 	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			       const unsigned int word, const u32 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RF becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RF(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, RFCSR_VALUE, value);
 | |
| 		rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
 | |
| 		rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
 | |
| 		rt2x00_set_field32(®, RFCSR_BUSY, 1);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 | |
| 		rt2x00_rf_write(rt2x00dev, word, value);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 | |
| 
 | |
| 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 | |
| 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 | |
| 	eeprom->reg_data_clock =
 | |
| 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 | |
| 	eeprom->reg_chip_select =
 | |
| 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg = 0;
 | |
| 
 | |
| 	rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 | |
| 	rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 | |
| 	rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
 | |
| 			   !!eeprom->reg_data_clock);
 | |
| 	rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
 | |
| 			   !!eeprom->reg_chip_select);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| static const struct rt2x00debug rt2500pci_rt2x00debug = {
 | |
| 	.owner	= THIS_MODULE,
 | |
| 	.csr	= {
 | |
| 		.read		= rt2x00mmio_register_read,
 | |
| 		.write		= rt2x00mmio_register_write,
 | |
| 		.flags		= RT2X00DEBUGFS_OFFSET,
 | |
| 		.word_base	= CSR_REG_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= CSR_REG_SIZE / sizeof(u32),
 | |
| 	},
 | |
| 	.eeprom	= {
 | |
| 		.read		= rt2x00_eeprom_read,
 | |
| 		.write		= rt2x00_eeprom_write,
 | |
| 		.word_base	= EEPROM_BASE,
 | |
| 		.word_size	= sizeof(u16),
 | |
| 		.word_count	= EEPROM_SIZE / sizeof(u16),
 | |
| 	},
 | |
| 	.bbp	= {
 | |
| 		.read		= rt2500pci_bbp_read,
 | |
| 		.write		= rt2500pci_bbp_write,
 | |
| 		.word_base	= BBP_BASE,
 | |
| 		.word_size	= sizeof(u8),
 | |
| 		.word_count	= BBP_SIZE / sizeof(u8),
 | |
| 	},
 | |
| 	.rf	= {
 | |
| 		.read		= rt2x00_rf_read,
 | |
| 		.write		= rt2500pci_rf_write,
 | |
| 		.word_base	= RF_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= RF_SIZE / sizeof(u32),
 | |
| 	},
 | |
| };
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| 
 | |
| static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 | |
| 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 | |
| 				     enum led_brightness brightness)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	unsigned int enabled = brightness != LED_OFF;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 | |
| 
 | |
| 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 | |
| 		rt2x00_set_field32(®, LEDCSR_LINK, enabled);
 | |
| 	else if (led->type == LED_TYPE_ACTIVITY)
 | |
| 		rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled);
 | |
| 
 | |
| 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 | |
| }
 | |
| 
 | |
| static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 | |
| 			       unsigned long *delay_on,
 | |
| 			       unsigned long *delay_off)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 | |
| 	rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on);
 | |
| 	rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off);
 | |
| 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct rt2x00_led *led,
 | |
| 			       enum led_type type)
 | |
| {
 | |
| 	led->rt2x00dev = rt2x00dev;
 | |
| 	led->type = type;
 | |
| 	led->led_dev.brightness_set = rt2500pci_brightness_set;
 | |
| 	led->led_dev.blink_set = rt2500pci_blink_set;
 | |
| 	led->flags = LED_INITIALIZED;
 | |
| }
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| /*
 | |
|  * Configuration handlers.
 | |
|  */
 | |
| static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 | |
| 				    const unsigned int filter_flags)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start configuration steps.
 | |
| 	 * Note that the version error will always be dropped
 | |
| 	 * and broadcast frames will always be accepted since
 | |
| 	 * there is no filter for it at this time.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_CRC,
 | |
| 			   !(filter_flags & FIF_FCSFAIL));
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
 | |
| 			   !(filter_flags & FIF_PLCPFAIL));
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
 | |
| 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_TODS,
 | |
| 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 | |
| 			   !rt2x00dev->intf_ap_count);
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
 | |
| 			   !(filter_flags & FIF_ALLMULTI));
 | |
| 	rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct rt2x00_intf *intf,
 | |
| 				  struct rt2x00intf_conf *conf,
 | |
| 				  const unsigned int flags)
 | |
| {
 | |
| 	struct data_queue *queue = rt2x00dev->bcn;
 | |
| 	unsigned int bcn_preload;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_TYPE) {
 | |
| 		/*
 | |
| 		 * Enable beacon config
 | |
| 		 */
 | |
| 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
 | |
| 		rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
 | |
| 		rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable synchronisation.
 | |
| 		 */
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 | |
| 		rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_MAC)
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 | |
| 					      conf->mac, sizeof(conf->mac));
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_BSSID)
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 | |
| 					      conf->bssid, sizeof(conf->bssid));
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct rt2x00lib_erp *erp,
 | |
| 				 u32 changed)
 | |
| {
 | |
| 	int preamble_mask;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * When short preamble is enabled, we should set bit 0x08
 | |
| 	 */
 | |
| 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 | |
| 		preamble_mask = erp->short_preamble << 3;
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
 | |
| 		rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162);
 | |
| 		rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 | |
| 		rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 | |
| 		rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
 | |
| 		rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00);
 | |
| 		rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
 | |
| 		rt2x00_set_field32(®, ARCSR2_LENGTH,
 | |
| 				   GET_DURATION(ACK_SIZE, 10));
 | |
| 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
 | |
| 		rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 | |
| 		rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
 | |
| 		rt2x00_set_field32(®, ARCSR2_LENGTH,
 | |
| 				   GET_DURATION(ACK_SIZE, 20));
 | |
| 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
 | |
| 		rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 | |
| 		rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
 | |
| 		rt2x00_set_field32(®, ARCSR2_LENGTH,
 | |
| 				   GET_DURATION(ACK_SIZE, 55));
 | |
| 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
 | |
| 		rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 | |
| 		rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
 | |
| 		rt2x00_set_field32(®, ARCSR2_LENGTH,
 | |
| 				   GET_DURATION(ACK_SIZE, 110));
 | |
| 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BASIC_RATES)
 | |
| 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_ERP_SLOT) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 | |
| 		rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
 | |
| 		rt2x00_set_field32(®, CSR18_SIFS, erp->sifs);
 | |
| 		rt2x00_set_field32(®, CSR18_PIFS, erp->pifs);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
 | |
| 		rt2x00_set_field32(®, CSR19_DIFS, erp->difs);
 | |
| 		rt2x00_set_field32(®, CSR19_EIFS, erp->eifs);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BEACON_INT) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
 | |
| 		rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
 | |
| 				   erp->beacon_int * 16);
 | |
| 		rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
 | |
| 				   erp->beacon_int * 16);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct antenna_setup *ant)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u8 r14;
 | |
| 	u8 r2;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should never come here because rt2x00lib is supposed
 | |
| 	 * to catch this and send us the correct antenna explicitely.
 | |
| 	 */
 | |
| 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 | |
| 	       ant->tx == ANTENNA_SW_DIVERSITY);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
 | |
| 	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
 | |
| 	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the TX antenna.
 | |
| 	 */
 | |
| 	switch (ant->tx) {
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_CCK, 0);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_CCK, 2);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch (ant->rx) {
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * RT2525E and RT5222 need to flip TX I/Q
 | |
| 	 */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * RT2525E does not need RX I/Q Flip.
 | |
| 		 */
 | |
| 		if (rt2x00_rf(rt2x00dev, RF2525E))
 | |
| 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 | |
| 	} else {
 | |
| 		rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
 | |
| 		rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 | |
| 				     struct rf_channel *rf, const int txpower)
 | |
| {
 | |
| 	u8 r70;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set TXpower.
 | |
| 	 */
 | |
| 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch on tuning bits.
 | |
| 	 * For RT2523 devices we do not need to update the R1 register.
 | |
| 	 */
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2523))
 | |
| 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 | |
| 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * For RT2525 we should first set the channel to half band higher.
 | |
| 	 */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2525)) {
 | |
| 		static const u32 vals[] = {
 | |
| 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 | |
| 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 | |
| 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 | |
| 			0x00080d2e, 0x00080d3a
 | |
| 		};
 | |
| 
 | |
| 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 | |
| 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 | |
| 		if (rf->rf4)
 | |
| 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 	}
 | |
| 
 | |
| 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 | |
| 	if (rf->rf4)
 | |
| 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	/*
 | |
| 	 * Channel 14 requires the Japan filter bit to be set.
 | |
| 	 */
 | |
| 	r70 = 0x46;
 | |
| 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
 | |
| 
 | |
| 	msleep(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch off tuning bits.
 | |
| 	 * For RT2523 devices we do not need to update the R1 register.
 | |
| 	 */
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
 | |
| 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 | |
| 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 | |
| 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear false CRC during channel switch.
 | |
| 	 */
 | |
| 	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 | |
| 				     const int txpower)
 | |
| {
 | |
| 	u32 rf3;
 | |
| 
 | |
| 	rf3 = rt2x00_rf_read(rt2x00dev, 3);
 | |
| 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 | |
| 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 | |
| 					 struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 | |
| 	rt2x00_set_field32(®, CSR11_LONG_RETRY,
 | |
| 			   libconf->conf->long_frame_max_tx_count);
 | |
| 	rt2x00_set_field32(®, CSR11_SHORT_RETRY,
 | |
| 			   libconf->conf->short_frame_max_tx_count);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	enum dev_state state =
 | |
| 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 | |
| 		STATE_SLEEP : STATE_AWAKE;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (state == STATE_SLEEP) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 | |
| 		rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN,
 | |
| 				   (rt2x00dev->beacon_int - 20) * 16);
 | |
| 		rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP,
 | |
| 				   libconf->conf->listen_interval - 1);
 | |
| 
 | |
| 		/* We must first disable autowake before it can be enabled */
 | |
| 		rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 | |
| 
 | |
| 		rt2x00_set_field32(®, CSR20_AUTOWAKE, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 | |
| 	} else {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 | |
| 		rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 | |
| 			     struct rt2x00lib_conf *libconf,
 | |
| 			     const unsigned int flags)
 | |
| {
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 | |
| 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 | |
| 					 libconf->conf->power_level);
 | |
| 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 | |
| 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 | |
| 		rt2500pci_config_txpower(rt2x00dev,
 | |
| 					 libconf->conf->power_level);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 | |
| 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_PS)
 | |
| 		rt2500pci_config_ps(rt2x00dev, libconf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link tuning
 | |
|  */
 | |
| static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct link_qual *qual)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update FCS error count from register.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 | |
| 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update False CCA count from register.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
 | |
| 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 | |
| }
 | |
| 
 | |
| static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 | |
| 				     struct link_qual *qual, u8 vgc_level)
 | |
| {
 | |
| 	if (qual->vgc_level_reg != vgc_level) {
 | |
| 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 | |
| 		qual->vgc_level = vgc_level;
 | |
| 		qual->vgc_level_reg = vgc_level;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct link_qual *qual)
 | |
| {
 | |
| 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 | |
| 				 struct link_qual *qual, const u32 count)
 | |
| {
 | |
| 	/*
 | |
| 	 * To prevent collisions with MAC ASIC on chipsets
 | |
| 	 * up to version C the link tuning should halt after 20
 | |
| 	 * seconds while being associated.
 | |
| 	 */
 | |
| 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 | |
| 	    rt2x00dev->intf_associated && count > 20)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Chipset versions C and lower should directly continue
 | |
| 	 * to the dynamic CCA tuning. Chipset version D and higher
 | |
| 	 * should go straight to dynamic CCA tuning when they
 | |
| 	 * are not associated.
 | |
| 	 */
 | |
| 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 | |
| 	    !rt2x00dev->intf_associated)
 | |
| 		goto dynamic_cca_tune;
 | |
| 
 | |
| 	/*
 | |
| 	 * A too low RSSI will cause too much false CCA which will
 | |
| 	 * then corrupt the R17 tuning. To remidy this the tuning should
 | |
| 	 * be stopped (While making sure the R17 value will not exceed limits)
 | |
| 	 */
 | |
| 	if (qual->rssi < -80 && count > 20) {
 | |
| 		if (qual->vgc_level_reg >= 0x41)
 | |
| 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special big-R17 for short distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -58) {
 | |
| 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special mid-R17 for middle distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -74) {
 | |
| 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Leave short or middle distance condition, restore r17
 | |
| 	 * to the dynamic tuning range.
 | |
| 	 */
 | |
| 	if (qual->vgc_level_reg >= 0x41) {
 | |
| 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| dynamic_cca_tune:
 | |
| 
 | |
| 	/*
 | |
| 	 * R17 is inside the dynamic tuning range,
 | |
| 	 * start tuning the link based on the false cca counter.
 | |
| 	 */
 | |
| 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 | |
| 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 | |
| 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 | |
| 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue handlers.
 | |
|  */
 | |
| static void rt2500pci_start_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 | |
| 		rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 | |
| 		rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
 | |
| 		rt2x00_set_field32(®, CSR14_TBCN, 1);
 | |
| 		rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500pci_kick_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 | |
| 		rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 | |
| 		break;
 | |
| 	case QID_AC_VI:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 | |
| 		rt2x00_set_field32(®, TXCSR0_KICK_TX, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 | |
| 		break;
 | |
| 	case QID_ATIM:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 | |
| 		rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500pci_stop_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_ATIM:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 | |
| 		rt2x00_set_field32(®, TXCSR0_ABORT, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 | |
| 		break;
 | |
| 	case QID_RX:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 | |
| 		rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 | |
| 		rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
 | |
| 		rt2x00_set_field32(®, CSR14_TBCN, 0);
 | |
| 		rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for possibly running tbtt tasklets.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 
 | |
| 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 | |
| 	} else {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 
 | |
| 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 | |
| 		        rt2x00_get_field32(word, TXD_W0_VALID));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500pci_clear_entry(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 1);
 | |
| 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 1, word);
 | |
| 
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 	} else {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 | |
| 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize registers.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
 | |
| 	rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 | |
| 	rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 | |
| 	rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 | |
| 	rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
 | |
| 	rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
 | |
| 	rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
 | |
| 	rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
 | |
| 	rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
 | |
| 	rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 | |
| 	rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
 | |
| 	rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
 | |
| 	rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
 | |
| 	rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
 | |
| 	rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
 | |
| 	rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
 | |
| 			   rt2x00dev->rx->data_size / 128);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Always use CWmin and CWmax set in descriptor.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 | |
| 	rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 | |
| 	rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_TSF_SYNC, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_TBCN, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_TCFP, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_TATIMW, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0);
 | |
| 	rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
 | |
| 	rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
 | |
| 	rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
 | |
| 	rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
 | |
| 	rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
 | |
| 	rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
 | |
| 	rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
 | |
| 	rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
 | |
| 	rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
 | |
| 	rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
 | |
| 	rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
 | |
| 	rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
 | |
| 	rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
 | |
| 	rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
 | |
| 	rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
 | |
| 	rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
 | |
| 	rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
 | |
| 	rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
 | |
| 	rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
 | |
| 	rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
 | |
| 	rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
 | |
| 	rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
 | |
| 
 | |
| 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
 | |
| 	rt2x00_set_field32(®, MACCSR2_DELAY, 64);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
 | |
| 	rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
 | |
| 	rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
 | |
| 	rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
 | |
| 	rt2x00_set_field32(®, CSR1_HOST_READY, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
 | |
| 	rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
 | |
| 	rt2x00_set_field32(®, CSR1_HOST_READY, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must clear the FCS and FIFO error count.
 | |
| 	 * These registers are cleared on read,
 | |
| 	 * so we may pass a useless variable to store the value.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u8 value;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		value = rt2500pci_bbp_read(rt2x00dev, 0);
 | |
| 		if ((value != 0xff) && (value != 0x00))
 | |
| 			return 0;
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u16 eeprom;
 | |
| 	u8 reg_id;
 | |
| 	u8 value;
 | |
| 
 | |
| 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
 | |
| 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 | |
| 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 | |
| 
 | |
| 		if (eeprom != 0xffff && eeprom != 0x0000) {
 | |
| 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 | |
| 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 | |
| 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device state switch handlers.
 | |
|  */
 | |
| static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 | |
| 				 enum dev_state state)
 | |
| {
 | |
| 	int mask = (state == STATE_RADIO_IRQ_OFF);
 | |
| 	u32 reg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * When interrupts are being enabled, the interrupt registers
 | |
| 	 * should clear the register to assure a clean state.
 | |
| 	 */
 | |
| 	if (state == STATE_RADIO_IRQ_ON) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only toggle the interrupts bits we are going to use.
 | |
| 	 * Non-checked interrupt bits are disabled by default.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
 | |
| 	rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
 | |
| 	rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
 | |
| 	rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
 | |
| 	rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
 | |
| 	rt2x00_set_field32(®, CSR8_RXDONE, mask);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	if (state == STATE_RADIO_IRQ_OFF) {
 | |
| 		/*
 | |
| 		 * Ensure that all tasklets are finished.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initialize all registers.
 | |
| 	 */
 | |
| 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
 | |
| 		     rt2500pci_init_registers(rt2x00dev) ||
 | |
| 		     rt2500pci_init_bbp(rt2x00dev)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Disable power
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
 | |
| }
 | |
| 
 | |
| static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
 | |
| 			       enum dev_state state)
 | |
| {
 | |
| 	u32 reg, reg2;
 | |
| 	unsigned int i;
 | |
| 	bool put_to_sleep;
 | |
| 	u8 bbp_state;
 | |
| 	u8 rf_state;
 | |
| 
 | |
| 	put_to_sleep = (state != STATE_AWAKE);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
 | |
| 	rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
 | |
| 	rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
 | |
| 	rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
 | |
| 	rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Device is not guaranteed to be in the requested state yet.
 | |
| 	 * We must wait until the register indicates that the
 | |
| 	 * device has entered the correct state.
 | |
| 	 */
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
 | |
| 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
 | |
| 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
 | |
| 		if (bbp_state == state && rf_state == state)
 | |
| 			return 0;
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
 | |
| 		msleep(10);
 | |
| 	}
 | |
| 
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
 | |
| 				      enum dev_state state)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case STATE_RADIO_ON:
 | |
| 		retval = rt2500pci_enable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_OFF:
 | |
| 		rt2500pci_disable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_IRQ_ON:
 | |
| 	case STATE_RADIO_IRQ_OFF:
 | |
| 		rt2500pci_toggle_irq(rt2x00dev, state);
 | |
| 		break;
 | |
| 	case STATE_DEEP_SLEEP:
 | |
| 	case STATE_SLEEP:
 | |
| 	case STATE_STANDBY:
 | |
| 	case STATE_AWAKE:
 | |
| 		retval = rt2500pci_set_state(rt2x00dev, state);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -ENOTSUPP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(retval))
 | |
| 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
 | |
| 			   state, retval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX descriptor initialization
 | |
|  */
 | |
| static void rt2500pci_write_tx_desc(struct queue_entry *entry,
 | |
| 				    struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	__le32 *txd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start writing the descriptor words.
 | |
| 	 */
 | |
| 	word = rt2x00_desc_read(txd, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 | |
| 	rt2x00_desc_write(txd, 1, word);
 | |
| 
 | |
| 	word = rt2x00_desc_read(txd, 2);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
 | |
| 	rt2x00_desc_write(txd, 2, word);
 | |
| 
 | |
| 	word = rt2x00_desc_read(txd, 3);
 | |
| 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
 | |
| 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
 | |
| 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
 | |
| 			   txdesc->u.plcp.length_low);
 | |
| 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
 | |
| 			   txdesc->u.plcp.length_high);
 | |
| 	rt2x00_desc_write(txd, 3, word);
 | |
| 
 | |
| 	word = rt2x00_desc_read(txd, 10);
 | |
| 	rt2x00_set_field32(&word, TXD_W10_RTS,
 | |
| 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
 | |
| 	rt2x00_desc_write(txd, 10, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing TXD word 0 must the last to prevent a race condition with
 | |
| 	 * the device, whereby the device may take hold of the TXD before we
 | |
| 	 * finished updating it.
 | |
| 	 */
 | |
| 	word = rt2x00_desc_read(txd, 0);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
 | |
| 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_ACK,
 | |
| 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
 | |
| 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_OFDM,
 | |
| 			   (txdesc->rate_mode == RATE_MODE_OFDM));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
 | |
| 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
 | |
| 	rt2x00_desc_write(txd, 0, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->desc = txd;
 | |
| 	skbdesc->desc_len = TXD_DESC_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX data initialization
 | |
|  */
 | |
| static void rt2500pci_write_beacon(struct queue_entry *entry,
 | |
| 				   struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beaconing while we are reloading the beacon data,
 | |
| 	 * otherwise we might be sending out invalid data.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 | |
| 	rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| 
 | |
| 	if (rt2x00queue_map_txskb(entry)) {
 | |
| 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the TX descriptor for the beacon.
 | |
| 	 */
 | |
| 	rt2500pci_write_tx_desc(entry, txdesc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dump beacon to userspace through debugfs.
 | |
| 	 */
 | |
| 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
 | |
| out:
 | |
| 	/*
 | |
| 	 * Enable beaconing again.
 | |
| 	 */
 | |
| 	rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RX control handlers
 | |
|  */
 | |
| static void rt2500pci_fill_rxdone(struct queue_entry *entry,
 | |
| 				  struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	u32 word0;
 | |
| 	u32 word2;
 | |
| 
 | |
| 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 	word2 = rt2x00_desc_read(entry_priv->desc, 2);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Obtain the status about this packet.
 | |
| 	 * When frame was received with an OFDM bitrate,
 | |
| 	 * the signal is the PLCP value. If it was received with
 | |
| 	 * a CCK bitrate the signal is the rate in 100kbit/s.
 | |
| 	 */
 | |
| 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
 | |
| 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
 | |
| 	    entry->queue->rt2x00dev->rssi_offset;
 | |
| 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
 | |
| 	else
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
 | |
| 		rxdesc->dev_flags |= RXDONE_MY_BSS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt functions.
 | |
|  */
 | |
| static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const enum data_queue_qid queue_idx)
 | |
| {
 | |
| 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
 | |
| 	struct queue_entry_priv_mmio *entry_priv;
 | |
| 	struct queue_entry *entry;
 | |
| 	struct txdone_entry_desc txdesc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	while (!rt2x00queue_empty(queue)) {
 | |
| 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
 | |
| 		entry_priv = entry->priv_data;
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 
 | |
| 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 | |
| 		    !rt2x00_get_field32(word, TXD_W0_VALID))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Obtain the status about this packet.
 | |
| 		 */
 | |
| 		txdesc.flags = 0;
 | |
| 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
 | |
| 		case 0: /* Success */
 | |
| 		case 1: /* Success with retry */
 | |
| 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
 | |
| 			break;
 | |
| 		case 2: /* Failure, excessive retries */
 | |
| 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
 | |
| 			fallthrough;	/* this is a failed frame! */
 | |
| 		default: /* Failure */
 | |
| 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
 | |
| 		}
 | |
| 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
 | |
| 
 | |
| 		rt2x00lib_txdone(entry, &txdesc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
 | |
| 					      struct rt2x00_field32 irq_field)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable a single interrupt. The interrupt mask register
 | |
| 	 * access needs locking.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
 | |
| 	rt2x00_set_field32(®, irq_field, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
 | |
| 
 | |
| 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
 | |
| 						    txstatus_tasklet);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle all tx queues.
 | |
| 	 */
 | |
| 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
 | |
| 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
 | |
| 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable all TXDONE interrupts again.
 | |
| 	 */
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
 | |
| 		spin_lock_irq(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
 | |
| 		rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0);
 | |
| 		rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0);
 | |
| 		rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
 | |
| 
 | |
| 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
 | |
| 	rt2x00lib_beacondone(rt2x00dev);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
 | |
| }
 | |
| 
 | |
| static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
 | |
| 						    rxdone_tasklet);
 | |
| 	if (rt2x00mmio_rxdone(rt2x00dev))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
 | |
| }
 | |
| 
 | |
| static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = dev_instance;
 | |
| 	u32 reg, mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the interrupt sources & saved to local variable.
 | |
| 	 * Write register value back to clear pending interrupts.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
 | |
| 
 | |
| 	if (!reg)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	mask = reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule tasklets for interrupt handling.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
 | |
| 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
 | |
| 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
 | |
| 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
 | |
| 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
 | |
| 		/*
 | |
| 		 * Mask out all txdone interrupts.
 | |
| 		 */
 | |
| 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
 | |
| 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
 | |
| 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable all interrupts for which a tasklet was scheduled right now,
 | |
| 	 * the tasklet will reenable the appropriate interrupts.
 | |
| 	 */
 | |
| 	spin_lock(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
 | |
| 	reg |= mask;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
 | |
| 
 | |
| 	spin_unlock(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device probe functions.
 | |
|  */
 | |
| static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct eeprom_93cx6 eeprom;
 | |
| 	u32 reg;
 | |
| 	u16 word;
 | |
| 	u8 *mac;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 | |
| 
 | |
| 	eeprom.data = rt2x00dev;
 | |
| 	eeprom.register_read = rt2500pci_eepromregister_read;
 | |
| 	eeprom.register_write = rt2500pci_eepromregister_write;
 | |
| 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
 | |
| 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
 | |
| 	eeprom.reg_data_in = 0;
 | |
| 	eeprom.reg_data_out = 0;
 | |
| 	eeprom.reg_data_clock = 0;
 | |
| 	eeprom.reg_chip_select = 0;
 | |
| 
 | |
| 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
 | |
| 			       EEPROM_SIZE / sizeof(u16));
 | |
| 
 | |
| 	/*
 | |
| 	 * Start validation of the data that has been read.
 | |
| 	 */
 | |
| 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
 | |
| 	rt2x00lib_set_mac_address(rt2x00dev, mac);
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
 | |
| 				   ANTENNA_SW_DIVERSITY);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
 | |
| 				   ANTENNA_SW_DIVERSITY);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
 | |
| 				   LED_MODE_DEFAULT);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
 | |
| 				   DEFAULT_RSSI_OFFSET);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
 | |
| 				  word);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 value;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read EEPROM word for configuration.
 | |
| 	 */
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify RF chipset.
 | |
| 	 */
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
 | |
| 	rt2x00_set_chip(rt2x00dev, RT2560, value,
 | |
| 			rt2x00_get_field32(reg, CSR0_REVISION));
 | |
| 
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2523) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2524) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2525) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify default antenna configuration.
 | |
| 	 */
 | |
| 	rt2x00dev->default_ant.tx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
 | |
| 	rt2x00dev->default_ant.rx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Store led mode, for correct led behaviour.
 | |
| 	 */
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
 | |
| 
 | |
| 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
 | |
| 	if (value == LED_MODE_TXRX_ACTIVITY ||
 | |
| 	    value == LED_MODE_DEFAULT ||
 | |
| 	    value == LED_MODE_ASUS)
 | |
| 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
 | |
| 				   LED_TYPE_ACTIVITY);
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect if this device has an hardware controlled radio.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
 | |
| 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
 | |
| 		/*
 | |
| 		 * On this device RFKILL initialized during probe does not work.
 | |
| 		 */
 | |
| 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the BBP tuning should be enabled.
 | |
| 	 */
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
 | |
| 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
 | |
| 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the RSSI <-> dBm offset information.
 | |
| 	 */
 | |
| 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
 | |
| 	rt2x00dev->rssi_offset =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2522
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2522[] = {
 | |
| 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
 | |
| 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
 | |
| 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
 | |
| 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
 | |
| 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
 | |
| 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
 | |
| 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
 | |
| 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
 | |
| 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
 | |
| 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
 | |
| 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
 | |
| 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
 | |
| 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
 | |
| 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2523
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2523[] = {
 | |
| 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
 | |
| 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
 | |
| 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
 | |
| 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
 | |
| 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
 | |
| 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
 | |
| 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
 | |
| 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
 | |
| 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
 | |
| 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
 | |
| 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
 | |
| 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
 | |
| 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
 | |
| 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2524
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2524[] = {
 | |
| 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
 | |
| 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
 | |
| 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
 | |
| 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
 | |
| 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
 | |
| 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
 | |
| 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
 | |
| 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
 | |
| 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
 | |
| 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
 | |
| 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
 | |
| 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
 | |
| 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
 | |
| 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2525
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2525[] = {
 | |
| 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
 | |
| 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
 | |
| 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
 | |
| 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
 | |
| 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
 | |
| 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
 | |
| 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
 | |
| 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
 | |
| 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
 | |
| 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
 | |
| 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
 | |
| 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
 | |
| 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
 | |
| 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF2525e
 | |
|  * Supports: 2.4 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_bg_2525e[] = {
 | |
| 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
 | |
| 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
 | |
| 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
 | |
| 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
 | |
| 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
 | |
| 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
 | |
| 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
 | |
| 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
 | |
| 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
 | |
| 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
 | |
| 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
 | |
| 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
 | |
| 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
 | |
| 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF5222
 | |
|  * Supports: 2.4 GHz & 5.2 GHz
 | |
|  */
 | |
| static const struct rf_channel rf_vals_5222[] = {
 | |
| 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
 | |
| 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
 | |
| 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
 | |
| 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
 | |
| 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
 | |
| 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
 | |
| 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
 | |
| 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
 | |
| 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
 | |
| 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
 | |
| 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
 | |
| 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
 | |
| 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
 | |
| 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
 | |
| 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
 | |
| 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
 | |
| 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
 | |
| 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
 | |
| 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
 | |
| 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
 | |
| 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
 | |
| 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
 | |
| 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
 | |
| 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
 | |
| 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
 | |
| 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
 | |
| 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
 | |
| 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
 | |
| 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
 | |
| 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
 | |
| 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
 | |
| 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
 | |
| 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
 | |
| 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
 | |
| };
 | |
| 
 | |
| static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct hw_mode_spec *spec = &rt2x00dev->spec;
 | |
| 	struct channel_info *info;
 | |
| 	u8 *tx_power;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all hw fields.
 | |
| 	 */
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
 | |
| 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
 | |
| 
 | |
| 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
 | |
| 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
 | |
| 				rt2x00_eeprom_addr(rt2x00dev,
 | |
| 						   EEPROM_MAC_ADDR_0));
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable powersaving as default.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw_mode information.
 | |
| 	 */
 | |
| 	spec->supported_bands = SUPPORT_BAND_2GHZ;
 | |
| 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2522)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
 | |
| 		spec->channels = rf_vals_bg_2522;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
 | |
| 		spec->channels = rf_vals_bg_2523;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
 | |
| 		spec->channels = rf_vals_bg_2524;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
 | |
| 		spec->channels = rf_vals_bg_2525;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
 | |
| 		spec->channels = rf_vals_bg_2525e;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
 | |
| 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
 | |
| 		spec->channels = rf_vals_5222;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create channel information array
 | |
| 	 */
 | |
| 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spec->channels_info = info;
 | |
| 
 | |
| 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
 | |
| 	for (i = 0; i < 14; i++) {
 | |
| 		info[i].max_power = MAX_TXPOWER;
 | |
| 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (spec->num_channels > 14) {
 | |
| 		for (i = 14; i < spec->num_channels; i++) {
 | |
| 			info[i].max_power = MAX_TXPOWER;
 | |
| 			info[i].default_power1 = DEFAULT_TXPOWER;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	int retval;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate eeprom data.
 | |
| 	 */
 | |
| 	retval = rt2500pci_validate_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = rt2500pci_init_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable rfkill polling by setting GPIO direction of the
 | |
| 	 * rfkill switch GPIO pin correctly.
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 | |
| 	rt2x00_set_field32(®, GPIOCSR_DIR0, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw specifications.
 | |
| 	 */
 | |
| 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * This device requires the atim queue and DMA-mapped skbs.
 | |
| 	 */
 | |
| 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the rssi offset.
 | |
| 	 */
 | |
| 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IEEE80211 stack callback functions.
 | |
|  */
 | |
| static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
 | |
| 			     struct ieee80211_vif *vif)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	u64 tsf;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
 | |
| 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
 | |
| 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
 | |
| 
 | |
| 	return tsf;
 | |
| }
 | |
| 
 | |
| static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
 | |
| 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
 | |
| }
 | |
| 
 | |
| static const struct ieee80211_ops rt2500pci_mac80211_ops = {
 | |
| 	.add_chanctx = ieee80211_emulate_add_chanctx,
 | |
| 	.remove_chanctx = ieee80211_emulate_remove_chanctx,
 | |
| 	.change_chanctx = ieee80211_emulate_change_chanctx,
 | |
| 	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
 | |
| 	.tx			= rt2x00mac_tx,
 | |
| 	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
 | |
| 	.start			= rt2x00mac_start,
 | |
| 	.stop			= rt2x00mac_stop,
 | |
| 	.add_interface		= rt2x00mac_add_interface,
 | |
| 	.remove_interface	= rt2x00mac_remove_interface,
 | |
| 	.config			= rt2x00mac_config,
 | |
| 	.configure_filter	= rt2x00mac_configure_filter,
 | |
| 	.sw_scan_start		= rt2x00mac_sw_scan_start,
 | |
| 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
 | |
| 	.get_stats		= rt2x00mac_get_stats,
 | |
| 	.bss_info_changed	= rt2x00mac_bss_info_changed,
 | |
| 	.conf_tx		= rt2x00mac_conf_tx,
 | |
| 	.get_tsf		= rt2500pci_get_tsf,
 | |
| 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
 | |
| 	.rfkill_poll		= rt2x00mac_rfkill_poll,
 | |
| 	.flush			= rt2x00mac_flush,
 | |
| 	.set_antenna		= rt2x00mac_set_antenna,
 | |
| 	.get_antenna		= rt2x00mac_get_antenna,
 | |
| 	.get_ringparam		= rt2x00mac_get_ringparam,
 | |
| 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
 | |
| };
 | |
| 
 | |
| static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
 | |
| 	.irq_handler		= rt2500pci_interrupt,
 | |
| 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
 | |
| 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
 | |
| 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
 | |
| 	.probe_hw		= rt2500pci_probe_hw,
 | |
| 	.initialize		= rt2x00mmio_initialize,
 | |
| 	.uninitialize		= rt2x00mmio_uninitialize,
 | |
| 	.get_entry_state	= rt2500pci_get_entry_state,
 | |
| 	.clear_entry		= rt2500pci_clear_entry,
 | |
| 	.set_device_state	= rt2500pci_set_device_state,
 | |
| 	.rfkill_poll		= rt2500pci_rfkill_poll,
 | |
| 	.link_stats		= rt2500pci_link_stats,
 | |
| 	.reset_tuner		= rt2500pci_reset_tuner,
 | |
| 	.link_tuner		= rt2500pci_link_tuner,
 | |
| 	.start_queue		= rt2500pci_start_queue,
 | |
| 	.kick_queue		= rt2500pci_kick_queue,
 | |
| 	.stop_queue		= rt2500pci_stop_queue,
 | |
| 	.flush_queue		= rt2x00mmio_flush_queue,
 | |
| 	.write_tx_desc		= rt2500pci_write_tx_desc,
 | |
| 	.write_beacon		= rt2500pci_write_beacon,
 | |
| 	.fill_rxdone		= rt2500pci_fill_rxdone,
 | |
| 	.config_filter		= rt2500pci_config_filter,
 | |
| 	.config_intf		= rt2500pci_config_intf,
 | |
| 	.config_erp		= rt2500pci_config_erp,
 | |
| 	.config_ant		= rt2500pci_config_ant,
 | |
| 	.config			= rt2500pci_config,
 | |
| };
 | |
| 
 | |
| static void rt2500pci_queue_init(struct data_queue *queue)
 | |
| {
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = RXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_BEACON:
 | |
| 		queue->limit = 1;
 | |
| 		queue->data_size = MGMT_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_ATIM:
 | |
| 		queue->limit = 8;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct rt2x00_ops rt2500pci_ops = {
 | |
| 	.name			= KBUILD_MODNAME,
 | |
| 	.max_ap_intf		= 1,
 | |
| 	.eeprom_size		= EEPROM_SIZE,
 | |
| 	.rf_size		= RF_SIZE,
 | |
| 	.tx_queues		= NUM_TX_QUEUES,
 | |
| 	.queue_init		= rt2500pci_queue_init,
 | |
| 	.lib			= &rt2500pci_rt2x00_ops,
 | |
| 	.hw			= &rt2500pci_mac80211_ops,
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| 	.debugfs		= &rt2500pci_rt2x00debug,
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RT2500pci module information.
 | |
|  */
 | |
| static const struct pci_device_id rt2500pci_device_table[] = {
 | |
| 	{ PCI_DEVICE(0x1814, 0x0201) },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
 | |
| MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static int rt2500pci_probe(struct pci_dev *pci_dev,
 | |
| 			   const struct pci_device_id *id)
 | |
| {
 | |
| 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
 | |
| }
 | |
| 
 | |
| static struct pci_driver rt2500pci_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= rt2500pci_device_table,
 | |
| 	.probe		= rt2500pci_probe,
 | |
| 	.remove		= rt2x00pci_remove,
 | |
| 	.driver.pm	= &rt2x00pci_pm_ops,
 | |
| };
 | |
| 
 | |
| module_pci_driver(rt2500pci_driver);
 |