718 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			718 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
 | |
|  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <rdma/ib_user_verbs.h>
 | |
| 
 | |
| #include "mlx4_ib.h"
 | |
| 
 | |
| static u32 convert_access(int acc)
 | |
| {
 | |
| 	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
 | |
| 	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
 | |
| 	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
 | |
| 	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
 | |
| 	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
 | |
| 	       MLX4_PERM_LOCAL_READ;
 | |
| }
 | |
| 
 | |
| static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
 | |
| 	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
 | |
| 	default:		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
 | |
| {
 | |
| 	struct mlx4_ib_mr *mr;
 | |
| 	int err;
 | |
| 
 | |
| 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 | |
| 	if (!mr)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
 | |
| 			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_mr;
 | |
| 
 | |
| 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 | |
| 	mr->umem = NULL;
 | |
| 
 | |
| 	return &mr->ibmr;
 | |
| 
 | |
| err_mr:
 | |
| 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
 | |
| 
 | |
| err_free:
 | |
| 	kfree(mr);
 | |
| 
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	MLX4_MAX_MTT_SHIFT = 31
 | |
| };
 | |
| 
 | |
| static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
 | |
| 					struct mlx4_mtt *mtt,
 | |
| 					u64 mtt_size, u64 mtt_shift, u64 len,
 | |
| 					u64 cur_start_addr, u64 *pages,
 | |
| 					int *start_index, int *npages)
 | |
| {
 | |
| 	u64 cur_end_addr = cur_start_addr + len;
 | |
| 	u64 cur_end_addr_aligned = 0;
 | |
| 	u64 mtt_entries;
 | |
| 	int err = 0;
 | |
| 	int k;
 | |
| 
 | |
| 	len += (cur_start_addr & (mtt_size - 1ULL));
 | |
| 	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
 | |
| 	len += (cur_end_addr_aligned - cur_end_addr);
 | |
| 	if (len & (mtt_size - 1ULL)) {
 | |
| 		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
 | |
| 			len, mtt_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mtt_entries = (len >> mtt_shift);
 | |
| 
 | |
| 	/*
 | |
| 	 * Align the MTT start address to the mtt_size.
 | |
| 	 * Required to handle cases when the MR starts in the middle of an MTT
 | |
| 	 * record. Was not required in old code since the physical addresses
 | |
| 	 * provided by the dma subsystem were page aligned, which was also the
 | |
| 	 * MTT size.
 | |
| 	 */
 | |
| 	cur_start_addr = round_down(cur_start_addr, mtt_size);
 | |
| 	/* A new block is started ... */
 | |
| 	for (k = 0; k < mtt_entries; ++k) {
 | |
| 		pages[*npages] = cur_start_addr + (mtt_size * k);
 | |
| 		(*npages)++;
 | |
| 		/*
 | |
| 		 * Be friendly to mlx4_write_mtt() and pass it chunks of
 | |
| 		 * appropriate size.
 | |
| 		 */
 | |
| 		if (*npages == PAGE_SIZE / sizeof(u64)) {
 | |
| 			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
 | |
| 					     *npages, pages);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			(*start_index) += *npages;
 | |
| 			*npages = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u64 alignment_of(u64 ptr)
 | |
| {
 | |
| 	return ilog2(ptr & (~(ptr - 1)));
 | |
| }
 | |
| 
 | |
| static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
 | |
| 				       u64 current_block_end,
 | |
| 				       u64 block_shift)
 | |
| {
 | |
| 	/* Check whether the alignment of the new block is aligned as well as
 | |
| 	 * the previous block.
 | |
| 	 * Block address must start with zeros till size of entity_size.
 | |
| 	 */
 | |
| 	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
 | |
| 		/*
 | |
| 		 * It is not as well aligned as the previous block-reduce the
 | |
| 		 * mtt size accordingly. Here we take the last right bit which
 | |
| 		 * is 1.
 | |
| 		 */
 | |
| 		block_shift = alignment_of(next_block_start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the alignment of the end of previous block - is it
 | |
| 	 * aligned as well as the start of the block
 | |
| 	 */
 | |
| 	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
 | |
| 		/*
 | |
| 		 * It is not as well aligned as the start of the block -
 | |
| 		 * reduce the mtt size accordingly.
 | |
| 		 */
 | |
| 		block_shift = alignment_of(current_block_end);
 | |
| 
 | |
| 	return block_shift;
 | |
| }
 | |
| 
 | |
| int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
 | |
| 			   struct ib_umem *umem)
 | |
| {
 | |
| 	u64 *pages;
 | |
| 	u64 len = 0;
 | |
| 	int err = 0;
 | |
| 	u64 mtt_size;
 | |
| 	u64 cur_start_addr = 0;
 | |
| 	u64 mtt_shift;
 | |
| 	int start_index = 0;
 | |
| 	int npages = 0;
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	pages = (u64 *) __get_free_page(GFP_KERNEL);
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mtt_shift = mtt->page_shift;
 | |
| 	mtt_size = 1ULL << mtt_shift;
 | |
| 
 | |
| 	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
 | |
| 		if (cur_start_addr + len == sg_dma_address(sg)) {
 | |
| 			/* still the same block */
 | |
| 			len += sg_dma_len(sg);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * A new block is started ...
 | |
| 		 * If len is malaligned, write an extra mtt entry to cover the
 | |
| 		 * misaligned area (round up the division)
 | |
| 		 */
 | |
| 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
 | |
| 						   mtt_shift, len,
 | |
| 						   cur_start_addr,
 | |
| 						   pages, &start_index,
 | |
| 						   &npages);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		cur_start_addr = sg_dma_address(sg);
 | |
| 		len = sg_dma_len(sg);
 | |
| 	}
 | |
| 
 | |
| 	/* Handle the last block */
 | |
| 	if (len > 0) {
 | |
| 		/*
 | |
| 		 * If len is malaligned, write an extra mtt entry to cover
 | |
| 		 * the misaligned area (round up the division)
 | |
| 		 */
 | |
| 		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
 | |
| 						   mtt_shift, len,
 | |
| 						   cur_start_addr, pages,
 | |
| 						   &start_index, &npages);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (npages)
 | |
| 		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
 | |
| 
 | |
| out:
 | |
| 	free_page((unsigned long) pages);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate optimal mtt size based on contiguous pages.
 | |
|  * Function will return also the number of pages that are not aligned to the
 | |
|  * calculated mtt_size to be added to total number of pages. For that we should
 | |
|  * check the first chunk length & last chunk length and if not aligned to
 | |
|  * mtt_size we should increment the non_aligned_pages number. All chunks in the
 | |
|  * middle already handled as part of mtt shift calculation for both their start
 | |
|  * & end addresses.
 | |
|  */
 | |
| int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
 | |
| 				       int *num_of_mtts)
 | |
| {
 | |
| 	u64 block_shift = MLX4_MAX_MTT_SHIFT;
 | |
| 	u64 min_shift = PAGE_SHIFT;
 | |
| 	u64 last_block_aligned_end = 0;
 | |
| 	u64 current_block_start = 0;
 | |
| 	u64 first_block_start = 0;
 | |
| 	u64 current_block_len = 0;
 | |
| 	u64 last_block_end = 0;
 | |
| 	struct scatterlist *sg;
 | |
| 	u64 current_block_end;
 | |
| 	u64 misalignment_bits;
 | |
| 	u64 next_block_start;
 | |
| 	u64 total_len = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	*num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE);
 | |
| 
 | |
| 	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
 | |
| 		/*
 | |
| 		 * Initialization - save the first chunk start as the
 | |
| 		 * current_block_start - block means contiguous pages.
 | |
| 		 */
 | |
| 		if (current_block_len == 0 && current_block_start == 0) {
 | |
| 			current_block_start = sg_dma_address(sg);
 | |
| 			first_block_start = current_block_start;
 | |
| 			/*
 | |
| 			 * Find the bits that are different between the physical
 | |
| 			 * address and the virtual address for the start of the
 | |
| 			 * MR.
 | |
| 			 * umem_get aligned the start_va to a page boundary.
 | |
| 			 * Therefore, we need to align the start va to the same
 | |
| 			 * boundary.
 | |
| 			 * misalignment_bits is needed to handle the  case of a
 | |
| 			 * single memory region. In this case, the rest of the
 | |
| 			 * logic will not reduce the block size.  If we use a
 | |
| 			 * block size which is bigger than the alignment of the
 | |
| 			 * misalignment bits, we might use the virtual page
 | |
| 			 * number instead of the physical page number, resulting
 | |
| 			 * in access to the wrong data.
 | |
| 			 */
 | |
| 			misalignment_bits =
 | |
| 				(start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
 | |
| 				current_block_start;
 | |
| 			block_shift = min(alignment_of(misalignment_bits),
 | |
| 					  block_shift);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Go over the scatter entries and check if they continue the
 | |
| 		 * previous scatter entry.
 | |
| 		 */
 | |
| 		next_block_start = sg_dma_address(sg);
 | |
| 		current_block_end = current_block_start	+ current_block_len;
 | |
| 		/* If we have a split (non-contig.) between two blocks */
 | |
| 		if (current_block_end != next_block_start) {
 | |
| 			block_shift = mlx4_ib_umem_calc_block_mtt
 | |
| 					(next_block_start,
 | |
| 					 current_block_end,
 | |
| 					 block_shift);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we reached the minimum shift for 4k page we stop
 | |
| 			 * the loop.
 | |
| 			 */
 | |
| 			if (block_shift <= min_shift)
 | |
| 				goto end;
 | |
| 
 | |
| 			/*
 | |
| 			 * If not saved yet we are in first block - we save the
 | |
| 			 * length of first block to calculate the
 | |
| 			 * non_aligned_pages number at the end.
 | |
| 			 */
 | |
| 			total_len += current_block_len;
 | |
| 
 | |
| 			/* Start a new block */
 | |
| 			current_block_start = next_block_start;
 | |
| 			current_block_len = sg_dma_len(sg);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* The scatter entry is another part of the current block,
 | |
| 		 * increase the block size.
 | |
| 		 * An entry in the scatter can be larger than 4k (page) as of
 | |
| 		 * dma mapping which merge some blocks together.
 | |
| 		 */
 | |
| 		current_block_len += sg_dma_len(sg);
 | |
| 	}
 | |
| 
 | |
| 	/* Account for the last block in the total len */
 | |
| 	total_len += current_block_len;
 | |
| 	/* Add to the first block the misalignment that it suffers from. */
 | |
| 	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
 | |
| 	last_block_end = current_block_start + current_block_len;
 | |
| 	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
 | |
| 	total_len += (last_block_aligned_end - last_block_end);
 | |
| 
 | |
| 	if (total_len & ((1ULL << block_shift) - 1ULL))
 | |
| 		pr_warn("misaligned total length detected (%llu, %llu)!",
 | |
| 			total_len, block_shift);
 | |
| 
 | |
| 	*num_of_mtts = total_len >> block_shift;
 | |
| end:
 | |
| 	if (block_shift < min_shift) {
 | |
| 		/*
 | |
| 		 * If shift is less than the min we set a warning and return the
 | |
| 		 * min shift.
 | |
| 		 */
 | |
| 		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
 | |
| 
 | |
| 		block_shift = min_shift;
 | |
| 	}
 | |
| 	return block_shift;
 | |
| }
 | |
| 
 | |
| static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
 | |
| 					u64 length, int access_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Force registering the memory as writable if the underlying pages
 | |
| 	 * are writable.  This is so rereg can change the access permissions
 | |
| 	 * from readable to writable without having to run through ib_umem_get
 | |
| 	 * again
 | |
| 	 */
 | |
| 	if (!ib_access_writable(access_flags)) {
 | |
| 		unsigned long untagged_start = untagged_addr(start);
 | |
| 		struct vm_area_struct *vma;
 | |
| 
 | |
| 		mmap_read_lock(current->mm);
 | |
| 		/*
 | |
| 		 * FIXME: Ideally this would iterate over all the vmas that
 | |
| 		 * cover the memory, but for now it requires a single vma to
 | |
| 		 * entirely cover the MR to support RO mappings.
 | |
| 		 */
 | |
| 		vma = find_vma(current->mm, untagged_start);
 | |
| 		if (vma && vma->vm_end >= untagged_start + length &&
 | |
| 		    vma->vm_start <= untagged_start) {
 | |
| 			if (vma->vm_flags & VM_WRITE)
 | |
| 				access_flags |= IB_ACCESS_LOCAL_WRITE;
 | |
| 		} else {
 | |
| 			access_flags |= IB_ACCESS_LOCAL_WRITE;
 | |
| 		}
 | |
| 
 | |
| 		mmap_read_unlock(current->mm);
 | |
| 	}
 | |
| 
 | |
| 	return ib_umem_get(device, start, length, access_flags);
 | |
| }
 | |
| 
 | |
| struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
 | |
| 				  u64 virt_addr, int access_flags,
 | |
| 				  struct ib_udata *udata)
 | |
| {
 | |
| 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
 | |
| 	struct mlx4_ib_mr *mr;
 | |
| 	int shift;
 | |
| 	int err;
 | |
| 	int n;
 | |
| 
 | |
| 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 | |
| 	if (!mr)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
 | |
| 	if (IS_ERR(mr->umem)) {
 | |
| 		err = PTR_ERR(mr->umem);
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
 | |
| 
 | |
| 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
 | |
| 			    convert_access(access_flags), n, shift, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_umem;
 | |
| 
 | |
| 	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
 | |
| 	if (err)
 | |
| 		goto err_mr;
 | |
| 
 | |
| 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_mr;
 | |
| 
 | |
| 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 | |
| 	mr->ibmr.page_size = 1U << shift;
 | |
| 
 | |
| 	return &mr->ibmr;
 | |
| 
 | |
| err_mr:
 | |
| 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
 | |
| 
 | |
| err_umem:
 | |
| 	ib_umem_release(mr->umem);
 | |
| 
 | |
| err_free:
 | |
| 	kfree(mr);
 | |
| 
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
 | |
| 				    u64 length, u64 virt_addr,
 | |
| 				    int mr_access_flags, struct ib_pd *pd,
 | |
| 				    struct ib_udata *udata)
 | |
| {
 | |
| 	struct mlx4_ib_dev *dev = to_mdev(mr->device);
 | |
| 	struct mlx4_ib_mr *mmr = to_mmr(mr);
 | |
| 	struct mlx4_mpt_entry *mpt_entry;
 | |
| 	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
 | |
| 	 * we assume that the calls can't run concurrently. Otherwise, a
 | |
| 	 * race exists.
 | |
| 	 */
 | |
| 	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	if (flags & IB_MR_REREG_PD) {
 | |
| 		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
 | |
| 					   to_mpd(pd)->pdn);
 | |
| 
 | |
| 		if (err)
 | |
| 			goto release_mpt_entry;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & IB_MR_REREG_ACCESS) {
 | |
| 		if (ib_access_writable(mr_access_flags) &&
 | |
| 		    !mmr->umem->writable) {
 | |
| 			err = -EPERM;
 | |
| 			goto release_mpt_entry;
 | |
| 		}
 | |
| 
 | |
| 		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
 | |
| 					       convert_access(mr_access_flags));
 | |
| 
 | |
| 		if (err)
 | |
| 			goto release_mpt_entry;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & IB_MR_REREG_TRANS) {
 | |
| 		int shift;
 | |
| 		int n;
 | |
| 
 | |
| 		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
 | |
| 		ib_umem_release(mmr->umem);
 | |
| 		mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
 | |
| 					     mr_access_flags);
 | |
| 		if (IS_ERR(mmr->umem)) {
 | |
| 			err = PTR_ERR(mmr->umem);
 | |
| 			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
 | |
| 			mmr->umem = NULL;
 | |
| 			goto release_mpt_entry;
 | |
| 		}
 | |
| 		n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
 | |
| 		shift = PAGE_SHIFT;
 | |
| 
 | |
| 		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
 | |
| 					      virt_addr, length, n, shift,
 | |
| 					      *pmpt_entry);
 | |
| 		if (err) {
 | |
| 			ib_umem_release(mmr->umem);
 | |
| 			goto release_mpt_entry;
 | |
| 		}
 | |
| 		mmr->mmr.iova       = virt_addr;
 | |
| 		mmr->mmr.size       = length;
 | |
| 
 | |
| 		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
 | |
| 		if (err) {
 | |
| 			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
 | |
| 			ib_umem_release(mmr->umem);
 | |
| 			goto release_mpt_entry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we couldn't transfer the MR to the HCA, just remember to
 | |
| 	 * return a failure. But dereg_mr will free the resources.
 | |
| 	 */
 | |
| 	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
 | |
| 	if (!err && flags & IB_MR_REREG_ACCESS)
 | |
| 		mmr->mmr.access = mr_access_flags;
 | |
| 
 | |
| release_mpt_entry:
 | |
| 	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mlx4_alloc_priv_pages(struct ib_device *device,
 | |
| 		      struct mlx4_ib_mr *mr,
 | |
| 		      int max_pages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Ensure that size is aligned to DMA cacheline
 | |
| 	 * requirements.
 | |
| 	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
 | |
| 	 * so page_map_size will never cross PAGE_SIZE.
 | |
| 	 */
 | |
| 	mr->page_map_size = roundup(max_pages * sizeof(u64),
 | |
| 				    MLX4_MR_PAGES_ALIGN);
 | |
| 
 | |
| 	/* Prevent cross page boundary allocation. */
 | |
| 	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!mr->pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
 | |
| 				      mr->page_map_size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	free_page((unsigned long)mr->pages);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
 | |
| {
 | |
| 	if (mr->pages) {
 | |
| 		struct ib_device *device = mr->ibmr.device;
 | |
| 
 | |
| 		dma_unmap_single(device->dev.parent, mr->page_map,
 | |
| 				 mr->page_map_size, DMA_TO_DEVICE);
 | |
| 		free_page((unsigned long)mr->pages);
 | |
| 		mr->pages = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
 | |
| {
 | |
| 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
 | |
| 	int ret;
 | |
| 
 | |
| 	mlx4_free_priv_pages(mr);
 | |
| 
 | |
| 	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (mr->umem)
 | |
| 		ib_umem_release(mr->umem);
 | |
| 	kfree(mr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
 | |
| {
 | |
| 	struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
 | |
| 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
 | |
| 	int err;
 | |
| 
 | |
| 	err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
 | |
| 			    to_mlx4_type(ibmw->type), &mw->mmw);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = mlx4_mw_enable(dev->dev, &mw->mmw);
 | |
| 	if (err)
 | |
| 		goto err_mw;
 | |
| 
 | |
| 	ibmw->rkey = mw->mmw.key;
 | |
| 	return 0;
 | |
| 
 | |
| err_mw:
 | |
| 	mlx4_mw_free(dev->dev, &mw->mmw);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
 | |
| {
 | |
| 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
 | |
| 
 | |
| 	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
 | |
| 			       u32 max_num_sg)
 | |
| {
 | |
| 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
 | |
| 	struct mlx4_ib_mr *mr;
 | |
| 	int err;
 | |
| 
 | |
| 	if (mr_type != IB_MR_TYPE_MEM_REG ||
 | |
| 	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 | |
| 	if (!mr)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
 | |
| 			    max_num_sg, 0, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
 | |
| 	if (err)
 | |
| 		goto err_free_mr;
 | |
| 
 | |
| 	mr->max_pages = max_num_sg;
 | |
| 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
 | |
| 	if (err)
 | |
| 		goto err_free_pl;
 | |
| 
 | |
| 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 | |
| 	mr->umem = NULL;
 | |
| 
 | |
| 	return &mr->ibmr;
 | |
| 
 | |
| err_free_pl:
 | |
| 	mr->ibmr.device = pd->device;
 | |
| 	mlx4_free_priv_pages(mr);
 | |
| err_free_mr:
 | |
| 	(void) mlx4_mr_free(dev->dev, &mr->mmr);
 | |
| err_free:
 | |
| 	kfree(mr);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
 | |
| {
 | |
| 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
 | |
| 
 | |
| 	if (unlikely(mr->npages == mr->max_pages))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
 | |
| 		      unsigned int *sg_offset)
 | |
| {
 | |
| 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
 | |
| 	int rc;
 | |
| 
 | |
| 	mr->npages = 0;
 | |
| 
 | |
| 	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
 | |
| 				   mr->page_map_size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
 | |
| 
 | |
| 	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
 | |
| 				      mr->page_map_size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return rc;
 | |
| }
 |