2049 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2049 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Renesas R-Car Gen2/Gen3 DMA Controller Driver
 | |
|  *
 | |
|  * Copyright (C) 2014-2019 Renesas Electronics Inc.
 | |
|  *
 | |
|  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_dma.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| #include "../dmaengine.h"
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
 | |
|  * @node: entry in the parent's chunks list
 | |
|  * @src_addr: device source address
 | |
|  * @dst_addr: device destination address
 | |
|  * @size: transfer size in bytes
 | |
|  */
 | |
| struct rcar_dmac_xfer_chunk {
 | |
| 	struct list_head node;
 | |
| 
 | |
| 	dma_addr_t src_addr;
 | |
| 	dma_addr_t dst_addr;
 | |
| 	u32 size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
 | |
|  * @sar: value of the SAR register (source address)
 | |
|  * @dar: value of the DAR register (destination address)
 | |
|  * @tcr: value of the TCR register (transfer count)
 | |
|  */
 | |
| struct rcar_dmac_hw_desc {
 | |
| 	u32 sar;
 | |
| 	u32 dar;
 | |
| 	u32 tcr;
 | |
| 	u32 reserved;
 | |
| } __attribute__((__packed__));
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
 | |
|  * @async_tx: base DMA asynchronous transaction descriptor
 | |
|  * @direction: direction of the DMA transfer
 | |
|  * @xfer_shift: log2 of the transfer size
 | |
|  * @chcr: value of the channel configuration register for this transfer
 | |
|  * @node: entry in the channel's descriptors lists
 | |
|  * @chunks: list of transfer chunks for this transfer
 | |
|  * @running: the transfer chunk being currently processed
 | |
|  * @nchunks: number of transfer chunks for this transfer
 | |
|  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
 | |
|  * @hwdescs.mem: hardware descriptors memory for the transfer
 | |
|  * @hwdescs.dma: device address of the hardware descriptors memory
 | |
|  * @hwdescs.size: size of the hardware descriptors in bytes
 | |
|  * @size: transfer size in bytes
 | |
|  * @cyclic: when set indicates that the DMA transfer is cyclic
 | |
|  */
 | |
| struct rcar_dmac_desc {
 | |
| 	struct dma_async_tx_descriptor async_tx;
 | |
| 	enum dma_transfer_direction direction;
 | |
| 	unsigned int xfer_shift;
 | |
| 	u32 chcr;
 | |
| 
 | |
| 	struct list_head node;
 | |
| 	struct list_head chunks;
 | |
| 	struct rcar_dmac_xfer_chunk *running;
 | |
| 	unsigned int nchunks;
 | |
| 
 | |
| 	struct {
 | |
| 		bool use;
 | |
| 		struct rcar_dmac_hw_desc *mem;
 | |
| 		dma_addr_t dma;
 | |
| 		size_t size;
 | |
| 	} hwdescs;
 | |
| 
 | |
| 	unsigned int size;
 | |
| 	bool cyclic;
 | |
| };
 | |
| 
 | |
| #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_desc_page - One page worth of descriptors
 | |
|  * @node: entry in the channel's pages list
 | |
|  * @descs: array of DMA descriptors
 | |
|  * @chunks: array of transfer chunk descriptors
 | |
|  */
 | |
| struct rcar_dmac_desc_page {
 | |
| 	struct list_head node;
 | |
| 
 | |
| 	union {
 | |
| 		DECLARE_FLEX_ARRAY(struct rcar_dmac_desc, descs);
 | |
| 		DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk, chunks);
 | |
| 	};
 | |
| };
 | |
| 
 | |
| #define RCAR_DMAC_DESCS_PER_PAGE					\
 | |
| 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
 | |
| 	sizeof(struct rcar_dmac_desc))
 | |
| #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
 | |
| 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
 | |
| 	sizeof(struct rcar_dmac_xfer_chunk))
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_chan_slave - Slave configuration
 | |
|  * @slave_addr: slave memory address
 | |
|  * @xfer_size: size (in bytes) of hardware transfers
 | |
|  */
 | |
| struct rcar_dmac_chan_slave {
 | |
| 	phys_addr_t slave_addr;
 | |
| 	unsigned int xfer_size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
 | |
|  * @addr: slave dma address
 | |
|  * @dir: direction of mapping
 | |
|  * @slave: slave configuration that is mapped
 | |
|  */
 | |
| struct rcar_dmac_chan_map {
 | |
| 	dma_addr_t addr;
 | |
| 	enum dma_data_direction dir;
 | |
| 	struct rcar_dmac_chan_slave slave;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 | |
|  * @chan: base DMA channel object
 | |
|  * @iomem: channel I/O memory base
 | |
|  * @index: index of this channel in the controller
 | |
|  * @irq: channel IRQ
 | |
|  * @src: slave memory address and size on the source side
 | |
|  * @dst: slave memory address and size on the destination side
 | |
|  * @mid_rid: hardware MID/RID for the DMA client using this channel
 | |
|  * @lock: protects the channel CHCR register and the desc members
 | |
|  * @desc.free: list of free descriptors
 | |
|  * @desc.pending: list of pending descriptors (submitted with tx_submit)
 | |
|  * @desc.active: list of active descriptors (activated with issue_pending)
 | |
|  * @desc.done: list of completed descriptors
 | |
|  * @desc.wait: list of descriptors waiting for an ack
 | |
|  * @desc.running: the descriptor being processed (a member of the active list)
 | |
|  * @desc.chunks_free: list of free transfer chunk descriptors
 | |
|  * @desc.pages: list of pages used by allocated descriptors
 | |
|  */
 | |
| struct rcar_dmac_chan {
 | |
| 	struct dma_chan chan;
 | |
| 	void __iomem *iomem;
 | |
| 	unsigned int index;
 | |
| 	int irq;
 | |
| 
 | |
| 	struct rcar_dmac_chan_slave src;
 | |
| 	struct rcar_dmac_chan_slave dst;
 | |
| 	struct rcar_dmac_chan_map map;
 | |
| 	int mid_rid;
 | |
| 
 | |
| 	spinlock_t lock;
 | |
| 
 | |
| 	struct {
 | |
| 		struct list_head free;
 | |
| 		struct list_head pending;
 | |
| 		struct list_head active;
 | |
| 		struct list_head done;
 | |
| 		struct list_head wait;
 | |
| 		struct rcar_dmac_desc *running;
 | |
| 
 | |
| 		struct list_head chunks_free;
 | |
| 
 | |
| 		struct list_head pages;
 | |
| 	} desc;
 | |
| };
 | |
| 
 | |
| #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac - R-Car Gen2 DMA Controller
 | |
|  * @engine: base DMA engine object
 | |
|  * @dev: the hardware device
 | |
|  * @dmac_base: remapped base register block
 | |
|  * @chan_base: remapped channel register block (optional)
 | |
|  * @n_channels: number of available channels
 | |
|  * @channels: array of DMAC channels
 | |
|  * @channels_mask: bitfield of which DMA channels are managed by this driver
 | |
|  * @modules: bitmask of client modules in use
 | |
|  */
 | |
| struct rcar_dmac {
 | |
| 	struct dma_device engine;
 | |
| 	struct device *dev;
 | |
| 	void __iomem *dmac_base;
 | |
| 	void __iomem *chan_base;
 | |
| 
 | |
| 	unsigned int n_channels;
 | |
| 	struct rcar_dmac_chan *channels;
 | |
| 	u32 channels_mask;
 | |
| 
 | |
| 	DECLARE_BITMAP(modules, 256);
 | |
| };
 | |
| 
 | |
| #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
 | |
| 
 | |
| #define for_each_rcar_dmac_chan(i, dmac, chan)						\
 | |
| 	for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++)	\
 | |
| 		if (!((dmac)->channels_mask & BIT(i))) continue; else
 | |
| 
 | |
| /*
 | |
|  * struct rcar_dmac_of_data - This driver's OF data
 | |
|  * @chan_offset_base: DMAC channels base offset
 | |
|  * @chan_offset_stride: DMAC channels offset stride
 | |
|  */
 | |
| struct rcar_dmac_of_data {
 | |
| 	u32 chan_offset_base;
 | |
| 	u32 chan_offset_stride;
 | |
| };
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Registers
 | |
|  */
 | |
| 
 | |
| #define RCAR_DMAISTA			0x0020
 | |
| #define RCAR_DMASEC			0x0030
 | |
| #define RCAR_DMAOR			0x0060
 | |
| #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
 | |
| #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
 | |
| #define RCAR_DMAOR_AE			(1 << 2)
 | |
| #define RCAR_DMAOR_DME			(1 << 0)
 | |
| #define RCAR_DMACHCLR			0x0080	/* Not on R-Car Gen4 */
 | |
| #define RCAR_DMADPSEC			0x00a0
 | |
| 
 | |
| #define RCAR_DMASAR			0x0000
 | |
| #define RCAR_DMADAR			0x0004
 | |
| #define RCAR_DMATCR			0x0008
 | |
| #define RCAR_DMATCR_MASK		0x00ffffff
 | |
| #define RCAR_DMATSR			0x0028
 | |
| #define RCAR_DMACHCR			0x000c
 | |
| #define RCAR_DMACHCR_CAE		(1 << 31)
 | |
| #define RCAR_DMACHCR_CAIE		(1 << 30)
 | |
| #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
 | |
| #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
 | |
| #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
 | |
| #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
 | |
| #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
 | |
| #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
 | |
| #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
 | |
| #define RCAR_DMACHCR_DPB		(1 << 22)
 | |
| #define RCAR_DMACHCR_DSE		(1 << 19)
 | |
| #define RCAR_DMACHCR_DSIE		(1 << 18)
 | |
| #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
 | |
| #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
 | |
| #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
 | |
| #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
 | |
| #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
 | |
| #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
 | |
| #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
 | |
| #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
 | |
| #define RCAR_DMACHCR_DM_INC		(1 << 14)
 | |
| #define RCAR_DMACHCR_DM_DEC		(2 << 14)
 | |
| #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
 | |
| #define RCAR_DMACHCR_SM_INC		(1 << 12)
 | |
| #define RCAR_DMACHCR_SM_DEC		(2 << 12)
 | |
| #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
 | |
| #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
 | |
| #define RCAR_DMACHCR_IE			(1 << 2)
 | |
| #define RCAR_DMACHCR_TE			(1 << 1)
 | |
| #define RCAR_DMACHCR_DE			(1 << 0)
 | |
| #define RCAR_DMATCRB			0x0018
 | |
| #define RCAR_DMATSRB			0x0038
 | |
| #define RCAR_DMACHCRB			0x001c
 | |
| #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
 | |
| #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
 | |
| #define RCAR_DMACHCRB_DPTR_SHIFT	16
 | |
| #define RCAR_DMACHCRB_DRST		(1 << 15)
 | |
| #define RCAR_DMACHCRB_DTS		(1 << 8)
 | |
| #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
 | |
| #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
 | |
| #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
 | |
| #define RCAR_DMARS			0x0040
 | |
| #define RCAR_DMABUFCR			0x0048
 | |
| #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
 | |
| #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
 | |
| #define RCAR_DMADPBASE			0x0050
 | |
| #define RCAR_DMADPBASE_MASK		0xfffffff0
 | |
| #define RCAR_DMADPBASE_SEL		(1 << 0)
 | |
| #define RCAR_DMADPCR			0x0054
 | |
| #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
 | |
| #define RCAR_DMAFIXSAR			0x0010
 | |
| #define RCAR_DMAFIXDAR			0x0014
 | |
| #define RCAR_DMAFIXDPBASE		0x0060
 | |
| 
 | |
| /* For R-Car Gen4 */
 | |
| #define RCAR_GEN4_DMACHCLR		0x0100
 | |
| 
 | |
| /* Hardcode the MEMCPY transfer size to 4 bytes. */
 | |
| #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Device access
 | |
|  */
 | |
| 
 | |
| static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
 | |
| {
 | |
| 	if (reg == RCAR_DMAOR)
 | |
| 		writew(data, dmac->dmac_base + reg);
 | |
| 	else
 | |
| 		writel(data, dmac->dmac_base + reg);
 | |
| }
 | |
| 
 | |
| static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
 | |
| {
 | |
| 	if (reg == RCAR_DMAOR)
 | |
| 		return readw(dmac->dmac_base + reg);
 | |
| 	else
 | |
| 		return readl(dmac->dmac_base + reg);
 | |
| }
 | |
| 
 | |
| static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
 | |
| {
 | |
| 	if (reg == RCAR_DMARS)
 | |
| 		return readw(chan->iomem + reg);
 | |
| 	else
 | |
| 		return readl(chan->iomem + reg);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
 | |
| {
 | |
| 	if (reg == RCAR_DMARS)
 | |
| 		writew(data, chan->iomem + reg);
 | |
| 	else
 | |
| 		writel(data, chan->iomem + reg);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
 | |
| 				 struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	if (dmac->chan_base)
 | |
| 		rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 | |
| 	else
 | |
| 		rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
 | |
| {
 | |
| 	struct rcar_dmac_chan *chan;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (dmac->chan_base) {
 | |
| 		for_each_rcar_dmac_chan(i, dmac, chan)
 | |
| 			rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 | |
| 	} else {
 | |
| 		rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Initialization and configuration
 | |
|  */
 | |
| 
 | |
| static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 | |
| 
 | |
| 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc = chan->desc.running;
 | |
| 	u32 chcr = desc->chcr;
 | |
| 
 | |
| 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
 | |
| 
 | |
| 	if (chan->mid_rid >= 0)
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
 | |
| 
 | |
| 	if (desc->hwdescs.use) {
 | |
| 		struct rcar_dmac_xfer_chunk *chunk =
 | |
| 			list_first_entry(&desc->chunks,
 | |
| 					 struct rcar_dmac_xfer_chunk, node);
 | |
| 
 | |
| 		dev_dbg(chan->chan.device->dev,
 | |
| 			"chan%u: queue desc %p: %u@%pad\n",
 | |
| 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 | |
| 				     chunk->src_addr >> 32);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 | |
| 				     chunk->dst_addr >> 32);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
 | |
| 				     desc->hwdescs.dma >> 32);
 | |
| #endif
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
 | |
| 				     (desc->hwdescs.dma & 0xfffffff0) |
 | |
| 				     RCAR_DMADPBASE_SEL);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
 | |
| 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
 | |
| 				     RCAR_DMACHCRB_DRST);
 | |
| 
 | |
| 		/*
 | |
| 		 * Errata: When descriptor memory is accessed through an IOMMU
 | |
| 		 * the DMADAR register isn't initialized automatically from the
 | |
| 		 * first descriptor at beginning of transfer by the DMAC like it
 | |
| 		 * should. Initialize it manually with the destination address
 | |
| 		 * of the first chunk.
 | |
| 		 */
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
 | |
| 				     chunk->dst_addr & 0xffffffff);
 | |
| 
 | |
| 		/*
 | |
| 		 * Program the descriptor stage interrupt to occur after the end
 | |
| 		 * of the first stage.
 | |
| 		 */
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
 | |
| 
 | |
| 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
 | |
| 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the descriptor isn't cyclic enable normal descriptor mode
 | |
| 		 * and the transfer completion interrupt.
 | |
| 		 */
 | |
| 		if (!desc->cyclic)
 | |
| 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
 | |
| 		/*
 | |
| 		 * If the descriptor is cyclic and has a callback enable the
 | |
| 		 * descriptor stage interrupt in infinite repeat mode.
 | |
| 		 */
 | |
| 		else if (desc->async_tx.callback)
 | |
| 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
 | |
| 		/*
 | |
| 		 * Otherwise just select infinite repeat mode without any
 | |
| 		 * interrupt.
 | |
| 		 */
 | |
| 		else
 | |
| 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
 | |
| 	} else {
 | |
| 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
 | |
| 
 | |
| 		dev_dbg(chan->chan.device->dev,
 | |
| 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
 | |
| 			chan->index, chunk, chunk->size, &chunk->src_addr,
 | |
| 			&chunk->dst_addr);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 | |
| 				     chunk->src_addr >> 32);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 | |
| 				     chunk->dst_addr >> 32);
 | |
| #endif
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
 | |
| 				     chunk->src_addr & 0xffffffff);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
 | |
| 				     chunk->dst_addr & 0xffffffff);
 | |
| 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
 | |
| 				     chunk->size >> desc->xfer_shift);
 | |
| 
 | |
| 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
 | |
| 	}
 | |
| 
 | |
| 	rcar_dmac_chan_write(chan, RCAR_DMACHCR,
 | |
| 			     chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_init(struct rcar_dmac *dmac)
 | |
| {
 | |
| 	u16 dmaor;
 | |
| 
 | |
| 	/* Clear all channels and enable the DMAC globally. */
 | |
| 	rcar_dmac_chan_clear_all(dmac);
 | |
| 	rcar_dmac_write(dmac, RCAR_DMAOR,
 | |
| 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
 | |
| 
 | |
| 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
 | |
| 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
 | |
| 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Descriptors submission
 | |
|  */
 | |
| 
 | |
| static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
 | |
| 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
 | |
| 	unsigned long flags;
 | |
| 	dma_cookie_t cookie;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 
 | |
| 	cookie = dma_cookie_assign(tx);
 | |
| 
 | |
| 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
 | |
| 		chan->index, tx->cookie, desc);
 | |
| 
 | |
| 	list_add_tail(&desc->node, &chan->desc.pending);
 | |
| 	desc->running = list_first_entry(&desc->chunks,
 | |
| 					 struct rcar_dmac_xfer_chunk, node);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Descriptors allocation and free
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 | |
|  * @chan: the DMA channel
 | |
|  * @gfp: allocation flags
 | |
|  */
 | |
| static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 | |
| {
 | |
| 	struct rcar_dmac_desc_page *page;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	page = (void *)get_zeroed_page(gfp);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
 | |
| 		struct rcar_dmac_desc *desc = &page->descs[i];
 | |
| 
 | |
| 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
 | |
| 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
 | |
| 		INIT_LIST_HEAD(&desc->chunks);
 | |
| 
 | |
| 		list_add_tail(&desc->node, &list);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	list_splice_tail(&list, &chan->desc.free);
 | |
| 	list_add_tail(&page->node, &chan->desc.pages);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_desc_put - Release a DMA transfer descriptor
 | |
|  * @chan: the DMA channel
 | |
|  * @desc: the descriptor
 | |
|  *
 | |
|  * Put the descriptor and its transfer chunk descriptors back in the channel's
 | |
|  * free descriptors lists. The descriptor's chunks list will be reinitialized to
 | |
|  * an empty list as a result.
 | |
|  *
 | |
|  * The descriptor must have been removed from the channel's lists before calling
 | |
|  * this function.
 | |
|  */
 | |
| static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
 | |
| 			       struct rcar_dmac_desc *desc)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
 | |
| 	list_add(&desc->node, &chan->desc.free);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc, *_desc;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to temporarily move all descriptors from the wait list to a
 | |
| 	 * local list as iterating over the wait list, even with
 | |
| 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
 | |
| 	 * around the rcar_dmac_desc_put() call.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	list_splice_init(&chan->desc.wait, &list);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(desc, _desc, &list, node) {
 | |
| 		if (async_tx_test_ack(&desc->async_tx)) {
 | |
| 			list_del(&desc->node);
 | |
| 			rcar_dmac_desc_put(chan, desc);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&list))
 | |
| 		return;
 | |
| 
 | |
| 	/* Put the remaining descriptors back in the wait list. */
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	list_splice(&list, &chan->desc.wait);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 | |
|  * @chan: the DMA channel
 | |
|  *
 | |
|  * Locking: This function must be called in a non-atomic context.
 | |
|  *
 | |
|  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 | |
|  * be allocated.
 | |
|  */
 | |
| static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Recycle acked descriptors before attempting allocation. */
 | |
| 	rcar_dmac_desc_recycle_acked(chan);
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 
 | |
| 	while (list_empty(&chan->desc.free)) {
 | |
| 		/*
 | |
| 		 * No free descriptors, allocate a page worth of them and try
 | |
| 		 * again, as someone else could race us to get the newly
 | |
| 		 * allocated descriptors. If the allocation fails return an
 | |
| 		 * error.
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
 | |
| 		if (ret < 0)
 | |
| 			return NULL;
 | |
| 		spin_lock_irqsave(&chan->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
 | |
| 	list_del(&desc->node);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 | |
|  * @chan: the DMA channel
 | |
|  * @gfp: allocation flags
 | |
|  */
 | |
| static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 | |
| {
 | |
| 	struct rcar_dmac_desc_page *page;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	page = (void *)get_zeroed_page(gfp);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
 | |
| 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
 | |
| 
 | |
| 		list_add_tail(&chunk->node, &list);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	list_splice_tail(&list, &chan->desc.chunks_free);
 | |
| 	list_add_tail(&page->node, &chan->desc.pages);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 | |
|  * @chan: the DMA channel
 | |
|  *
 | |
|  * Locking: This function must be called in a non-atomic context.
 | |
|  *
 | |
|  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 | |
|  * descriptor can be allocated.
 | |
|  */
 | |
| static struct rcar_dmac_xfer_chunk *
 | |
| rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_xfer_chunk *chunk;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 
 | |
| 	while (list_empty(&chan->desc.chunks_free)) {
 | |
| 		/*
 | |
| 		 * No free descriptors, allocate a page worth of them and try
 | |
| 		 * again, as someone else could race us to get the newly
 | |
| 		 * allocated descriptors. If the allocation fails return an
 | |
| 		 * error.
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
 | |
| 		if (ret < 0)
 | |
| 			return NULL;
 | |
| 		spin_lock_irqsave(&chan->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	chunk = list_first_entry(&chan->desc.chunks_free,
 | |
| 				 struct rcar_dmac_xfer_chunk, node);
 | |
| 	list_del(&chunk->node);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
 | |
| 				     struct rcar_dmac_desc *desc, size_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * dma_alloc_coherent() allocates memory in page size increments. To
 | |
| 	 * avoid reallocating the hardware descriptors when the allocated size
 | |
| 	 * wouldn't change align the requested size to a multiple of the page
 | |
| 	 * size.
 | |
| 	 */
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (desc->hwdescs.size == size)
 | |
| 		return;
 | |
| 
 | |
| 	if (desc->hwdescs.mem) {
 | |
| 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
 | |
| 				  desc->hwdescs.mem, desc->hwdescs.dma);
 | |
| 		desc->hwdescs.mem = NULL;
 | |
| 		desc->hwdescs.size = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 
 | |
| 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
 | |
| 					       &desc->hwdescs.dma, GFP_NOWAIT);
 | |
| 	if (!desc->hwdescs.mem)
 | |
| 		return;
 | |
| 
 | |
| 	desc->hwdescs.size = size;
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
 | |
| 				 struct rcar_dmac_desc *desc)
 | |
| {
 | |
| 	struct rcar_dmac_xfer_chunk *chunk;
 | |
| 	struct rcar_dmac_hw_desc *hwdesc;
 | |
| 
 | |
| 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
 | |
| 
 | |
| 	hwdesc = desc->hwdescs.mem;
 | |
| 	if (!hwdesc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	list_for_each_entry(chunk, &desc->chunks, node) {
 | |
| 		hwdesc->sar = chunk->src_addr;
 | |
| 		hwdesc->dar = chunk->dst_addr;
 | |
| 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
 | |
| 		hwdesc++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Stop and reset
 | |
|  */
 | |
| static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	u32 chcr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the setting of the DE bit is actually 0 after
 | |
| 	 * clearing it.
 | |
| 	 */
 | |
| 	for (i = 0; i < 1024; i++) {
 | |
| 		chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 | |
| 		if (!(chcr & RCAR_DMACHCR_DE))
 | |
| 			return;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	dev_err(chan->chan.device->dev, "CHCR DE check error\n");
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 | |
| 
 | |
| 	/* set DE=0 and flush remaining data */
 | |
| 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
 | |
| 
 | |
| 	/* make sure all remaining data was flushed */
 | |
| 	rcar_dmac_chcr_de_barrier(chan);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 | |
| 
 | |
| 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
 | |
| 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
 | |
| 		  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
 | |
| 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
 | |
| 	rcar_dmac_chcr_de_barrier(chan);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc, *_desc;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(descs);
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 
 | |
| 	/* Move all non-free descriptors to the local lists. */
 | |
| 	list_splice_init(&chan->desc.pending, &descs);
 | |
| 	list_splice_init(&chan->desc.active, &descs);
 | |
| 	list_splice_init(&chan->desc.done, &descs);
 | |
| 	list_splice_init(&chan->desc.wait, &descs);
 | |
| 
 | |
| 	chan->desc.running = NULL;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(desc, _desc, &descs, node) {
 | |
| 		list_del(&desc->node);
 | |
| 		rcar_dmac_desc_put(chan, desc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
 | |
| {
 | |
| 	struct rcar_dmac_chan *chan;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Stop all channels. */
 | |
| 	for_each_rcar_dmac_chan(i, dmac, chan) {
 | |
| 		/* Stop and reinitialize the channel. */
 | |
| 		spin_lock_irq(&chan->lock);
 | |
| 		rcar_dmac_chan_halt(chan);
 | |
| 		spin_unlock_irq(&chan->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_chan_pause(struct dma_chan *chan)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 
 | |
| 	spin_lock_irqsave(&rchan->lock, flags);
 | |
| 	rcar_dmac_clear_chcr_de(rchan);
 | |
| 	spin_unlock_irqrestore(&rchan->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Descriptors preparation
 | |
|  */
 | |
| 
 | |
| static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
 | |
| 					  struct rcar_dmac_desc *desc)
 | |
| {
 | |
| 	static const u32 chcr_ts[] = {
 | |
| 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
 | |
| 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
 | |
| 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
 | |
| 		RCAR_DMACHCR_TS_64B,
 | |
| 	};
 | |
| 
 | |
| 	unsigned int xfer_size;
 | |
| 	u32 chcr;
 | |
| 
 | |
| 	switch (desc->direction) {
 | |
| 	case DMA_DEV_TO_MEM:
 | |
| 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
 | |
| 		     | RCAR_DMACHCR_RS_DMARS;
 | |
| 		xfer_size = chan->src.xfer_size;
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_MEM_TO_DEV:
 | |
| 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
 | |
| 		     | RCAR_DMACHCR_RS_DMARS;
 | |
| 		xfer_size = chan->dst.xfer_size;
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_MEM_TO_MEM:
 | |
| 	default:
 | |
| 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
 | |
| 		     | RCAR_DMACHCR_RS_AUTO;
 | |
| 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	desc->xfer_shift = ilog2(xfer_size);
 | |
| 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 | |
|  *
 | |
|  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 | |
|  * converted to scatter-gather to guarantee consistent locking and a correct
 | |
|  * list manipulation. For slave DMA direction carries the usual meaning, and,
 | |
|  * logically, the SG list is RAM and the addr variable contains slave address,
 | |
|  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 | |
|  * and the SG list contains only one element and points at the source buffer.
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *
 | |
| rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
 | |
| 		       unsigned int sg_len, dma_addr_t dev_addr,
 | |
| 		       enum dma_transfer_direction dir, unsigned long dma_flags,
 | |
| 		       bool cyclic)
 | |
| {
 | |
| 	struct rcar_dmac_xfer_chunk *chunk;
 | |
| 	struct rcar_dmac_desc *desc;
 | |
| 	struct scatterlist *sg;
 | |
| 	unsigned int nchunks = 0;
 | |
| 	unsigned int max_chunk_size;
 | |
| 	unsigned int full_size = 0;
 | |
| 	bool cross_boundary = false;
 | |
| 	unsigned int i;
 | |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 | |
| 	u32 high_dev_addr;
 | |
| 	u32 high_mem_addr;
 | |
| #endif
 | |
| 
 | |
| 	desc = rcar_dmac_desc_get(chan);
 | |
| 	if (!desc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	desc->async_tx.flags = dma_flags;
 | |
| 	desc->async_tx.cookie = -EBUSY;
 | |
| 
 | |
| 	desc->cyclic = cyclic;
 | |
| 	desc->direction = dir;
 | |
| 
 | |
| 	rcar_dmac_chan_configure_desc(chan, desc);
 | |
| 
 | |
| 	max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and fill the transfer chunk descriptors. We own the only
 | |
| 	 * reference to the DMA descriptor, there's no need for locking.
 | |
| 	 */
 | |
| 	for_each_sg(sgl, sg, sg_len, i) {
 | |
| 		dma_addr_t mem_addr = sg_dma_address(sg);
 | |
| 		unsigned int len = sg_dma_len(sg);
 | |
| 
 | |
| 		full_size += len;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 | |
| 		if (i == 0) {
 | |
| 			high_dev_addr = dev_addr >> 32;
 | |
| 			high_mem_addr = mem_addr >> 32;
 | |
| 		}
 | |
| 
 | |
| 		if ((dev_addr >> 32 != high_dev_addr) ||
 | |
| 		    (mem_addr >> 32 != high_mem_addr))
 | |
| 			cross_boundary = true;
 | |
| #endif
 | |
| 		while (len) {
 | |
| 			unsigned int size = min(len, max_chunk_size);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 | |
| 			/*
 | |
| 			 * Prevent individual transfers from crossing 4GB
 | |
| 			 * boundaries.
 | |
| 			 */
 | |
| 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
 | |
| 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
 | |
| 				cross_boundary = true;
 | |
| 			}
 | |
| 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
 | |
| 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
 | |
| 				cross_boundary = true;
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| 			chunk = rcar_dmac_xfer_chunk_get(chan);
 | |
| 			if (!chunk) {
 | |
| 				rcar_dmac_desc_put(chan, desc);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (dir == DMA_DEV_TO_MEM) {
 | |
| 				chunk->src_addr = dev_addr;
 | |
| 				chunk->dst_addr = mem_addr;
 | |
| 			} else {
 | |
| 				chunk->src_addr = mem_addr;
 | |
| 				chunk->dst_addr = dev_addr;
 | |
| 			}
 | |
| 
 | |
| 			chunk->size = size;
 | |
| 
 | |
| 			dev_dbg(chan->chan.device->dev,
 | |
| 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
 | |
| 				chan->index, chunk, desc, i, sg, size, len,
 | |
| 				&chunk->src_addr, &chunk->dst_addr);
 | |
| 
 | |
| 			mem_addr += size;
 | |
| 			if (dir == DMA_MEM_TO_MEM)
 | |
| 				dev_addr += size;
 | |
| 
 | |
| 			len -= size;
 | |
| 
 | |
| 			list_add_tail(&chunk->node, &desc->chunks);
 | |
| 			nchunks++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	desc->nchunks = nchunks;
 | |
| 	desc->size = full_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use hardware descriptor lists if possible when more than one chunk
 | |
| 	 * needs to be transferred (otherwise they don't make much sense).
 | |
| 	 *
 | |
| 	 * Source/Destination address should be located in same 4GiB region
 | |
| 	 * in the 40bit address space when it uses Hardware descriptor,
 | |
| 	 * and cross_boundary is checking it.
 | |
| 	 */
 | |
| 	desc->hwdescs.use = !cross_boundary && nchunks > 1;
 | |
| 	if (desc->hwdescs.use) {
 | |
| 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
 | |
| 			desc->hwdescs.use = false;
 | |
| 	}
 | |
| 
 | |
| 	return &desc->async_tx;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * DMA engine operations
 | |
|  */
 | |
| 
 | |
| static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	int ret;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
 | |
| 	INIT_LIST_HEAD(&rchan->desc.pages);
 | |
| 
 | |
| 	/* Preallocate descriptors. */
 | |
| 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
 | |
| 	if (ret < 0)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
 | |
| 	if (ret < 0)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return pm_runtime_get_sync(chan->device->dev);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
 | |
| 	struct rcar_dmac_chan_map *map = &rchan->map;
 | |
| 	struct rcar_dmac_desc_page *page, *_page;
 | |
| 	struct rcar_dmac_desc *desc;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/* Protect against ISR */
 | |
| 	spin_lock_irq(&rchan->lock);
 | |
| 	rcar_dmac_chan_halt(rchan);
 | |
| 	spin_unlock_irq(&rchan->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now no new interrupts will occur, but one might already be
 | |
| 	 * running. Wait for it to finish before freeing resources.
 | |
| 	 */
 | |
| 	synchronize_irq(rchan->irq);
 | |
| 
 | |
| 	if (rchan->mid_rid >= 0) {
 | |
| 		/* The caller is holding dma_list_mutex */
 | |
| 		clear_bit(rchan->mid_rid, dmac->modules);
 | |
| 		rchan->mid_rid = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	list_splice_init(&rchan->desc.free, &list);
 | |
| 	list_splice_init(&rchan->desc.pending, &list);
 | |
| 	list_splice_init(&rchan->desc.active, &list);
 | |
| 	list_splice_init(&rchan->desc.done, &list);
 | |
| 	list_splice_init(&rchan->desc.wait, &list);
 | |
| 
 | |
| 	rchan->desc.running = NULL;
 | |
| 
 | |
| 	list_for_each_entry(desc, &list, node)
 | |
| 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
 | |
| 
 | |
| 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
 | |
| 		list_del(&page->node);
 | |
| 		free_page((unsigned long)page);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove slave mapping if present. */
 | |
| 	if (map->slave.xfer_size) {
 | |
| 		dma_unmap_resource(chan->device->dev, map->addr,
 | |
| 				   map->slave.xfer_size, map->dir, 0);
 | |
| 		map->slave.xfer_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_put(chan->device->dev);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
 | |
| 			  dma_addr_t dma_src, size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	struct scatterlist sgl;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sg_init_table(&sgl, 1);
 | |
| 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
 | |
| 		    offset_in_page(dma_src));
 | |
| 	sg_dma_address(&sgl) = dma_src;
 | |
| 	sg_dma_len(&sgl) = len;
 | |
| 
 | |
| 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
 | |
| 				      DMA_MEM_TO_MEM, flags, false);
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
 | |
| 				    enum dma_transfer_direction dir)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	struct rcar_dmac_chan_map *map = &rchan->map;
 | |
| 	phys_addr_t dev_addr;
 | |
| 	size_t dev_size;
 | |
| 	enum dma_data_direction dev_dir;
 | |
| 
 | |
| 	if (dir == DMA_DEV_TO_MEM) {
 | |
| 		dev_addr = rchan->src.slave_addr;
 | |
| 		dev_size = rchan->src.xfer_size;
 | |
| 		dev_dir = DMA_TO_DEVICE;
 | |
| 	} else {
 | |
| 		dev_addr = rchan->dst.slave_addr;
 | |
| 		dev_size = rchan->dst.xfer_size;
 | |
| 		dev_dir = DMA_FROM_DEVICE;
 | |
| 	}
 | |
| 
 | |
| 	/* Reuse current map if possible. */
 | |
| 	if (dev_addr == map->slave.slave_addr &&
 | |
| 	    dev_size == map->slave.xfer_size &&
 | |
| 	    dev_dir == map->dir)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Remove old mapping if present. */
 | |
| 	if (map->slave.xfer_size)
 | |
| 		dma_unmap_resource(chan->device->dev, map->addr,
 | |
| 				   map->slave.xfer_size, map->dir, 0);
 | |
| 	map->slave.xfer_size = 0;
 | |
| 
 | |
| 	/* Create new slave address map. */
 | |
| 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
 | |
| 				     dev_dir, 0);
 | |
| 
 | |
| 	if (dma_mapping_error(chan->device->dev, map->addr)) {
 | |
| 		dev_err(chan->device->dev,
 | |
| 			"chan%u: failed to map %zx@%pap", rchan->index,
 | |
| 			dev_size, &dev_addr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
 | |
| 		rchan->index, dev_size, &dev_addr, &map->addr,
 | |
| 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
 | |
| 
 | |
| 	map->slave.slave_addr = dev_addr;
 | |
| 	map->slave.xfer_size = dev_size;
 | |
| 	map->dir = dev_dir;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 | |
| 			unsigned int sg_len, enum dma_transfer_direction dir,
 | |
| 			unsigned long flags, void *context)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 
 | |
| 	/* Someone calling slave DMA on a generic channel? */
 | |
| 	if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
 | |
| 		dev_warn(chan->device->dev,
 | |
| 			 "%s: bad parameter: len=%d, id=%d\n",
 | |
| 			 __func__, sg_len, rchan->mid_rid);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (rcar_dmac_map_slave_addr(chan, dir))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
 | |
| 				      dir, flags, false);
 | |
| }
 | |
| 
 | |
| #define RCAR_DMAC_MAX_SG_LEN	32
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
 | |
| 			  size_t buf_len, size_t period_len,
 | |
| 			  enum dma_transfer_direction dir, unsigned long flags)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct scatterlist *sgl;
 | |
| 	unsigned int sg_len;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Someone calling slave DMA on a generic channel? */
 | |
| 	if (rchan->mid_rid < 0 || buf_len < period_len) {
 | |
| 		dev_warn(chan->device->dev,
 | |
| 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
 | |
| 			__func__, buf_len, period_len, rchan->mid_rid);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (rcar_dmac_map_slave_addr(chan, dir))
 | |
| 		return NULL;
 | |
| 
 | |
| 	sg_len = buf_len / period_len;
 | |
| 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
 | |
| 		dev_err(chan->device->dev,
 | |
| 			"chan%u: sg length %d exceeds limit %d",
 | |
| 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the sg list dynamically as it would consume too much stack
 | |
| 	 * space.
 | |
| 	 */
 | |
| 	sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
 | |
| 	if (!sgl)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sg_init_table(sgl, sg_len);
 | |
| 
 | |
| 	for (i = 0; i < sg_len; ++i) {
 | |
| 		dma_addr_t src = buf_addr + (period_len * i);
 | |
| 
 | |
| 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
 | |
| 			    offset_in_page(src));
 | |
| 		sg_dma_address(&sgl[i]) = src;
 | |
| 		sg_dma_len(&sgl[i]) = period_len;
 | |
| 	}
 | |
| 
 | |
| 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
 | |
| 				      dir, flags, true);
 | |
| 
 | |
| 	kfree(sgl);
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_device_config(struct dma_chan *chan,
 | |
| 				   struct dma_slave_config *cfg)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 
 | |
| 	/*
 | |
| 	 * We could lock this, but you shouldn't be configuring the
 | |
| 	 * channel, while using it...
 | |
| 	 */
 | |
| 	rchan->src.slave_addr = cfg->src_addr;
 | |
| 	rchan->dst.slave_addr = cfg->dst_addr;
 | |
| 	rchan->src.xfer_size = cfg->src_addr_width;
 | |
| 	rchan->dst.xfer_size = cfg->dst_addr_width;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rchan->lock, flags);
 | |
| 	rcar_dmac_chan_halt(rchan);
 | |
| 	spin_unlock_irqrestore(&rchan->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
 | |
| 	 * be running.
 | |
| 	 */
 | |
| 
 | |
| 	rcar_dmac_chan_reinit(rchan);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
 | |
| 					       dma_cookie_t cookie)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc = chan->desc.running;
 | |
| 	struct rcar_dmac_xfer_chunk *running = NULL;
 | |
| 	struct rcar_dmac_xfer_chunk *chunk;
 | |
| 	enum dma_status status;
 | |
| 	unsigned int residue = 0;
 | |
| 	unsigned int dptr = 0;
 | |
| 	unsigned int chcrb;
 | |
| 	unsigned int tcrb;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!desc)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the cookie corresponds to a descriptor that has been completed
 | |
| 	 * there is no residue. The same check has already been performed by the
 | |
| 	 * caller but without holding the channel lock, so the descriptor could
 | |
| 	 * now be complete.
 | |
| 	 */
 | |
| 	status = dma_cookie_status(&chan->chan, cookie, NULL);
 | |
| 	if (status == DMA_COMPLETE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the cookie doesn't correspond to the currently running transfer
 | |
| 	 * then the descriptor hasn't been processed yet, and the residue is
 | |
| 	 * equal to the full descriptor size.
 | |
| 	 * Also, a client driver is possible to call this function before
 | |
| 	 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
 | |
| 	 * will be the next descriptor, and the done list will appear. So, if
 | |
| 	 * the argument cookie matches the done list's cookie, we can assume
 | |
| 	 * the residue is zero.
 | |
| 	 */
 | |
| 	if (cookie != desc->async_tx.cookie) {
 | |
| 		list_for_each_entry(desc, &chan->desc.done, node) {
 | |
| 			if (cookie == desc->async_tx.cookie)
 | |
| 				return 0;
 | |
| 		}
 | |
| 		list_for_each_entry(desc, &chan->desc.pending, node) {
 | |
| 			if (cookie == desc->async_tx.cookie)
 | |
| 				return desc->size;
 | |
| 		}
 | |
| 		list_for_each_entry(desc, &chan->desc.active, node) {
 | |
| 			if (cookie == desc->async_tx.cookie)
 | |
| 				return desc->size;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No descriptor found for the cookie, there's thus no residue.
 | |
| 		 * This shouldn't happen if the calling driver passes a correct
 | |
| 		 * cookie value.
 | |
| 		 */
 | |
| 		WARN(1, "No descriptor for cookie!");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to read two registers.
 | |
| 	 * Make sure the control register does not skip to next chunk
 | |
| 	 * while reading the counter.
 | |
| 	 * Trying it 3 times should be enough: Initial read, retry, retry
 | |
| 	 * for the paranoid.
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
 | |
| 					    RCAR_DMACHCRB_DPTR_MASK;
 | |
| 		tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
 | |
| 		/* Still the same? */
 | |
| 		if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
 | |
| 			      RCAR_DMACHCRB_DPTR_MASK))
 | |
| 			break;
 | |
| 	}
 | |
| 	WARN_ONCE(i >= 3, "residue might be not continuous!");
 | |
| 
 | |
| 	/*
 | |
| 	 * In descriptor mode the descriptor running pointer is not maintained
 | |
| 	 * by the interrupt handler, find the running descriptor from the
 | |
| 	 * descriptor pointer field in the CHCRB register. In non-descriptor
 | |
| 	 * mode just use the running descriptor pointer.
 | |
| 	 */
 | |
| 	if (desc->hwdescs.use) {
 | |
| 		dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
 | |
| 		if (dptr == 0)
 | |
| 			dptr = desc->nchunks;
 | |
| 		dptr--;
 | |
| 		WARN_ON(dptr >= desc->nchunks);
 | |
| 	} else {
 | |
| 		running = desc->running;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute the size of all chunks still to be transferred. */
 | |
| 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
 | |
| 		if (chunk == running || ++dptr == desc->nchunks)
 | |
| 			break;
 | |
| 
 | |
| 		residue += chunk->size;
 | |
| 	}
 | |
| 
 | |
| 	/* Add the residue for the current chunk. */
 | |
| 	residue += tcrb << desc->xfer_shift;
 | |
| 
 | |
| 	return residue;
 | |
| }
 | |
| 
 | |
| static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
 | |
| 					   dma_cookie_t cookie,
 | |
| 					   struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	enum dma_status status;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int residue;
 | |
| 	bool cyclic;
 | |
| 
 | |
| 	status = dma_cookie_status(chan, cookie, txstate);
 | |
| 	if (status == DMA_COMPLETE || !txstate)
 | |
| 		return status;
 | |
| 
 | |
| 	spin_lock_irqsave(&rchan->lock, flags);
 | |
| 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
 | |
| 	cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
 | |
| 	spin_unlock_irqrestore(&rchan->lock, flags);
 | |
| 
 | |
| 	/* if there's no residue, the cookie is complete */
 | |
| 	if (!residue && !cyclic)
 | |
| 		return DMA_COMPLETE;
 | |
| 
 | |
| 	dma_set_residue(txstate, residue);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rchan->lock, flags);
 | |
| 
 | |
| 	if (list_empty(&rchan->desc.pending))
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Append the pending list to the active list. */
 | |
| 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
 | |
| 
 | |
| 	/*
 | |
| 	 * If no transfer is running pick the first descriptor from the active
 | |
| 	 * list and start the transfer.
 | |
| 	 */
 | |
| 	if (!rchan->desc.running) {
 | |
| 		struct rcar_dmac_desc *desc;
 | |
| 
 | |
| 		desc = list_first_entry(&rchan->desc.active,
 | |
| 					struct rcar_dmac_desc, node);
 | |
| 		rchan->desc.running = desc;
 | |
| 
 | |
| 		rcar_dmac_chan_start_xfer(rchan);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&rchan->lock, flags);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_device_synchronize(struct dma_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 | |
| 
 | |
| 	synchronize_irq(rchan->irq);
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * IRQ handling
 | |
|  */
 | |
| 
 | |
| static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc = chan->desc.running;
 | |
| 	unsigned int stage;
 | |
| 
 | |
| 	if (WARN_ON(!desc || !desc->cyclic)) {
 | |
| 		/*
 | |
| 		 * This should never happen, there should always be a running
 | |
| 		 * cyclic descriptor when a descriptor stage end interrupt is
 | |
| 		 * triggered. Warn and return.
 | |
| 		 */
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* Program the interrupt pointer to the next stage. */
 | |
| 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
 | |
| 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
 | |
| 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
 | |
| 
 | |
| 	return IRQ_WAKE_THREAD;
 | |
| }
 | |
| 
 | |
| static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
 | |
| {
 | |
| 	struct rcar_dmac_desc *desc = chan->desc.running;
 | |
| 	irqreturn_t ret = IRQ_WAKE_THREAD;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!desc)) {
 | |
| 		/*
 | |
| 		 * This should never happen, there should always be a running
 | |
| 		 * descriptor when a transfer end interrupt is triggered. Warn
 | |
| 		 * and return.
 | |
| 		 */
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The transfer end interrupt isn't generated for each chunk when using
 | |
| 	 * descriptor mode. Only update the running chunk pointer in
 | |
| 	 * non-descriptor mode.
 | |
| 	 */
 | |
| 	if (!desc->hwdescs.use) {
 | |
| 		/*
 | |
| 		 * If we haven't completed the last transfer chunk simply move
 | |
| 		 * to the next one. Only wake the IRQ thread if the transfer is
 | |
| 		 * cyclic.
 | |
| 		 */
 | |
| 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
 | |
| 			desc->running = list_next_entry(desc->running, node);
 | |
| 			if (!desc->cyclic)
 | |
| 				ret = IRQ_HANDLED;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We've completed the last transfer chunk. If the transfer is
 | |
| 		 * cyclic, move back to the first one.
 | |
| 		 */
 | |
| 		if (desc->cyclic) {
 | |
| 			desc->running =
 | |
| 				list_first_entry(&desc->chunks,
 | |
| 						 struct rcar_dmac_xfer_chunk,
 | |
| 						 node);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The descriptor is complete, move it to the done list. */
 | |
| 	list_move_tail(&desc->node, &chan->desc.done);
 | |
| 
 | |
| 	/* Queue the next descriptor, if any. */
 | |
| 	if (!list_empty(&chan->desc.active))
 | |
| 		chan->desc.running = list_first_entry(&chan->desc.active,
 | |
| 						      struct rcar_dmac_desc,
 | |
| 						      node);
 | |
| 	else
 | |
| 		chan->desc.running = NULL;
 | |
| 
 | |
| done:
 | |
| 	if (chan->desc.running)
 | |
| 		rcar_dmac_chan_start_xfer(chan);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
 | |
| {
 | |
| 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
 | |
| 	struct rcar_dmac_chan *chan = dev;
 | |
| 	irqreturn_t ret = IRQ_NONE;
 | |
| 	bool reinit = false;
 | |
| 	u32 chcr;
 | |
| 
 | |
| 	spin_lock(&chan->lock);
 | |
| 
 | |
| 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 | |
| 	if (chcr & RCAR_DMACHCR_CAE) {
 | |
| 		struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need to call rcar_dmac_chan_halt()
 | |
| 		 * because channel is already stopped in error case.
 | |
| 		 * We need to clear register and check DE bit as recovery.
 | |
| 		 */
 | |
| 		rcar_dmac_chan_clear(dmac, chan);
 | |
| 		rcar_dmac_chcr_de_barrier(chan);
 | |
| 		reinit = true;
 | |
| 		goto spin_lock_end;
 | |
| 	}
 | |
| 
 | |
| 	if (chcr & RCAR_DMACHCR_TE)
 | |
| 		mask |= RCAR_DMACHCR_DE;
 | |
| 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
 | |
| 	if (mask & RCAR_DMACHCR_DE)
 | |
| 		rcar_dmac_chcr_de_barrier(chan);
 | |
| 
 | |
| 	if (chcr & RCAR_DMACHCR_DSE)
 | |
| 		ret |= rcar_dmac_isr_desc_stage_end(chan);
 | |
| 
 | |
| 	if (chcr & RCAR_DMACHCR_TE)
 | |
| 		ret |= rcar_dmac_isr_transfer_end(chan);
 | |
| 
 | |
| spin_lock_end:
 | |
| 	spin_unlock(&chan->lock);
 | |
| 
 | |
| 	if (reinit) {
 | |
| 		dev_err(chan->chan.device->dev, "Channel Address Error\n");
 | |
| 
 | |
| 		rcar_dmac_chan_reinit(chan);
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
 | |
| {
 | |
| 	struct rcar_dmac_chan *chan = dev;
 | |
| 	struct rcar_dmac_desc *desc;
 | |
| 	struct dmaengine_desc_callback cb;
 | |
| 
 | |
| 	spin_lock_irq(&chan->lock);
 | |
| 
 | |
| 	/* For cyclic transfers notify the user after every chunk. */
 | |
| 	if (chan->desc.running && chan->desc.running->cyclic) {
 | |
| 		desc = chan->desc.running;
 | |
| 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
 | |
| 
 | |
| 		if (dmaengine_desc_callback_valid(&cb)) {
 | |
| 			spin_unlock_irq(&chan->lock);
 | |
| 			dmaengine_desc_callback_invoke(&cb, NULL);
 | |
| 			spin_lock_irq(&chan->lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the callback function for all descriptors on the done list and
 | |
| 	 * move them to the ack wait list.
 | |
| 	 */
 | |
| 	while (!list_empty(&chan->desc.done)) {
 | |
| 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
 | |
| 					node);
 | |
| 		dma_cookie_complete(&desc->async_tx);
 | |
| 		list_del(&desc->node);
 | |
| 
 | |
| 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
 | |
| 		if (dmaengine_desc_callback_valid(&cb)) {
 | |
| 			spin_unlock_irq(&chan->lock);
 | |
| 			/*
 | |
| 			 * We own the only reference to this descriptor, we can
 | |
| 			 * safely dereference it without holding the channel
 | |
| 			 * lock.
 | |
| 			 */
 | |
| 			dmaengine_desc_callback_invoke(&cb, NULL);
 | |
| 			spin_lock_irq(&chan->lock);
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&desc->node, &chan->desc.wait);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&chan->lock);
 | |
| 
 | |
| 	/* Recycle all acked descriptors. */
 | |
| 	rcar_dmac_desc_recycle_acked(chan);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * OF xlate and channel filter
 | |
|  */
 | |
| 
 | |
| static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
 | |
| {
 | |
| 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
 | |
| 	struct of_phandle_args *dma_spec = arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
 | |
| 	 * function knows from which device it wants to allocate a channel from,
 | |
| 	 * and would be perfectly capable of selecting the channel it wants.
 | |
| 	 * Forcing it to call dma_request_channel() and iterate through all
 | |
| 	 * channels from all controllers is just pointless.
 | |
| 	 */
 | |
| 	if (chan->device->device_config != rcar_dmac_device_config)
 | |
| 		return false;
 | |
| 
 | |
| 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
 | |
| }
 | |
| 
 | |
| static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
 | |
| 					   struct of_dma *ofdma)
 | |
| {
 | |
| 	struct rcar_dmac_chan *rchan;
 | |
| 	struct dma_chan *chan;
 | |
| 	dma_cap_mask_t mask;
 | |
| 
 | |
| 	if (dma_spec->args_count != 1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Only slave DMA channels can be allocated via DT */
 | |
| 	dma_cap_zero(mask);
 | |
| 	dma_cap_set(DMA_SLAVE, mask);
 | |
| 
 | |
| 	chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
 | |
| 				     ofdma->of_node);
 | |
| 	if (!chan)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rchan = to_rcar_dmac_chan(chan);
 | |
| 	rchan->mid_rid = dma_spec->args[0];
 | |
| 
 | |
| 	return chan;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Power management
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int rcar_dmac_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return rcar_dmac_init(dmac);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops rcar_dmac_pm = {
 | |
| 	/*
 | |
| 	 * TODO for system sleep/resume:
 | |
| 	 *   - Wait for the current transfer to complete and stop the device,
 | |
| 	 *   - Resume transfers, if any.
 | |
| 	 */
 | |
| 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 | |
| 				      pm_runtime_force_resume)
 | |
| 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
 | |
| 			   NULL)
 | |
| };
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Probe and remove
 | |
|  */
 | |
| 
 | |
| static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
 | |
| 				struct rcar_dmac_chan *rchan)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dmac->dev);
 | |
| 	struct dma_chan *chan = &rchan->chan;
 | |
| 	char pdev_irqname[5];
 | |
| 	char *irqname;
 | |
| 	int ret;
 | |
| 
 | |
| 	rchan->mid_rid = -EINVAL;
 | |
| 
 | |
| 	spin_lock_init(&rchan->lock);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rchan->desc.free);
 | |
| 	INIT_LIST_HEAD(&rchan->desc.pending);
 | |
| 	INIT_LIST_HEAD(&rchan->desc.active);
 | |
| 	INIT_LIST_HEAD(&rchan->desc.done);
 | |
| 	INIT_LIST_HEAD(&rchan->desc.wait);
 | |
| 
 | |
| 	/* Request the channel interrupt. */
 | |
| 	sprintf(pdev_irqname, "ch%u", rchan->index);
 | |
| 	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
 | |
| 	if (rchan->irq < 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
 | |
| 				 dev_name(dmac->dev), rchan->index);
 | |
| 	if (!irqname)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the DMA engine channel and add it to the DMA engine
 | |
| 	 * channels list.
 | |
| 	 */
 | |
| 	chan->device = &dmac->engine;
 | |
| 	dma_cookie_init(chan);
 | |
| 
 | |
| 	list_add_tail(&chan->device_node, &dmac->engine.channels);
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
 | |
| 					rcar_dmac_isr_channel,
 | |
| 					rcar_dmac_isr_channel_thread, 0,
 | |
| 					irqname, rchan);
 | |
| 	if (ret) {
 | |
| 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
 | |
| 			rchan->irq, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define RCAR_DMAC_MAX_CHANNELS	32
 | |
| 
 | |
| static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
 | |
| {
 | |
| 	struct device_node *np = dev->of_node;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "unable to read dma-channels property\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* The hardware and driver don't support more than 32 bits in CHCLR */
 | |
| 	if (dmac->n_channels <= 0 ||
 | |
| 	    dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
 | |
| 		dev_err(dev, "invalid number of channels %u\n",
 | |
| 			dmac->n_channels);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the driver is unable to read dma-channel-mask property,
 | |
| 	 * the driver assumes that it can use all channels.
 | |
| 	 */
 | |
| 	dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
 | |
| 	of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
 | |
| 
 | |
| 	/* If the property has out-of-channel mask, this driver clears it */
 | |
| 	dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rcar_dmac_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
 | |
| 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
 | |
| 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
 | |
| 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
 | |
| 	const struct rcar_dmac_of_data *data;
 | |
| 	struct rcar_dmac_chan *chan;
 | |
| 	struct dma_device *engine;
 | |
| 	void __iomem *chan_base;
 | |
| 	struct rcar_dmac *dmac;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	data = of_device_get_match_data(&pdev->dev);
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
 | |
| 	if (!dmac)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dmac->dev = &pdev->dev;
 | |
| 	platform_set_drvdata(pdev, dmac);
 | |
| 	dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
 | |
| 
 | |
| 	ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
 | |
| 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
 | |
| 	 * is connected to microTLB 0 on currently supported platforms, so we
 | |
| 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
 | |
| 	 * level we can't disable it selectively, so ignore channel 0 for now if
 | |
| 	 * the device is part of an IOMMU group.
 | |
| 	 */
 | |
| 	if (device_iommu_mapped(&pdev->dev))
 | |
| 		dmac->channels_mask &= ~BIT(0);
 | |
| 
 | |
| 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
 | |
| 				      sizeof(*dmac->channels), GFP_KERNEL);
 | |
| 	if (!dmac->channels)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Request resources. */
 | |
| 	dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(dmac->dmac_base))
 | |
| 		return PTR_ERR(dmac->dmac_base);
 | |
| 
 | |
| 	if (!data->chan_offset_base) {
 | |
| 		dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
 | |
| 		if (IS_ERR(dmac->chan_base))
 | |
| 			return PTR_ERR(dmac->chan_base);
 | |
| 
 | |
| 		chan_base = dmac->chan_base;
 | |
| 	} else {
 | |
| 		chan_base = dmac->dmac_base + data->chan_offset_base;
 | |
| 	}
 | |
| 
 | |
| 	for_each_rcar_dmac_chan(i, dmac, chan) {
 | |
| 		chan->index = i;
 | |
| 		chan->iomem = chan_base + i * data->chan_offset_stride;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable runtime PM and initialize the device. */
 | |
| 	pm_runtime_enable(&pdev->dev);
 | |
| 	ret = pm_runtime_resume_and_get(&pdev->dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
 | |
| 		goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	ret = rcar_dmac_init(dmac);
 | |
| 	pm_runtime_put(&pdev->dev);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "failed to reset device\n");
 | |
| 		goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize engine */
 | |
| 	engine = &dmac->engine;
 | |
| 
 | |
| 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
 | |
| 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
 | |
| 
 | |
| 	engine->dev		= &pdev->dev;
 | |
| 	engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
 | |
| 
 | |
| 	engine->src_addr_widths	= widths;
 | |
| 	engine->dst_addr_widths	= widths;
 | |
| 	engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
 | |
| 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
 | |
| 
 | |
| 	engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources;
 | |
| 	engine->device_free_chan_resources	= rcar_dmac_free_chan_resources;
 | |
| 	engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy;
 | |
| 	engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg;
 | |
| 	engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic;
 | |
| 	engine->device_config			= rcar_dmac_device_config;
 | |
| 	engine->device_pause			= rcar_dmac_chan_pause;
 | |
| 	engine->device_terminate_all		= rcar_dmac_chan_terminate_all;
 | |
| 	engine->device_tx_status		= rcar_dmac_tx_status;
 | |
| 	engine->device_issue_pending		= rcar_dmac_issue_pending;
 | |
| 	engine->device_synchronize		= rcar_dmac_device_synchronize;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&engine->channels);
 | |
| 
 | |
| 	for_each_rcar_dmac_chan(i, dmac, chan) {
 | |
| 		ret = rcar_dmac_chan_probe(dmac, chan);
 | |
| 		if (ret < 0)
 | |
| 			goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	/* Register the DMAC as a DMA provider for DT. */
 | |
| 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
 | |
| 					 NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto err_pm_disable;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the DMA engine device.
 | |
| 	 *
 | |
| 	 * Default transfer size of 32 bytes requires 32-byte alignment.
 | |
| 	 */
 | |
| 	ret = dma_async_device_register(engine);
 | |
| 	if (ret < 0)
 | |
| 		goto err_dma_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_dma_free:
 | |
| 	of_dma_controller_free(pdev->dev.of_node);
 | |
| err_pm_disable:
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	of_dma_controller_free(pdev->dev.of_node);
 | |
| 	dma_async_device_unregister(&dmac->engine);
 | |
| 
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| }
 | |
| 
 | |
| static void rcar_dmac_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	rcar_dmac_stop_all_chan(dmac);
 | |
| }
 | |
| 
 | |
| static const struct rcar_dmac_of_data rcar_dmac_data = {
 | |
| 	.chan_offset_base	= 0x8000,
 | |
| 	.chan_offset_stride	= 0x80,
 | |
| };
 | |
| 
 | |
| static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
 | |
| 	.chan_offset_base	= 0x0,
 | |
| 	.chan_offset_stride	= 0x1000,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id rcar_dmac_of_ids[] = {
 | |
| 	{
 | |
| 		.compatible = "renesas,rcar-dmac",
 | |
| 		.data = &rcar_dmac_data,
 | |
| 	}, {
 | |
| 		.compatible = "renesas,rcar-gen4-dmac",
 | |
| 		.data = &rcar_gen4_dmac_data,
 | |
| 	}, {
 | |
| 		.compatible = "renesas,dmac-r8a779a0",
 | |
| 		.data = &rcar_gen4_dmac_data,
 | |
| 	},
 | |
| 	{ /* Sentinel */ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
 | |
| 
 | |
| static struct platform_driver rcar_dmac_driver = {
 | |
| 	.driver		= {
 | |
| 		.pm	= &rcar_dmac_pm,
 | |
| 		.name	= "rcar-dmac",
 | |
| 		.of_match_table = rcar_dmac_of_ids,
 | |
| 	},
 | |
| 	.probe		= rcar_dmac_probe,
 | |
| 	.remove_new	= rcar_dmac_remove,
 | |
| 	.shutdown	= rcar_dmac_shutdown,
 | |
| };
 | |
| 
 | |
| module_platform_driver(rcar_dmac_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
 | |
| MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
 | |
| MODULE_LICENSE("GPL v2");
 |