kernel/drivers/net/ethernet/marvell/octeontx2/nic/cn10k_ipsec.c

1057 lines
27 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/* Marvell IPSEC offload driver
*
* Copyright (C) 2024 Marvell.
*/
#include <net/xfrm.h>
#include <linux/netdevice.h>
#include <linux/bitfield.h>
#include <crypto/aead.h>
#include <crypto/gcm.h>
#include "otx2_common.h"
#include "otx2_struct.h"
#include "cn10k_ipsec.h"
static bool is_dev_support_ipsec_offload(struct pci_dev *pdev)
{
return is_dev_cn10ka_b0(pdev) || is_dev_cn10kb(pdev);
}
static bool cn10k_cpt_device_set_inuse(struct otx2_nic *pf)
{
enum cn10k_cpt_hw_state_e state;
while (true) {
state = atomic_cmpxchg(&pf->ipsec.cpt_state,
CN10K_CPT_HW_AVAILABLE,
CN10K_CPT_HW_IN_USE);
if (state == CN10K_CPT_HW_AVAILABLE)
return true;
if (state == CN10K_CPT_HW_UNAVAILABLE)
return false;
mdelay(1);
}
}
static void cn10k_cpt_device_set_available(struct otx2_nic *pf)
{
atomic_set(&pf->ipsec.cpt_state, CN10K_CPT_HW_AVAILABLE);
}
static void cn10k_cpt_device_set_unavailable(struct otx2_nic *pf)
{
atomic_set(&pf->ipsec.cpt_state, CN10K_CPT_HW_UNAVAILABLE);
}
static int cn10k_outb_cptlf_attach(struct otx2_nic *pf)
{
struct rsrc_attach *attach;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
/* Get memory to put this msg */
attach = otx2_mbox_alloc_msg_attach_resources(&pf->mbox);
if (!attach)
goto unlock;
attach->cptlfs = true;
attach->modify = true;
/* Send attach request to AF */
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static int cn10k_outb_cptlf_detach(struct otx2_nic *pf)
{
struct rsrc_detach *detach;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
detach = otx2_mbox_alloc_msg_detach_resources(&pf->mbox);
if (!detach)
goto unlock;
detach->partial = true;
detach->cptlfs = true;
/* Send detach request to AF */
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static int cn10k_outb_cptlf_alloc(struct otx2_nic *pf)
{
struct cpt_lf_alloc_req_msg *req;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_cpt_lf_alloc(&pf->mbox);
if (!req)
goto unlock;
/* PF function */
req->nix_pf_func = pf->pcifunc;
/* Enable SE-IE Engine Group */
req->eng_grpmsk = 1 << CN10K_DEF_CPT_IPSEC_EGRP;
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static void cn10k_outb_cptlf_free(struct otx2_nic *pf)
{
mutex_lock(&pf->mbox.lock);
otx2_mbox_alloc_msg_cpt_lf_free(&pf->mbox);
otx2_sync_mbox_msg(&pf->mbox);
mutex_unlock(&pf->mbox.lock);
}
static int cn10k_outb_cptlf_config(struct otx2_nic *pf)
{
struct cpt_inline_ipsec_cfg_msg *req;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_cpt_inline_ipsec_cfg(&pf->mbox);
if (!req)
goto unlock;
req->dir = CPT_INLINE_OUTBOUND;
req->enable = 1;
req->nix_pf_func = pf->pcifunc;
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static void cn10k_outb_cptlf_iq_enable(struct otx2_nic *pf)
{
u64 reg_val;
/* Set Execution Enable of instruction queue */
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
reg_val |= BIT_ULL(16);
otx2_write64(pf, CN10K_CPT_LF_INPROG, reg_val);
/* Set iqueue's enqueuing */
reg_val = otx2_read64(pf, CN10K_CPT_LF_CTL);
reg_val |= BIT_ULL(0);
otx2_write64(pf, CN10K_CPT_LF_CTL, reg_val);
}
static void cn10k_outb_cptlf_iq_disable(struct otx2_nic *pf)
{
u32 inflight, grb_cnt, gwb_cnt;
u32 nq_ptr, dq_ptr;
int timeout = 20;
u64 reg_val;
int cnt;
/* Disable instructions enqueuing */
otx2_write64(pf, CN10K_CPT_LF_CTL, 0ull);
/* Wait for instruction queue to become empty.
* CPT_LF_INPROG.INFLIGHT count is zero
*/
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
inflight = FIELD_GET(CPT_LF_INPROG_INFLIGHT, reg_val);
if (!inflight)
break;
usleep_range(10000, 20000);
if (timeout-- < 0) {
netdev_err(pf->netdev, "Timeout to cleanup CPT IQ\n");
break;
}
} while (1);
/* Disable executions in the LF's queue,
* the queue should be empty at this point
*/
reg_val &= ~BIT_ULL(16);
otx2_write64(pf, CN10K_CPT_LF_INPROG, reg_val);
/* Wait for instruction queue to become empty */
cnt = 0;
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
if (reg_val & BIT_ULL(31))
cnt = 0;
else
cnt++;
reg_val = otx2_read64(pf, CN10K_CPT_LF_Q_GRP_PTR);
nq_ptr = FIELD_GET(CPT_LF_Q_GRP_PTR_DQ_PTR, reg_val);
dq_ptr = FIELD_GET(CPT_LF_Q_GRP_PTR_DQ_PTR, reg_val);
} while ((cnt < 10) && (nq_ptr != dq_ptr));
cnt = 0;
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
inflight = FIELD_GET(CPT_LF_INPROG_INFLIGHT, reg_val);
grb_cnt = FIELD_GET(CPT_LF_INPROG_GRB_CNT, reg_val);
gwb_cnt = FIELD_GET(CPT_LF_INPROG_GWB_CNT, reg_val);
if (inflight == 0 && gwb_cnt < 40 &&
(grb_cnt == 0 || grb_cnt == 40))
cnt++;
else
cnt = 0;
} while (cnt < 10);
}
/* Allocate memory for CPT outbound Instruction queue.
* Instruction queue memory format is:
* -----------------------------
* | Instruction Group memory |
* | (CPT_LF_Q_SIZE[SIZE_DIV40] |
* | x 16 Bytes) |
* | |
* ----------------------------- <-- CPT_LF_Q_BASE[ADDR]
* | Flow Control (128 Bytes) |
* | |
* -----------------------------
* | Instruction Memory |
* | (CPT_LF_Q_SIZE[SIZE_DIV40] |
* | × 40 × 64 bytes) |
* | |
* -----------------------------
*/
static int cn10k_outb_cptlf_iq_alloc(struct otx2_nic *pf)
{
struct cn10k_cpt_inst_queue *iq = &pf->ipsec.iq;
iq->size = CN10K_CPT_INST_QLEN_BYTES + CN10K_CPT_Q_FC_LEN +
CN10K_CPT_INST_GRP_QLEN_BYTES + OTX2_ALIGN;
iq->real_vaddr = dma_alloc_coherent(pf->dev, iq->size,
&iq->real_dma_addr, GFP_KERNEL);
if (!iq->real_vaddr)
return -ENOMEM;
/* iq->vaddr/dma_addr points to Flow Control location */
iq->vaddr = iq->real_vaddr + CN10K_CPT_INST_GRP_QLEN_BYTES;
iq->dma_addr = iq->real_dma_addr + CN10K_CPT_INST_GRP_QLEN_BYTES;
/* Align pointers */
iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_ALIGN);
iq->dma_addr = PTR_ALIGN(iq->dma_addr, OTX2_ALIGN);
return 0;
}
static void cn10k_outb_cptlf_iq_free(struct otx2_nic *pf)
{
struct cn10k_cpt_inst_queue *iq = &pf->ipsec.iq;
if (iq->real_vaddr)
dma_free_coherent(pf->dev, iq->size, iq->real_vaddr,
iq->real_dma_addr);
iq->real_vaddr = NULL;
iq->vaddr = NULL;
}
static int cn10k_outb_cptlf_iq_init(struct otx2_nic *pf)
{
u64 reg_val;
int ret;
/* Allocate Memory for CPT IQ */
ret = cn10k_outb_cptlf_iq_alloc(pf);
if (ret)
return ret;
/* Disable IQ */
cn10k_outb_cptlf_iq_disable(pf);
/* Set IQ base address */
otx2_write64(pf, CN10K_CPT_LF_Q_BASE, pf->ipsec.iq.dma_addr);
/* Set IQ size */
reg_val = FIELD_PREP(CPT_LF_Q_SIZE_DIV40, CN10K_CPT_SIZE_DIV40 +
CN10K_CPT_EXTRA_SIZE_DIV40);
otx2_write64(pf, CN10K_CPT_LF_Q_SIZE, reg_val);
return 0;
}
static int cn10k_outb_cptlf_init(struct otx2_nic *pf)
{
int ret;
/* Initialize CPTLF Instruction Queue (IQ) */
ret = cn10k_outb_cptlf_iq_init(pf);
if (ret)
return ret;
/* Configure CPTLF for outbound ipsec offload */
ret = cn10k_outb_cptlf_config(pf);
if (ret)
goto iq_clean;
/* Enable CPTLF IQ */
cn10k_outb_cptlf_iq_enable(pf);
return 0;
iq_clean:
cn10k_outb_cptlf_iq_free(pf);
return ret;
}
static int cn10k_outb_cpt_init(struct net_device *netdev)
{
struct otx2_nic *pf = netdev_priv(netdev);
int ret;
/* Attach a CPT LF for outbound ipsec offload */
ret = cn10k_outb_cptlf_attach(pf);
if (ret)
return ret;
/* Allocate a CPT LF for outbound ipsec offload */
ret = cn10k_outb_cptlf_alloc(pf);
if (ret)
goto detach;
/* Initialize the CPTLF for outbound ipsec offload */
ret = cn10k_outb_cptlf_init(pf);
if (ret)
goto lf_free;
pf->ipsec.io_addr = (__force u64)otx2_get_regaddr(pf,
CN10K_CPT_LF_NQX(0));
/* Set ipsec offload enabled for this device */
pf->flags |= OTX2_FLAG_IPSEC_OFFLOAD_ENABLED;
cn10k_cpt_device_set_available(pf);
return 0;
lf_free:
cn10k_outb_cptlf_free(pf);
detach:
cn10k_outb_cptlf_detach(pf);
return ret;
}
static int cn10k_outb_cpt_clean(struct otx2_nic *pf)
{
int ret;
if (!cn10k_cpt_device_set_inuse(pf)) {
netdev_err(pf->netdev, "CPT LF device unavailable\n");
return -ENODEV;
}
/* Set ipsec offload disabled for this device */
pf->flags &= ~OTX2_FLAG_IPSEC_OFFLOAD_ENABLED;
/* Disable CPTLF Instruction Queue (IQ) */
cn10k_outb_cptlf_iq_disable(pf);
/* Set IQ base address and size to 0 */
otx2_write64(pf, CN10K_CPT_LF_Q_BASE, 0);
otx2_write64(pf, CN10K_CPT_LF_Q_SIZE, 0);
/* Free CPTLF IQ */
cn10k_outb_cptlf_iq_free(pf);
/* Free and detach CPT LF */
cn10k_outb_cptlf_free(pf);
ret = cn10k_outb_cptlf_detach(pf);
if (ret)
netdev_err(pf->netdev, "Failed to detach CPT LF\n");
cn10k_cpt_device_set_unavailable(pf);
return ret;
}
static void cn10k_cpt_inst_flush(struct otx2_nic *pf, struct cpt_inst_s *inst,
u64 size)
{
struct otx2_lmt_info *lmt_info;
u64 val = 0, tar_addr = 0;
lmt_info = per_cpu_ptr(pf->hw.lmt_info, smp_processor_id());
/* FIXME: val[0:10] LMT_ID.
* [12:15] no of LMTST - 1 in the burst.
* [19:63] data size of each LMTST in the burst except first.
*/
val = (lmt_info->lmt_id & 0x7FF);
/* Target address for LMTST flush tells HW how many 128bit
* words are present.
* tar_addr[6:4] size of first LMTST - 1 in units of 128b.
*/
tar_addr |= pf->ipsec.io_addr | (((size / 16) - 1) & 0x7) << 4;
dma_wmb();
memcpy((u64 *)lmt_info->lmt_addr, inst, size);
cn10k_lmt_flush(val, tar_addr);
}
static int cn10k_wait_for_cpt_respose(struct otx2_nic *pf,
struct cpt_res_s *res)
{
unsigned long timeout = jiffies + msecs_to_jiffies(100);
u64 *completion_ptr = (u64 *)res;
do {
if (time_after(jiffies, timeout)) {
netdev_err(pf->netdev, "CPT response timeout\n");
return -EBUSY;
}
} while ((READ_ONCE(*completion_ptr) & CN10K_CPT_COMP_E_MASK) ==
CN10K_CPT_COMP_E_NOTDONE);
if (!(res->compcode == CN10K_CPT_COMP_E_GOOD ||
res->compcode == CN10K_CPT_COMP_E_WARN) || res->uc_compcode) {
netdev_err(pf->netdev, "compcode=%x doneint=%x\n",
res->compcode, res->doneint);
netdev_err(pf->netdev, "uc_compcode=%x uc_info=%llx esn=%llx\n",
res->uc_compcode, (u64)res->uc_info, res->esn);
}
return 0;
}
static int cn10k_outb_write_sa(struct otx2_nic *pf, struct qmem *sa_info)
{
dma_addr_t res_iova, dptr_iova, sa_iova;
struct cn10k_tx_sa_s *sa_dptr;
struct cpt_inst_s inst = {};
struct cpt_res_s *res;
u32 sa_size, off;
u64 *sptr, *dptr;
u64 reg_val;
int ret;
sa_iova = sa_info->iova;
if (!sa_iova)
return -EINVAL;
res = dma_alloc_coherent(pf->dev, sizeof(struct cpt_res_s),
&res_iova, GFP_ATOMIC);
if (!res)
return -ENOMEM;
sa_size = sizeof(struct cn10k_tx_sa_s);
sa_dptr = dma_alloc_coherent(pf->dev, sa_size, &dptr_iova, GFP_ATOMIC);
if (!sa_dptr) {
dma_free_coherent(pf->dev, sizeof(struct cpt_res_s), res,
res_iova);
return -ENOMEM;
}
sptr = (__force u64 *)sa_info->base;
dptr = (__force u64 *)sa_dptr;
for (off = 0; off < (sa_size / 8); off++)
*(dptr + off) = (__force u64)cpu_to_be64(*(sptr + off));
res->compcode = CN10K_CPT_COMP_E_NOTDONE;
inst.res_addr = res_iova;
inst.dptr = (u64)dptr_iova;
inst.param2 = sa_size >> 3;
inst.dlen = sa_size;
inst.opcode_major = CN10K_IPSEC_MAJOR_OP_WRITE_SA;
inst.opcode_minor = CN10K_IPSEC_MINOR_OP_WRITE_SA;
inst.cptr = sa_iova;
inst.ctx_val = 1;
inst.egrp = CN10K_DEF_CPT_IPSEC_EGRP;
/* Check if CPT-LF available */
if (!cn10k_cpt_device_set_inuse(pf)) {
ret = -ENODEV;
goto free_mem;
}
cn10k_cpt_inst_flush(pf, &inst, sizeof(struct cpt_inst_s));
dma_wmb();
ret = cn10k_wait_for_cpt_respose(pf, res);
if (ret)
goto set_available;
/* Trigger CTX flush to write dirty data back to DRAM */
reg_val = FIELD_PREP(CPT_LF_CTX_FLUSH, sa_iova >> 7);
otx2_write64(pf, CN10K_CPT_LF_CTX_FLUSH, reg_val);
set_available:
cn10k_cpt_device_set_available(pf);
free_mem:
dma_free_coherent(pf->dev, sa_size, sa_dptr, dptr_iova);
dma_free_coherent(pf->dev, sizeof(struct cpt_res_s), res, res_iova);
return ret;
}
static int cn10k_ipsec_get_hw_ctx_offset(void)
{
/* Offset on Hardware-context offset in word */
return (offsetof(struct cn10k_tx_sa_s, hw_ctx) / sizeof(u64)) & 0x7F;
}
static int cn10k_ipsec_get_ctx_push_size(void)
{
/* Context push size is round up and in multiple of 8 Byte */
return (roundup(offsetof(struct cn10k_tx_sa_s, hw_ctx), 8) / 8) & 0x7F;
}
static int cn10k_ipsec_get_aes_key_len(int key_len)
{
/* key_len is aes key length in bytes */
switch (key_len) {
case 16:
return CN10K_IPSEC_SA_AES_KEY_LEN_128;
case 24:
return CN10K_IPSEC_SA_AES_KEY_LEN_192;
default:
return CN10K_IPSEC_SA_AES_KEY_LEN_256;
}
}
static void cn10k_outb_prepare_sa(struct xfrm_state *x,
struct cn10k_tx_sa_s *sa_entry)
{
int key_len = (x->aead->alg_key_len + 7) / 8;
struct net_device *netdev = x->xso.dev;
u8 *key = x->aead->alg_key;
struct otx2_nic *pf;
u32 *tmp_salt;
u64 *tmp_key;
int idx;
memset(sa_entry, 0, sizeof(struct cn10k_tx_sa_s));
/* context size, 128 Byte aligned up */
pf = netdev_priv(netdev);
sa_entry->ctx_size = (pf->ipsec.sa_size / OTX2_ALIGN) & 0xF;
sa_entry->hw_ctx_off = cn10k_ipsec_get_hw_ctx_offset();
sa_entry->ctx_push_size = cn10k_ipsec_get_ctx_push_size();
/* Ucode to skip two words of CPT_CTX_HW_S */
sa_entry->ctx_hdr_size = 1;
/* Allow Atomic operation (AOP) */
sa_entry->aop_valid = 1;
/* Outbound, ESP TRANSPORT/TUNNEL Mode, AES-GCM with */
sa_entry->sa_dir = CN10K_IPSEC_SA_DIR_OUTB;
sa_entry->ipsec_protocol = CN10K_IPSEC_SA_IPSEC_PROTO_ESP;
sa_entry->enc_type = CN10K_IPSEC_SA_ENCAP_TYPE_AES_GCM;
sa_entry->iv_src = CN10K_IPSEC_SA_IV_SRC_PACKET;
if (x->props.mode == XFRM_MODE_TUNNEL)
sa_entry->ipsec_mode = CN10K_IPSEC_SA_IPSEC_MODE_TUNNEL;
else
sa_entry->ipsec_mode = CN10K_IPSEC_SA_IPSEC_MODE_TRANSPORT;
/* Last 4 bytes are salt */
key_len -= 4;
sa_entry->aes_key_len = cn10k_ipsec_get_aes_key_len(key_len);
memcpy(sa_entry->cipher_key, key, key_len);
tmp_key = (u64 *)sa_entry->cipher_key;
for (idx = 0; idx < key_len / 8; idx++)
tmp_key[idx] = (__force u64)cpu_to_be64(tmp_key[idx]);
memcpy(&sa_entry->iv_gcm_salt, key + key_len, 4);
tmp_salt = (u32 *)&sa_entry->iv_gcm_salt;
*tmp_salt = (__force u32)cpu_to_be32(*tmp_salt);
/* Write SA context data to memory before enabling */
wmb();
/* Enable SA */
sa_entry->sa_valid = 1;
}
static int cn10k_ipsec_validate_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
if (x->props.aalgo != SADB_AALG_NONE) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload authenticated xfrm states");
return -EINVAL;
}
if (x->props.ealgo != SADB_X_EALG_AES_GCM_ICV16) {
NL_SET_ERR_MSG_MOD(extack,
"Only AES-GCM-ICV16 xfrm state may be offloaded");
return -EINVAL;
}
if (x->props.calgo != SADB_X_CALG_NONE) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload compressed xfrm states");
return -EINVAL;
}
if (x->props.flags & XFRM_STATE_ESN) {
NL_SET_ERR_MSG_MOD(extack, "Cannot offload ESN xfrm states");
return -EINVAL;
}
if (x->props.family != AF_INET && x->props.family != AF_INET6) {
NL_SET_ERR_MSG_MOD(extack,
"Only IPv4/v6 xfrm states may be offloaded");
return -EINVAL;
}
if (x->xso.type != XFRM_DEV_OFFLOAD_CRYPTO) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload other than crypto-mode");
return -EINVAL;
}
if (x->props.mode != XFRM_MODE_TRANSPORT &&
x->props.mode != XFRM_MODE_TUNNEL) {
NL_SET_ERR_MSG_MOD(extack,
"Only tunnel/transport xfrm states may be offloaded");
return -EINVAL;
}
if (x->id.proto != IPPROTO_ESP) {
NL_SET_ERR_MSG_MOD(extack,
"Only ESP xfrm state may be offloaded");
return -EINVAL;
}
if (x->encap) {
NL_SET_ERR_MSG_MOD(extack,
"Encapsulated xfrm state may not be offloaded");
return -EINVAL;
}
if (!x->aead) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states without aead");
return -EINVAL;
}
if (x->aead->alg_icv_len != 128) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with AEAD ICV length other than 128bit");
return -EINVAL;
}
if (x->aead->alg_key_len != 128 + 32 &&
x->aead->alg_key_len != 192 + 32 &&
x->aead->alg_key_len != 256 + 32) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with AEAD key length other than 128/192/256bit");
return -EINVAL;
}
if (x->tfcpad) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with tfc padding");
return -EINVAL;
}
if (!x->geniv) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states without geniv");
return -EINVAL;
}
if (strcmp(x->geniv, "seqiv")) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with geniv other than seqiv");
return -EINVAL;
}
return 0;
}
static int cn10k_ipsec_inb_add_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
NL_SET_ERR_MSG_MOD(extack, "xfrm inbound offload not supported");
return -EOPNOTSUPP;
}
static int cn10k_ipsec_outb_add_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
struct net_device *netdev = x->xso.dev;
struct cn10k_tx_sa_s *sa_entry;
struct qmem *sa_info;
struct otx2_nic *pf;
int err;
err = cn10k_ipsec_validate_state(x, extack);
if (err)
return err;
pf = netdev_priv(netdev);
err = qmem_alloc(pf->dev, &sa_info, pf->ipsec.sa_size, OTX2_ALIGN);
if (err)
return err;
sa_entry = (struct cn10k_tx_sa_s *)sa_info->base;
cn10k_outb_prepare_sa(x, sa_entry);
err = cn10k_outb_write_sa(pf, sa_info);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Error writing outbound SA");
qmem_free(pf->dev, sa_info);
return err;
}
x->xso.offload_handle = (unsigned long)sa_info;
/* Enable static branch when first SA setup */
if (!pf->ipsec.outb_sa_count)
static_branch_enable(&cn10k_ipsec_sa_enabled);
pf->ipsec.outb_sa_count++;
return 0;
}
static int cn10k_ipsec_add_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
if (x->xso.dir == XFRM_DEV_OFFLOAD_IN)
return cn10k_ipsec_inb_add_state(x, extack);
else
return cn10k_ipsec_outb_add_state(x, extack);
}
static void cn10k_ipsec_del_state(struct xfrm_state *x)
{
struct net_device *netdev = x->xso.dev;
struct cn10k_tx_sa_s *sa_entry;
struct qmem *sa_info;
struct otx2_nic *pf;
int err;
if (x->xso.dir == XFRM_DEV_OFFLOAD_IN)
return;
pf = netdev_priv(netdev);
sa_info = (struct qmem *)x->xso.offload_handle;
sa_entry = (struct cn10k_tx_sa_s *)sa_info->base;
memset(sa_entry, 0, sizeof(struct cn10k_tx_sa_s));
/* Disable SA in CPT h/w */
sa_entry->ctx_push_size = cn10k_ipsec_get_ctx_push_size();
sa_entry->ctx_size = (pf->ipsec.sa_size / OTX2_ALIGN) & 0xF;
sa_entry->aop_valid = 1;
err = cn10k_outb_write_sa(pf, sa_info);
if (err)
netdev_err(netdev, "Error (%d) deleting SA\n", err);
x->xso.offload_handle = 0;
qmem_free(pf->dev, sa_info);
/* If no more SA's then update netdev feature for potential change
* in NETIF_F_HW_ESP.
*/
if (!--pf->ipsec.outb_sa_count)
queue_work(pf->ipsec.sa_workq, &pf->ipsec.sa_work);
}
static bool cn10k_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
{
if (x->props.family == AF_INET) {
/* Offload with IPv4 options is not supported yet */
if (ip_hdr(skb)->ihl > 5)
return false;
} else {
/* Offload with IPv6 extension headers is not support yet */
if (ipv6_ext_hdr(ipv6_hdr(skb)->nexthdr))
return false;
}
return true;
}
static const struct xfrmdev_ops cn10k_ipsec_xfrmdev_ops = {
.xdo_dev_state_add = cn10k_ipsec_add_state,
.xdo_dev_state_delete = cn10k_ipsec_del_state,
.xdo_dev_offload_ok = cn10k_ipsec_offload_ok,
};
static void cn10k_ipsec_sa_wq_handler(struct work_struct *work)
{
struct cn10k_ipsec *ipsec = container_of(work, struct cn10k_ipsec,
sa_work);
struct otx2_nic *pf = container_of(ipsec, struct otx2_nic, ipsec);
/* Disable static branch when no more SA enabled */
static_branch_disable(&cn10k_ipsec_sa_enabled);
rtnl_lock();
netdev_update_features(pf->netdev);
rtnl_unlock();
}
int cn10k_ipsec_ethtool_init(struct net_device *netdev, bool enable)
{
struct otx2_nic *pf = netdev_priv(netdev);
/* IPsec offload supported on cn10k */
if (!is_dev_support_ipsec_offload(pf->pdev))
return -EOPNOTSUPP;
/* Initialize CPT for outbound ipsec offload */
if (enable)
return cn10k_outb_cpt_init(netdev);
/* Don't do CPT cleanup if SA installed */
if (pf->ipsec.outb_sa_count) {
netdev_err(pf->netdev, "SA installed on this device\n");
return -EBUSY;
}
return cn10k_outb_cpt_clean(pf);
}
int cn10k_ipsec_init(struct net_device *netdev)
{
struct otx2_nic *pf = netdev_priv(netdev);
u32 sa_size;
if (!is_dev_support_ipsec_offload(pf->pdev))
return 0;
/* Each SA entry size is 128 Byte round up in size */
sa_size = sizeof(struct cn10k_tx_sa_s) % OTX2_ALIGN ?
(sizeof(struct cn10k_tx_sa_s) / OTX2_ALIGN + 1) *
OTX2_ALIGN : sizeof(struct cn10k_tx_sa_s);
pf->ipsec.sa_size = sa_size;
INIT_WORK(&pf->ipsec.sa_work, cn10k_ipsec_sa_wq_handler);
pf->ipsec.sa_workq = alloc_workqueue("cn10k_ipsec_sa_workq", 0, 0);
if (!pf->ipsec.sa_workq) {
netdev_err(pf->netdev, "SA alloc workqueue failed\n");
return -ENOMEM;
}
/* Set xfrm device ops */
netdev->xfrmdev_ops = &cn10k_ipsec_xfrmdev_ops;
netdev->hw_features |= NETIF_F_HW_ESP;
netdev->hw_enc_features |= NETIF_F_HW_ESP;
cn10k_cpt_device_set_unavailable(pf);
return 0;
}
EXPORT_SYMBOL(cn10k_ipsec_init);
void cn10k_ipsec_clean(struct otx2_nic *pf)
{
if (!is_dev_support_ipsec_offload(pf->pdev))
return;
if (!(pf->flags & OTX2_FLAG_IPSEC_OFFLOAD_ENABLED))
return;
if (pf->ipsec.sa_workq) {
destroy_workqueue(pf->ipsec.sa_workq);
pf->ipsec.sa_workq = NULL;
}
cn10k_outb_cpt_clean(pf);
}
EXPORT_SYMBOL(cn10k_ipsec_clean);
static u16 cn10k_ipsec_get_ip_data_len(struct xfrm_state *x,
struct sk_buff *skb)
{
struct ipv6hdr *ipv6h;
struct iphdr *iph;
u8 *src;
src = (u8 *)skb->data + ETH_HLEN;
if (x->props.family == AF_INET) {
iph = (struct iphdr *)src;
return ntohs(iph->tot_len);
}
ipv6h = (struct ipv6hdr *)src;
return ntohs(ipv6h->payload_len) + sizeof(struct ipv6hdr);
}
/* Prepare CPT and NIX SQE scatter/gather subdescriptor structure.
* SG of NIX and CPT are same in size.
* Layout of a NIX SQE and CPT SG entry:
* -----------------------------
* | CPT Scatter Gather |
* | (SQE SIZE) |
* | |
* -----------------------------
* | NIX SQE |
* | (SQE SIZE) |
* | |
* -----------------------------
*/
bool otx2_sqe_add_sg_ipsec(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct sk_buff *skb, int num_segs, int *offset)
{
struct cpt_sg_s *cpt_sg = NULL;
struct nix_sqe_sg_s *sg = NULL;
u64 dma_addr, *iova = NULL;
u64 *cpt_iova = NULL;
u16 *sg_lens = NULL;
int seg, len;
sq->sg[sq->head].num_segs = 0;
cpt_sg = (struct cpt_sg_s *)(sq->sqe_base - sq->sqe_size);
for (seg = 0; seg < num_segs; seg++) {
if ((seg % MAX_SEGS_PER_SG) == 0) {
sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
sg->ld_type = NIX_SEND_LDTYPE_LDD;
sg->subdc = NIX_SUBDC_SG;
sg->segs = 0;
sg_lens = (void *)sg;
iova = (void *)sg + sizeof(*sg);
/* Next subdc always starts at a 16byte boundary.
* So if sg->segs is whether 2 or 3, offset += 16bytes.
*/
if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
*offset += sizeof(*sg) + (3 * sizeof(u64));
else
*offset += sizeof(*sg) + sizeof(u64);
cpt_sg += (seg / MAX_SEGS_PER_SG) * 4;
cpt_iova = (void *)cpt_sg + sizeof(*cpt_sg);
}
dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
if (dma_mapping_error(pfvf->dev, dma_addr))
return false;
sg_lens[seg % MAX_SEGS_PER_SG] = len;
sg->segs++;
*iova++ = dma_addr;
*cpt_iova++ = dma_addr;
/* Save DMA mapping info for later unmapping */
sq->sg[sq->head].dma_addr[seg] = dma_addr;
sq->sg[sq->head].size[seg] = len;
sq->sg[sq->head].num_segs++;
*cpt_sg = *(struct cpt_sg_s *)sg;
cpt_sg->rsvd_63_50 = 0;
}
sq->sg[sq->head].skb = (u64)skb;
return true;
}
static u16 cn10k_ipsec_get_param1(u8 iv_offset)
{
u16 param1_val;
/* Set Crypto mode, disable L3/L4 checksum */
param1_val = CN10K_IPSEC_INST_PARAM1_DIS_L4_CSUM |
CN10K_IPSEC_INST_PARAM1_DIS_L3_CSUM;
param1_val |= (u16)iv_offset << CN10K_IPSEC_INST_PARAM1_IV_OFFSET_SHIFT;
return param1_val;
}
bool cn10k_ipsec_transmit(struct otx2_nic *pf, struct netdev_queue *txq,
struct otx2_snd_queue *sq, struct sk_buff *skb,
int num_segs, int size)
{
struct cpt_inst_s inst;
struct cpt_res_s *res;
struct xfrm_state *x;
struct qmem *sa_info;
dma_addr_t dptr_iova;
struct sec_path *sp;
u8 encap_offset;
u8 auth_offset;
u8 gthr_size;
u8 iv_offset;
u16 dlen;
/* Check for IPSEC offload enabled */
if (!(pf->flags & OTX2_FLAG_IPSEC_OFFLOAD_ENABLED))
goto drop;
sp = skb_sec_path(skb);
if (unlikely(!sp->len))
goto drop;
x = xfrm_input_state(skb);
if (unlikely(!x))
goto drop;
if (x->props.mode != XFRM_MODE_TRANSPORT &&
x->props.mode != XFRM_MODE_TUNNEL)
goto drop;
dlen = cn10k_ipsec_get_ip_data_len(x, skb);
if (dlen == 0 && netif_msg_tx_err(pf)) {
netdev_err(pf->netdev, "Invalid IP header, ip-length zero\n");
goto drop;
}
/* Check for valid SA context */
sa_info = (struct qmem *)x->xso.offload_handle;
if (!sa_info)
goto drop;
memset(&inst, 0, sizeof(struct cpt_inst_s));
/* Get authentication offset */
if (x->props.family == AF_INET)
auth_offset = sizeof(struct iphdr);
else
auth_offset = sizeof(struct ipv6hdr);
/* IV offset is after ESP header */
iv_offset = auth_offset + sizeof(struct ip_esp_hdr);
/* Encap will start after IV */
encap_offset = iv_offset + GCM_RFC4106_IV_SIZE;
/* CPT Instruction word-1 */
res = (struct cpt_res_s *)(sq->cpt_resp->base + (64 * sq->head));
res->compcode = 0;
inst.res_addr = sq->cpt_resp->iova + (64 * sq->head);
/* CPT Instruction word-2 */
inst.rvu_pf_func = pf->pcifunc;
/* CPT Instruction word-3:
* Set QORD to force CPT_RES_S write completion
*/
inst.qord = 1;
/* CPT Instruction word-4 */
/* inst.dlen should not include ICV length */
inst.dlen = dlen + ETH_HLEN - (x->aead->alg_icv_len / 8);
inst.opcode_major = CN10K_IPSEC_MAJOR_OP_OUTB_IPSEC;
inst.param1 = cn10k_ipsec_get_param1(iv_offset);
inst.param2 = encap_offset <<
CN10K_IPSEC_INST_PARAM2_ENC_DATA_OFFSET_SHIFT;
inst.param2 |= (u16)auth_offset <<
CN10K_IPSEC_INST_PARAM2_AUTH_DATA_OFFSET_SHIFT;
/* CPT Instruction word-5 */
gthr_size = num_segs / MAX_SEGS_PER_SG;
gthr_size = (num_segs % MAX_SEGS_PER_SG) ? gthr_size + 1 : gthr_size;
gthr_size &= 0xF;
dptr_iova = (sq->sqe_ring->iova + (sq->head * (sq->sqe_size * 2)));
inst.dptr = dptr_iova | ((u64)gthr_size << 60);
/* CPT Instruction word-6 */
inst.rptr = inst.dptr;
/* CPT Instruction word-7 */
inst.cptr = sa_info->iova;
inst.ctx_val = 1;
inst.egrp = CN10K_DEF_CPT_IPSEC_EGRP;
/* CPT Instruction word-0 */
inst.nixtxl = (size / 16) - 1;
inst.dat_offset = ETH_HLEN;
inst.nixtx_offset = sq->sqe_size;
netdev_tx_sent_queue(txq, skb->len);
/* Finally Flush the CPT instruction */
sq->head++;
sq->head &= (sq->sqe_cnt - 1);
cn10k_cpt_inst_flush(pf, &inst, sizeof(struct cpt_inst_s));
return true;
drop:
dev_kfree_skb_any(skb);
return false;
}