2550 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2550 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
 | |
| 
 | |
| /*
 | |
|  * BTF-to-C type converter.
 | |
|  *
 | |
|  * Copyright (c) 2019 Facebook
 | |
|  */
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <endian.h>
 | |
| #include <errno.h>
 | |
| #include <limits.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/btf.h>
 | |
| #include <linux/kernel.h>
 | |
| #include "btf.h"
 | |
| #include "hashmap.h"
 | |
| #include "libbpf.h"
 | |
| #include "libbpf_internal.h"
 | |
| 
 | |
| static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
 | |
| static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
 | |
| 
 | |
| static const char *pfx(int lvl)
 | |
| {
 | |
| 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
 | |
| }
 | |
| 
 | |
| enum btf_dump_type_order_state {
 | |
| 	NOT_ORDERED,
 | |
| 	ORDERING,
 | |
| 	ORDERED,
 | |
| };
 | |
| 
 | |
| enum btf_dump_type_emit_state {
 | |
| 	NOT_EMITTED,
 | |
| 	EMITTING,
 | |
| 	EMITTED,
 | |
| };
 | |
| 
 | |
| /* per-type auxiliary state */
 | |
| struct btf_dump_type_aux_state {
 | |
| 	/* topological sorting state */
 | |
| 	enum btf_dump_type_order_state order_state: 2;
 | |
| 	/* emitting state used to determine the need for forward declaration */
 | |
| 	enum btf_dump_type_emit_state emit_state: 2;
 | |
| 	/* whether forward declaration was already emitted */
 | |
| 	__u8 fwd_emitted: 1;
 | |
| 	/* whether unique non-duplicate name was already assigned */
 | |
| 	__u8 name_resolved: 1;
 | |
| 	/* whether type is referenced from any other type */
 | |
| 	__u8 referenced: 1;
 | |
| };
 | |
| 
 | |
| /* indent string length; one indent string is added for each indent level */
 | |
| #define BTF_DATA_INDENT_STR_LEN			32
 | |
| 
 | |
| /*
 | |
|  * Common internal data for BTF type data dump operations.
 | |
|  */
 | |
| struct btf_dump_data {
 | |
| 	const void *data_end;		/* end of valid data to show */
 | |
| 	bool compact;
 | |
| 	bool skip_names;
 | |
| 	bool emit_zeroes;
 | |
| 	__u8 indent_lvl;	/* base indent level */
 | |
| 	char indent_str[BTF_DATA_INDENT_STR_LEN];
 | |
| 	/* below are used during iteration */
 | |
| 	int depth;
 | |
| 	bool is_array_member;
 | |
| 	bool is_array_terminated;
 | |
| 	bool is_array_char;
 | |
| };
 | |
| 
 | |
| struct btf_dump {
 | |
| 	const struct btf *btf;
 | |
| 	btf_dump_printf_fn_t printf_fn;
 | |
| 	void *cb_ctx;
 | |
| 	int ptr_sz;
 | |
| 	bool strip_mods;
 | |
| 	bool skip_anon_defs;
 | |
| 	int last_id;
 | |
| 
 | |
| 	/* per-type auxiliary state */
 | |
| 	struct btf_dump_type_aux_state *type_states;
 | |
| 	size_t type_states_cap;
 | |
| 	/* per-type optional cached unique name, must be freed, if present */
 | |
| 	const char **cached_names;
 | |
| 	size_t cached_names_cap;
 | |
| 
 | |
| 	/* topo-sorted list of dependent type definitions */
 | |
| 	__u32 *emit_queue;
 | |
| 	int emit_queue_cap;
 | |
| 	int emit_queue_cnt;
 | |
| 
 | |
| 	/*
 | |
| 	 * stack of type declarations (e.g., chain of modifiers, arrays,
 | |
| 	 * funcs, etc)
 | |
| 	 */
 | |
| 	__u32 *decl_stack;
 | |
| 	int decl_stack_cap;
 | |
| 	int decl_stack_cnt;
 | |
| 
 | |
| 	/* maps struct/union/enum name to a number of name occurrences */
 | |
| 	struct hashmap *type_names;
 | |
| 	/*
 | |
| 	 * maps typedef identifiers and enum value names to a number of such
 | |
| 	 * name occurrences
 | |
| 	 */
 | |
| 	struct hashmap *ident_names;
 | |
| 	/*
 | |
| 	 * data for typed display; allocated if needed.
 | |
| 	 */
 | |
| 	struct btf_dump_data *typed_dump;
 | |
| };
 | |
| 
 | |
| static size_t str_hash_fn(long key, void *ctx)
 | |
| {
 | |
| 	return str_hash((void *)key);
 | |
| }
 | |
| 
 | |
| static bool str_equal_fn(long a, long b, void *ctx)
 | |
| {
 | |
| 	return strcmp((void *)a, (void *)b) == 0;
 | |
| }
 | |
| 
 | |
| static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 | |
| {
 | |
| 	return btf__name_by_offset(d->btf, name_off);
 | |
| }
 | |
| 
 | |
| static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	d->printf_fn(d->cb_ctx, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| static int btf_dump_mark_referenced(struct btf_dump *d);
 | |
| static int btf_dump_resize(struct btf_dump *d);
 | |
| 
 | |
| struct btf_dump *btf_dump__new(const struct btf *btf,
 | |
| 			       btf_dump_printf_fn_t printf_fn,
 | |
| 			       void *ctx,
 | |
| 			       const struct btf_dump_opts *opts)
 | |
| {
 | |
| 	struct btf_dump *d;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!OPTS_VALID(opts, btf_dump_opts))
 | |
| 		return libbpf_err_ptr(-EINVAL);
 | |
| 
 | |
| 	if (!printf_fn)
 | |
| 		return libbpf_err_ptr(-EINVAL);
 | |
| 
 | |
| 	d = calloc(1, sizeof(struct btf_dump));
 | |
| 	if (!d)
 | |
| 		return libbpf_err_ptr(-ENOMEM);
 | |
| 
 | |
| 	d->btf = btf;
 | |
| 	d->printf_fn = printf_fn;
 | |
| 	d->cb_ctx = ctx;
 | |
| 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
 | |
| 
 | |
| 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 | |
| 	if (IS_ERR(d->type_names)) {
 | |
| 		err = PTR_ERR(d->type_names);
 | |
| 		d->type_names = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 | |
| 	if (IS_ERR(d->ident_names)) {
 | |
| 		err = PTR_ERR(d->ident_names);
 | |
| 		d->ident_names = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	err = btf_dump_resize(d);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	return d;
 | |
| err:
 | |
| 	btf_dump__free(d);
 | |
| 	return libbpf_err_ptr(err);
 | |
| }
 | |
| 
 | |
| static int btf_dump_resize(struct btf_dump *d)
 | |
| {
 | |
| 	int err, last_id = btf__type_cnt(d->btf) - 1;
 | |
| 
 | |
| 	if (last_id <= d->last_id)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
 | |
| 			      sizeof(*d->type_states), last_id + 1))
 | |
| 		return -ENOMEM;
 | |
| 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
 | |
| 			      sizeof(*d->cached_names), last_id + 1))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (d->last_id == 0) {
 | |
| 		/* VOID is special */
 | |
| 		d->type_states[0].order_state = ORDERED;
 | |
| 		d->type_states[0].emit_state = EMITTED;
 | |
| 	}
 | |
| 
 | |
| 	/* eagerly determine referenced types for anon enums */
 | |
| 	err = btf_dump_mark_referenced(d);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	d->last_id = last_id;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_dump_free_names(struct hashmap *map)
 | |
| {
 | |
| 	size_t bkt;
 | |
| 	struct hashmap_entry *cur;
 | |
| 
 | |
| 	hashmap__for_each_entry(map, cur, bkt)
 | |
| 		free((void *)cur->pkey);
 | |
| 
 | |
| 	hashmap__free(map);
 | |
| }
 | |
| 
 | |
| void btf_dump__free(struct btf_dump *d)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (IS_ERR_OR_NULL(d))
 | |
| 		return;
 | |
| 
 | |
| 	free(d->type_states);
 | |
| 	if (d->cached_names) {
 | |
| 		/* any set cached name is owned by us and should be freed */
 | |
| 		for (i = 0; i <= d->last_id; i++) {
 | |
| 			if (d->cached_names[i])
 | |
| 				free((void *)d->cached_names[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	free(d->cached_names);
 | |
| 	free(d->emit_queue);
 | |
| 	free(d->decl_stack);
 | |
| 	btf_dump_free_names(d->type_names);
 | |
| 	btf_dump_free_names(d->ident_names);
 | |
| 
 | |
| 	free(d);
 | |
| }
 | |
| 
 | |
| static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 | |
| static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 | |
| 
 | |
| /*
 | |
|  * Dump BTF type in a compilable C syntax, including all the necessary
 | |
|  * dependent types, necessary for compilation. If some of the dependent types
 | |
|  * were already emitted as part of previous btf_dump__dump_type() invocation
 | |
|  * for another type, they won't be emitted again. This API allows callers to
 | |
|  * filter out BTF types according to user-defined criterias and emitted only
 | |
|  * minimal subset of types, necessary to compile everything. Full struct/union
 | |
|  * definitions will still be emitted, even if the only usage is through
 | |
|  * pointer and could be satisfied with just a forward declaration.
 | |
|  *
 | |
|  * Dumping is done in two high-level passes:
 | |
|  *   1. Topologically sort type definitions to satisfy C rules of compilation.
 | |
|  *   2. Emit type definitions in C syntax.
 | |
|  *
 | |
|  * Returns 0 on success; <0, otherwise.
 | |
|  */
 | |
| int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	int err, i;
 | |
| 
 | |
| 	if (id >= btf__type_cnt(d->btf))
 | |
| 		return libbpf_err(-EINVAL);
 | |
| 
 | |
| 	err = btf_dump_resize(d);
 | |
| 	if (err)
 | |
| 		return libbpf_err(err);
 | |
| 
 | |
| 	d->emit_queue_cnt = 0;
 | |
| 	err = btf_dump_order_type(d, id, false);
 | |
| 	if (err < 0)
 | |
| 		return libbpf_err(err);
 | |
| 
 | |
| 	for (i = 0; i < d->emit_queue_cnt; i++)
 | |
| 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all types that are referenced from any other type. This is used to
 | |
|  * determine top-level anonymous enums that need to be emitted as an
 | |
|  * independent type declarations.
 | |
|  * Anonymous enums come in two flavors: either embedded in a struct's field
 | |
|  * definition, in which case they have to be declared inline as part of field
 | |
|  * type declaration; or as a top-level anonymous enum, typically used for
 | |
|  * declaring global constants. It's impossible to distinguish between two
 | |
|  * without knowing whether given enum type was referenced from other type:
 | |
|  * top-level anonymous enum won't be referenced by anything, while embedded
 | |
|  * one will.
 | |
|  */
 | |
| static int btf_dump_mark_referenced(struct btf_dump *d)
 | |
| {
 | |
| 	int i, j, n = btf__type_cnt(d->btf);
 | |
| 	const struct btf_type *t;
 | |
| 	__u16 vlen;
 | |
| 
 | |
| 	for (i = d->last_id + 1; i < n; i++) {
 | |
| 		t = btf__type_by_id(d->btf, i);
 | |
| 		vlen = btf_vlen(t);
 | |
| 
 | |
| 		switch (btf_kind(t)) {
 | |
| 		case BTF_KIND_INT:
 | |
| 		case BTF_KIND_ENUM:
 | |
| 		case BTF_KIND_ENUM64:
 | |
| 		case BTF_KIND_FWD:
 | |
| 		case BTF_KIND_FLOAT:
 | |
| 			break;
 | |
| 
 | |
| 		case BTF_KIND_VOLATILE:
 | |
| 		case BTF_KIND_CONST:
 | |
| 		case BTF_KIND_RESTRICT:
 | |
| 		case BTF_KIND_PTR:
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 		case BTF_KIND_FUNC:
 | |
| 		case BTF_KIND_VAR:
 | |
| 		case BTF_KIND_DECL_TAG:
 | |
| 		case BTF_KIND_TYPE_TAG:
 | |
| 			d->type_states[t->type].referenced = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case BTF_KIND_ARRAY: {
 | |
| 			const struct btf_array *a = btf_array(t);
 | |
| 
 | |
| 			d->type_states[a->index_type].referenced = 1;
 | |
| 			d->type_states[a->type].referenced = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTF_KIND_STRUCT:
 | |
| 		case BTF_KIND_UNION: {
 | |
| 			const struct btf_member *m = btf_members(t);
 | |
| 
 | |
| 			for (j = 0; j < vlen; j++, m++)
 | |
| 				d->type_states[m->type].referenced = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTF_KIND_FUNC_PROTO: {
 | |
| 			const struct btf_param *p = btf_params(t);
 | |
| 
 | |
| 			for (j = 0; j < vlen; j++, p++)
 | |
| 				d->type_states[p->type].referenced = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTF_KIND_DATASEC: {
 | |
| 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
 | |
| 
 | |
| 			for (j = 0; j < vlen; j++, v++)
 | |
| 				d->type_states[v->type].referenced = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	__u32 *new_queue;
 | |
| 	size_t new_cap;
 | |
| 
 | |
| 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
 | |
| 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
 | |
| 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
 | |
| 		if (!new_queue)
 | |
| 			return -ENOMEM;
 | |
| 		d->emit_queue = new_queue;
 | |
| 		d->emit_queue_cap = new_cap;
 | |
| 	}
 | |
| 
 | |
| 	d->emit_queue[d->emit_queue_cnt++] = id;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine order of emitting dependent types and specified type to satisfy
 | |
|  * C compilation rules.  This is done through topological sorting with an
 | |
|  * additional complication which comes from C rules. The main idea for C is
 | |
|  * that if some type is "embedded" into a struct/union, it's size needs to be
 | |
|  * known at the time of definition of containing type. E.g., for:
 | |
|  *
 | |
|  *	struct A {};
 | |
|  *	struct B { struct A x; }
 | |
|  *
 | |
|  * struct A *HAS* to be defined before struct B, because it's "embedded",
 | |
|  * i.e., it is part of struct B layout. But in the following case:
 | |
|  *
 | |
|  *	struct A;
 | |
|  *	struct B { struct A *x; }
 | |
|  *	struct A {};
 | |
|  *
 | |
|  * it's enough to just have a forward declaration of struct A at the time of
 | |
|  * struct B definition, as struct B has a pointer to struct A, so the size of
 | |
|  * field x is known without knowing struct A size: it's sizeof(void *).
 | |
|  *
 | |
|  * Unfortunately, there are some trickier cases we need to handle, e.g.:
 | |
|  *
 | |
|  *	struct A {}; // if this was forward-declaration: compilation error
 | |
|  *	struct B {
 | |
|  *		struct { // anonymous struct
 | |
|  *			struct A y;
 | |
|  *		} *x;
 | |
|  *	};
 | |
|  *
 | |
|  * In this case, struct B's field x is a pointer, so it's size is known
 | |
|  * regardless of the size of (anonymous) struct it points to. But because this
 | |
|  * struct is anonymous and thus defined inline inside struct B, *and* it
 | |
|  * embeds struct A, compiler requires full definition of struct A to be known
 | |
|  * before struct B can be defined. This creates a transitive dependency
 | |
|  * between struct A and struct B. If struct A was forward-declared before
 | |
|  * struct B definition and fully defined after struct B definition, that would
 | |
|  * trigger compilation error.
 | |
|  *
 | |
|  * All this means that while we are doing topological sorting on BTF type
 | |
|  * graph, we need to determine relationships between different types (graph
 | |
|  * nodes):
 | |
|  *   - weak link (relationship) between X and Y, if Y *CAN* be
 | |
|  *   forward-declared at the point of X definition;
 | |
|  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 | |
|  *
 | |
|  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 | |
|  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 | |
|  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 | |
|  * Weak/strong relationship is determined recursively during DFS traversal and
 | |
|  * is returned as a result from btf_dump_order_type().
 | |
|  *
 | |
|  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 | |
|  * but it is not guaranteeing that no extraneous forward declarations will be
 | |
|  * emitted.
 | |
|  *
 | |
|  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 | |
|  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 | |
|  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 | |
|  * entire graph path, so depending where from one came to that BTF type, it
 | |
|  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 | |
|  * once they are processed, there is no need to do it again, so they are
 | |
|  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 | |
|  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 | |
|  * in any case, once those are processed, no need to do it again, as the
 | |
|  * result won't change.
 | |
|  *
 | |
|  * Returns:
 | |
|  *   - 1, if type is part of strong link (so there is strong topological
 | |
|  *   ordering requirements);
 | |
|  *   - 0, if type is part of weak link (so can be satisfied through forward
 | |
|  *   declaration);
 | |
|  *   - <0, on error (e.g., unsatisfiable type loop detected).
 | |
|  */
 | |
| static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 | |
| {
 | |
| 	/*
 | |
| 	 * Order state is used to detect strong link cycles, but only for BTF
 | |
| 	 * kinds that are or could be an independent definition (i.e.,
 | |
| 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 | |
| 	 * func_protos, modifiers are just means to get to these definitions.
 | |
| 	 * Int/void don't need definitions, they are assumed to be always
 | |
| 	 * properly defined.  We also ignore datasec, var, and funcs for now.
 | |
| 	 * So for all non-defining kinds, we never even set ordering state,
 | |
| 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
 | |
| 	 * forms a strong link.
 | |
| 	 */
 | |
| 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 | |
| 	const struct btf_type *t;
 | |
| 	__u16 vlen;
 | |
| 	int err, i;
 | |
| 
 | |
| 	/* return true, letting typedefs know that it's ok to be emitted */
 | |
| 	if (tstate->order_state == ORDERED)
 | |
| 		return 1;
 | |
| 
 | |
| 	t = btf__type_by_id(d->btf, id);
 | |
| 
 | |
| 	if (tstate->order_state == ORDERING) {
 | |
| 		/* type loop, but resolvable through fwd declaration */
 | |
| 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 | |
| 			return 0;
 | |
| 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
 | |
| 		return -ELOOP;
 | |
| 	}
 | |
| 
 | |
| 	switch (btf_kind(t)) {
 | |
| 	case BTF_KIND_INT:
 | |
| 	case BTF_KIND_FLOAT:
 | |
| 		tstate->order_state = ORDERED;
 | |
| 		return 0;
 | |
| 
 | |
| 	case BTF_KIND_PTR:
 | |
| 		err = btf_dump_order_type(d, t->type, true);
 | |
| 		tstate->order_state = ORDERED;
 | |
| 		return err;
 | |
| 
 | |
| 	case BTF_KIND_ARRAY:
 | |
| 		return btf_dump_order_type(d, btf_array(t)->type, false);
 | |
| 
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION: {
 | |
| 		const struct btf_member *m = btf_members(t);
 | |
| 		/*
 | |
| 		 * struct/union is part of strong link, only if it's embedded
 | |
| 		 * (so no ptr in a path) or it's anonymous (so has to be
 | |
| 		 * defined inline, even if declared through ptr)
 | |
| 		 */
 | |
| 		if (through_ptr && t->name_off != 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		tstate->order_state = ORDERING;
 | |
| 
 | |
| 		vlen = btf_vlen(t);
 | |
| 		for (i = 0; i < vlen; i++, m++) {
 | |
| 			err = btf_dump_order_type(d, m->type, false);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		if (t->name_off != 0) {
 | |
| 			err = btf_dump_add_emit_queue_id(d, id);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		tstate->order_state = ORDERED;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 	case BTF_KIND_FWD:
 | |
| 		/*
 | |
| 		 * non-anonymous or non-referenced enums are top-level
 | |
| 		 * declarations and should be emitted. Same logic can be
 | |
| 		 * applied to FWDs, it won't hurt anyways.
 | |
| 		 */
 | |
| 		if (t->name_off != 0 || !tstate->referenced) {
 | |
| 			err = btf_dump_add_emit_queue_id(d, id);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		tstate->order_state = ORDERED;
 | |
| 		return 1;
 | |
| 
 | |
| 	case BTF_KIND_TYPEDEF: {
 | |
| 		int is_strong;
 | |
| 
 | |
| 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
 | |
| 		if (is_strong < 0)
 | |
| 			return is_strong;
 | |
| 
 | |
| 		/* typedef is similar to struct/union w.r.t. fwd-decls */
 | |
| 		if (through_ptr && !is_strong)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* typedef is always a named definition */
 | |
| 		err = btf_dump_add_emit_queue_id(d, id);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		d->type_states[id].order_state = ORDERED;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	case BTF_KIND_VOLATILE:
 | |
| 	case BTF_KIND_CONST:
 | |
| 	case BTF_KIND_RESTRICT:
 | |
| 	case BTF_KIND_TYPE_TAG:
 | |
| 		return btf_dump_order_type(d, t->type, through_ptr);
 | |
| 
 | |
| 	case BTF_KIND_FUNC_PROTO: {
 | |
| 		const struct btf_param *p = btf_params(t);
 | |
| 		bool is_strong;
 | |
| 
 | |
| 		err = btf_dump_order_type(d, t->type, through_ptr);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		is_strong = err > 0;
 | |
| 
 | |
| 		vlen = btf_vlen(t);
 | |
| 		for (i = 0; i < vlen; i++, p++) {
 | |
| 			err = btf_dump_order_type(d, p->type, through_ptr);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err > 0)
 | |
| 				is_strong = true;
 | |
| 		}
 | |
| 		return is_strong;
 | |
| 	}
 | |
| 	case BTF_KIND_FUNC:
 | |
| 	case BTF_KIND_VAR:
 | |
| 	case BTF_KIND_DATASEC:
 | |
| 	case BTF_KIND_DECL_TAG:
 | |
| 		d->type_states[id].order_state = ORDERED;
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 | |
| 					  const struct btf_type *t);
 | |
| 
 | |
| static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 | |
| 				     const struct btf_type *t);
 | |
| static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 | |
| 				     const struct btf_type *t, int lvl);
 | |
| 
 | |
| static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 | |
| 				   const struct btf_type *t);
 | |
| static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 | |
| 				   const struct btf_type *t, int lvl);
 | |
| 
 | |
| static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 | |
| 				  const struct btf_type *t);
 | |
| 
 | |
| static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 | |
| 				      const struct btf_type *t, int lvl);
 | |
| 
 | |
| /* a local view into a shared stack */
 | |
| struct id_stack {
 | |
| 	const __u32 *ids;
 | |
| 	int cnt;
 | |
| };
 | |
| 
 | |
| static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 | |
| 				    const char *fname, int lvl);
 | |
| static void btf_dump_emit_type_chain(struct btf_dump *d,
 | |
| 				     struct id_stack *decl_stack,
 | |
| 				     const char *fname, int lvl);
 | |
| 
 | |
| static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 | |
| static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 | |
| static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 | |
| 				 const char *orig_name);
 | |
| 
 | |
| static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	const struct btf_type *t = btf__type_by_id(d->btf, id);
 | |
| 
 | |
| 	/* __builtin_va_list is a compiler built-in, which causes compilation
 | |
| 	 * errors, when compiling w/ different compiler, then used to compile
 | |
| 	 * original code (e.g., GCC to compile kernel, Clang to use generated
 | |
| 	 * C header from BTF). As it is built-in, it should be already defined
 | |
| 	 * properly internally in compiler.
 | |
| 	 */
 | |
| 	if (t->name_off == 0)
 | |
| 		return false;
 | |
| 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emit C-syntax definitions of types from chains of BTF types.
 | |
|  *
 | |
|  * High-level handling of determining necessary forward declarations are handled
 | |
|  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 | |
|  * declarations/definitions in C syntax  are handled by a combo of
 | |
|  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 | |
|  * corresponding btf_dump_emit_*_{def,fwd}() functions.
 | |
|  *
 | |
|  * We also keep track of "containing struct/union type ID" to determine when
 | |
|  * we reference it from inside and thus can avoid emitting unnecessary forward
 | |
|  * declaration.
 | |
|  *
 | |
|  * This algorithm is designed in such a way, that even if some error occurs
 | |
|  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 | |
|  * that doesn't comply to C rules completely), algorithm will try to proceed
 | |
|  * and produce as much meaningful output as possible.
 | |
|  */
 | |
| static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 | |
| {
 | |
| 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 | |
| 	bool top_level_def = cont_id == 0;
 | |
| 	const struct btf_type *t;
 | |
| 	__u16 kind;
 | |
| 
 | |
| 	if (tstate->emit_state == EMITTED)
 | |
| 		return;
 | |
| 
 | |
| 	t = btf__type_by_id(d->btf, id);
 | |
| 	kind = btf_kind(t);
 | |
| 
 | |
| 	if (tstate->emit_state == EMITTING) {
 | |
| 		if (tstate->fwd_emitted)
 | |
| 			return;
 | |
| 
 | |
| 		switch (kind) {
 | |
| 		case BTF_KIND_STRUCT:
 | |
| 		case BTF_KIND_UNION:
 | |
| 			/*
 | |
| 			 * if we are referencing a struct/union that we are
 | |
| 			 * part of - then no need for fwd declaration
 | |
| 			 */
 | |
| 			if (id == cont_id)
 | |
| 				return;
 | |
| 			if (t->name_off == 0) {
 | |
| 				pr_warn("anonymous struct/union loop, id:[%u]\n",
 | |
| 					id);
 | |
| 				return;
 | |
| 			}
 | |
| 			btf_dump_emit_struct_fwd(d, id, t);
 | |
| 			btf_dump_printf(d, ";\n\n");
 | |
| 			tstate->fwd_emitted = 1;
 | |
| 			break;
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 			/*
 | |
| 			 * for typedef fwd_emitted means typedef definition
 | |
| 			 * was emitted, but it can be used only for "weak"
 | |
| 			 * references through pointer only, not for embedding
 | |
| 			 */
 | |
| 			if (!btf_dump_is_blacklisted(d, id)) {
 | |
| 				btf_dump_emit_typedef_def(d, id, t, 0);
 | |
| 				btf_dump_printf(d, ";\n\n");
 | |
| 			}
 | |
| 			tstate->fwd_emitted = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (kind) {
 | |
| 	case BTF_KIND_INT:
 | |
| 		/* Emit type alias definitions if necessary */
 | |
| 		btf_dump_emit_missing_aliases(d, id, t);
 | |
| 
 | |
| 		tstate->emit_state = EMITTED;
 | |
| 		break;
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		if (top_level_def) {
 | |
| 			btf_dump_emit_enum_def(d, id, t, 0);
 | |
| 			btf_dump_printf(d, ";\n\n");
 | |
| 		}
 | |
| 		tstate->emit_state = EMITTED;
 | |
| 		break;
 | |
| 	case BTF_KIND_PTR:
 | |
| 	case BTF_KIND_VOLATILE:
 | |
| 	case BTF_KIND_CONST:
 | |
| 	case BTF_KIND_RESTRICT:
 | |
| 	case BTF_KIND_TYPE_TAG:
 | |
| 		btf_dump_emit_type(d, t->type, cont_id);
 | |
| 		break;
 | |
| 	case BTF_KIND_ARRAY:
 | |
| 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 | |
| 		break;
 | |
| 	case BTF_KIND_FWD:
 | |
| 		btf_dump_emit_fwd_def(d, id, t);
 | |
| 		btf_dump_printf(d, ";\n\n");
 | |
| 		tstate->emit_state = EMITTED;
 | |
| 		break;
 | |
| 	case BTF_KIND_TYPEDEF:
 | |
| 		tstate->emit_state = EMITTING;
 | |
| 		btf_dump_emit_type(d, t->type, id);
 | |
| 		/*
 | |
| 		 * typedef can server as both definition and forward
 | |
| 		 * declaration; at this stage someone depends on
 | |
| 		 * typedef as a forward declaration (refers to it
 | |
| 		 * through pointer), so unless we already did it,
 | |
| 		 * emit typedef as a forward declaration
 | |
| 		 */
 | |
| 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 | |
| 			btf_dump_emit_typedef_def(d, id, t, 0);
 | |
| 			btf_dump_printf(d, ";\n\n");
 | |
| 		}
 | |
| 		tstate->emit_state = EMITTED;
 | |
| 		break;
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION:
 | |
| 		tstate->emit_state = EMITTING;
 | |
| 		/* if it's a top-level struct/union definition or struct/union
 | |
| 		 * is anonymous, then in C we'll be emitting all fields and
 | |
| 		 * their types (as opposed to just `struct X`), so we need to
 | |
| 		 * make sure that all types, referenced from struct/union
 | |
| 		 * members have necessary forward-declarations, where
 | |
| 		 * applicable
 | |
| 		 */
 | |
| 		if (top_level_def || t->name_off == 0) {
 | |
| 			const struct btf_member *m = btf_members(t);
 | |
| 			__u16 vlen = btf_vlen(t);
 | |
| 			int i, new_cont_id;
 | |
| 
 | |
| 			new_cont_id = t->name_off == 0 ? cont_id : id;
 | |
| 			for (i = 0; i < vlen; i++, m++)
 | |
| 				btf_dump_emit_type(d, m->type, new_cont_id);
 | |
| 		} else if (!tstate->fwd_emitted && id != cont_id) {
 | |
| 			btf_dump_emit_struct_fwd(d, id, t);
 | |
| 			btf_dump_printf(d, ";\n\n");
 | |
| 			tstate->fwd_emitted = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (top_level_def) {
 | |
| 			btf_dump_emit_struct_def(d, id, t, 0);
 | |
| 			btf_dump_printf(d, ";\n\n");
 | |
| 			tstate->emit_state = EMITTED;
 | |
| 		} else {
 | |
| 			tstate->emit_state = NOT_EMITTED;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BTF_KIND_FUNC_PROTO: {
 | |
| 		const struct btf_param *p = btf_params(t);
 | |
| 		__u16 n = btf_vlen(t);
 | |
| 		int i;
 | |
| 
 | |
| 		btf_dump_emit_type(d, t->type, cont_id);
 | |
| 		for (i = 0; i < n; i++, p++)
 | |
| 			btf_dump_emit_type(d, p->type, cont_id);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 | |
| 				 const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_member *m;
 | |
| 	int max_align = 1, align, i, bit_sz;
 | |
| 	__u16 vlen;
 | |
| 
 | |
| 	m = btf_members(t);
 | |
| 	vlen = btf_vlen(t);
 | |
| 	/* all non-bitfield fields have to be naturally aligned */
 | |
| 	for (i = 0; i < vlen; i++, m++) {
 | |
| 		align = btf__align_of(btf, m->type);
 | |
| 		bit_sz = btf_member_bitfield_size(t, i);
 | |
| 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
 | |
| 			return true;
 | |
| 		max_align = max(align, max_align);
 | |
| 	}
 | |
| 	/* size of a non-packed struct has to be a multiple of its alignment */
 | |
| 	if (t->size % max_align != 0)
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * if original struct was marked as packed, but its layout is
 | |
| 	 * naturally aligned, we'll detect that it's not packed
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 | |
| 				      int cur_off, int next_off, int next_align,
 | |
| 				      bool in_bitfield, int lvl)
 | |
| {
 | |
| 	const struct {
 | |
| 		const char *name;
 | |
| 		int bits;
 | |
| 	} pads[] = {
 | |
| 		{"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
 | |
| 	};
 | |
| 	int new_off, pad_bits, bits, i;
 | |
| 	const char *pad_type;
 | |
| 
 | |
| 	if (cur_off >= next_off)
 | |
| 		return; /* no gap */
 | |
| 
 | |
| 	/* For filling out padding we want to take advantage of
 | |
| 	 * natural alignment rules to minimize unnecessary explicit
 | |
| 	 * padding. First, we find the largest type (among long, int,
 | |
| 	 * short, or char) that can be used to force naturally aligned
 | |
| 	 * boundary. Once determined, we'll use such type to fill in
 | |
| 	 * the remaining padding gap. In some cases we can rely on
 | |
| 	 * compiler filling some gaps, but sometimes we need to force
 | |
| 	 * alignment to close natural alignment with markers like
 | |
| 	 * `long: 0` (this is always the case for bitfields).  Note
 | |
| 	 * that even if struct itself has, let's say 4-byte alignment
 | |
| 	 * (i.e., it only uses up to int-aligned types), using `long:
 | |
| 	 * X;` explicit padding doesn't actually change struct's
 | |
| 	 * overall alignment requirements, but compiler does take into
 | |
| 	 * account that type's (long, in this example) natural
 | |
| 	 * alignment requirements when adding implicit padding. We use
 | |
| 	 * this fact heavily and don't worry about ruining correct
 | |
| 	 * struct alignment requirement.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(pads); i++) {
 | |
| 		pad_bits = pads[i].bits;
 | |
| 		pad_type = pads[i].name;
 | |
| 
 | |
| 		new_off = roundup(cur_off, pad_bits);
 | |
| 		if (new_off <= next_off)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (new_off > cur_off && new_off <= next_off) {
 | |
| 		/* We need explicit `<type>: 0` aligning mark if next
 | |
| 		 * field is right on alignment offset and its
 | |
| 		 * alignment requirement is less strict than <type>'s
 | |
| 		 * alignment (so compiler won't naturally align to the
 | |
| 		 * offset we expect), or if subsequent `<type>: X`,
 | |
| 		 * will actually completely fit in the remaining hole,
 | |
| 		 * making compiler basically ignore `<type>: X`
 | |
| 		 * completely.
 | |
| 		 */
 | |
| 		if (in_bitfield ||
 | |
| 		    (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
 | |
| 		    (new_off != next_off && next_off - new_off <= new_off - cur_off))
 | |
| 			/* but for bitfields we'll emit explicit bit count */
 | |
| 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
 | |
| 					in_bitfield ? new_off - cur_off : 0);
 | |
| 		cur_off = new_off;
 | |
| 	}
 | |
| 
 | |
| 	/* Now we know we start at naturally aligned offset for a chosen
 | |
| 	 * padding type (long, int, short, or char), and so the rest is just
 | |
| 	 * a straightforward filling of remaining padding gap with full
 | |
| 	 * `<type>: sizeof(<type>);` markers, except for the last one, which
 | |
| 	 * might need smaller than sizeof(<type>) padding.
 | |
| 	 */
 | |
| 	while (cur_off != next_off) {
 | |
| 		bits = min(next_off - cur_off, pad_bits);
 | |
| 		if (bits == pad_bits) {
 | |
| 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 | |
| 			cur_off += bits;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* For the remainder padding that doesn't cover entire
 | |
| 		 * pad_type bit length, we pick the smallest necessary type.
 | |
| 		 * This is pure aesthetics, we could have just used `long`,
 | |
| 		 * but having smallest necessary one communicates better the
 | |
| 		 * scale of the padding gap.
 | |
| 		 */
 | |
| 		for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
 | |
| 			pad_type = pads[i].name;
 | |
| 			pad_bits = pads[i].bits;
 | |
| 			if (pad_bits < bits)
 | |
| 				continue;
 | |
| 
 | |
| 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
 | |
| 			cur_off += bits;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 | |
| 				     const struct btf_type *t)
 | |
| {
 | |
| 	btf_dump_printf(d, "%s%s%s",
 | |
| 			btf_is_struct(t) ? "struct" : "union",
 | |
| 			t->name_off ? " " : "",
 | |
| 			btf_dump_type_name(d, id));
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_struct_def(struct btf_dump *d,
 | |
| 				     __u32 id,
 | |
| 				     const struct btf_type *t,
 | |
| 				     int lvl)
 | |
| {
 | |
| 	const struct btf_member *m = btf_members(t);
 | |
| 	bool is_struct = btf_is_struct(t);
 | |
| 	bool packed, prev_bitfield = false;
 | |
| 	int align, i, off = 0;
 | |
| 	__u16 vlen = btf_vlen(t);
 | |
| 
 | |
| 	align = btf__align_of(d->btf, id);
 | |
| 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 | |
| 
 | |
| 	btf_dump_printf(d, "%s%s%s {",
 | |
| 			is_struct ? "struct" : "union",
 | |
| 			t->name_off ? " " : "",
 | |
| 			btf_dump_type_name(d, id));
 | |
| 
 | |
| 	for (i = 0; i < vlen; i++, m++) {
 | |
| 		const char *fname;
 | |
| 		int m_off, m_sz, m_align;
 | |
| 		bool in_bitfield;
 | |
| 
 | |
| 		fname = btf_name_of(d, m->name_off);
 | |
| 		m_sz = btf_member_bitfield_size(t, i);
 | |
| 		m_off = btf_member_bit_offset(t, i);
 | |
| 		m_align = packed ? 1 : btf__align_of(d->btf, m->type);
 | |
| 
 | |
| 		in_bitfield = prev_bitfield && m_sz != 0;
 | |
| 
 | |
| 		btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
 | |
| 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 | |
| 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 | |
| 
 | |
| 		if (m_sz) {
 | |
| 			btf_dump_printf(d, ": %d", m_sz);
 | |
| 			off = m_off + m_sz;
 | |
| 			prev_bitfield = true;
 | |
| 		} else {
 | |
| 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
 | |
| 			off = m_off + m_sz * 8;
 | |
| 			prev_bitfield = false;
 | |
| 		}
 | |
| 
 | |
| 		btf_dump_printf(d, ";");
 | |
| 	}
 | |
| 
 | |
| 	/* pad at the end, if necessary */
 | |
| 	if (is_struct)
 | |
| 		btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep `struct empty {}` on a single line,
 | |
| 	 * only print newline when there are regular or padding fields.
 | |
| 	 */
 | |
| 	if (vlen || t->size) {
 | |
| 		btf_dump_printf(d, "\n");
 | |
| 		btf_dump_printf(d, "%s}", pfx(lvl));
 | |
| 	} else {
 | |
| 		btf_dump_printf(d, "}");
 | |
| 	}
 | |
| 	if (packed)
 | |
| 		btf_dump_printf(d, " __attribute__((packed))");
 | |
| }
 | |
| 
 | |
| static const char *missing_base_types[][2] = {
 | |
| 	/*
 | |
| 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
 | |
| 	 * SIMD intrinsics. Alias them to standard base types.
 | |
| 	 */
 | |
| 	{ "__Poly8_t",		"unsigned char" },
 | |
| 	{ "__Poly16_t",		"unsigned short" },
 | |
| 	{ "__Poly64_t",		"unsigned long long" },
 | |
| 	{ "__Poly128_t",	"unsigned __int128" },
 | |
| };
 | |
| 
 | |
| static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 | |
| 					  const struct btf_type *t)
 | |
| {
 | |
| 	const char *name = btf_dump_type_name(d, id);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
 | |
| 		if (strcmp(name, missing_base_types[i][0]) == 0) {
 | |
| 			btf_dump_printf(d, "typedef %s %s;\n\n",
 | |
| 					missing_base_types[i][1], name);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 | |
| 				   const struct btf_type *t)
 | |
| {
 | |
| 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_enum32_val(struct btf_dump *d,
 | |
| 				     const struct btf_type *t,
 | |
| 				     int lvl, __u16 vlen)
 | |
| {
 | |
| 	const struct btf_enum *v = btf_enum(t);
 | |
| 	bool is_signed = btf_kflag(t);
 | |
| 	const char *fmt_str;
 | |
| 	const char *name;
 | |
| 	size_t dup_cnt;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vlen; i++, v++) {
 | |
| 		name = btf_name_of(d, v->name_off);
 | |
| 		/* enumerators share namespace with typedef idents */
 | |
| 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 | |
| 		if (dup_cnt > 1) {
 | |
| 			fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
 | |
| 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
 | |
| 		} else {
 | |
| 			fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
 | |
| 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_enum64_val(struct btf_dump *d,
 | |
| 				     const struct btf_type *t,
 | |
| 				     int lvl, __u16 vlen)
 | |
| {
 | |
| 	const struct btf_enum64 *v = btf_enum64(t);
 | |
| 	bool is_signed = btf_kflag(t);
 | |
| 	const char *fmt_str;
 | |
| 	const char *name;
 | |
| 	size_t dup_cnt;
 | |
| 	__u64 val;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vlen; i++, v++) {
 | |
| 		name = btf_name_of(d, v->name_off);
 | |
| 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 | |
| 		val = btf_enum64_value(v);
 | |
| 		if (dup_cnt > 1) {
 | |
| 			fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
 | |
| 					    : "\n%s%s___%zd = %lluULL,";
 | |
| 			btf_dump_printf(d, fmt_str,
 | |
| 					pfx(lvl + 1), name, dup_cnt,
 | |
| 					(unsigned long long)val);
 | |
| 		} else {
 | |
| 			fmt_str = is_signed ? "\n%s%s = %lldLL,"
 | |
| 					    : "\n%s%s = %lluULL,";
 | |
| 			btf_dump_printf(d, fmt_str,
 | |
| 					pfx(lvl + 1), name,
 | |
| 					(unsigned long long)val);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 | |
| 				   const struct btf_type *t,
 | |
| 				   int lvl)
 | |
| {
 | |
| 	__u16 vlen = btf_vlen(t);
 | |
| 
 | |
| 	btf_dump_printf(d, "enum%s%s",
 | |
| 			t->name_off ? " " : "",
 | |
| 			btf_dump_type_name(d, id));
 | |
| 
 | |
| 	if (!vlen)
 | |
| 		return;
 | |
| 
 | |
| 	btf_dump_printf(d, " {");
 | |
| 	if (btf_is_enum(t))
 | |
| 		btf_dump_emit_enum32_val(d, t, lvl, vlen);
 | |
| 	else
 | |
| 		btf_dump_emit_enum64_val(d, t, lvl, vlen);
 | |
| 	btf_dump_printf(d, "\n%s}", pfx(lvl));
 | |
| 
 | |
| 	/* special case enums with special sizes */
 | |
| 	if (t->size == 1) {
 | |
| 		/* one-byte enums can be forced with mode(byte) attribute */
 | |
| 		btf_dump_printf(d, " __attribute__((mode(byte)))");
 | |
| 	} else if (t->size == 8 && d->ptr_sz == 8) {
 | |
| 		/* enum can be 8-byte sized if one of the enumerator values
 | |
| 		 * doesn't fit in 32-bit integer, or by adding mode(word)
 | |
| 		 * attribute (but probably only on 64-bit architectures); do
 | |
| 		 * our best here to try to satisfy the contract without adding
 | |
| 		 * unnecessary attributes
 | |
| 		 */
 | |
| 		bool needs_word_mode;
 | |
| 
 | |
| 		if (btf_is_enum(t)) {
 | |
| 			/* enum can't represent 64-bit values, so we need word mode */
 | |
| 			needs_word_mode = true;
 | |
| 		} else {
 | |
| 			/* enum64 needs mode(word) if none of its values has
 | |
| 			 * non-zero upper 32-bits (which means that all values
 | |
| 			 * fit in 32-bit integers and won't cause compiler to
 | |
| 			 * bump enum to be 64-bit naturally
 | |
| 			 */
 | |
| 			int i;
 | |
| 
 | |
| 			needs_word_mode = true;
 | |
| 			for (i = 0; i < vlen; i++) {
 | |
| 				if (btf_enum64(t)[i].val_hi32 != 0) {
 | |
| 					needs_word_mode = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (needs_word_mode)
 | |
| 			btf_dump_printf(d, " __attribute__((mode(word)))");
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 | |
| 				  const struct btf_type *t)
 | |
| {
 | |
| 	const char *name = btf_dump_type_name(d, id);
 | |
| 
 | |
| 	if (btf_kflag(t))
 | |
| 		btf_dump_printf(d, "union %s", name);
 | |
| 	else
 | |
| 		btf_dump_printf(d, "struct %s", name);
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 | |
| 				     const struct btf_type *t, int lvl)
 | |
| {
 | |
| 	const char *name = btf_dump_ident_name(d, id);
 | |
| 
 | |
| 	/*
 | |
| 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
 | |
| 	 * pointing to VOID. This generates warnings from btf_dump() and
 | |
| 	 * results in uncompilable header file, so we are fixing it up here
 | |
| 	 * with valid typedef into __builtin_va_list.
 | |
| 	 */
 | |
| 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
 | |
| 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	btf_dump_printf(d, "typedef ");
 | |
| 	btf_dump_emit_type_decl(d, t->type, name, lvl);
 | |
| }
 | |
| 
 | |
| static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	__u32 *new_stack;
 | |
| 	size_t new_cap;
 | |
| 
 | |
| 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
 | |
| 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
 | |
| 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
 | |
| 		if (!new_stack)
 | |
| 			return -ENOMEM;
 | |
| 		d->decl_stack = new_stack;
 | |
| 		d->decl_stack_cap = new_cap;
 | |
| 	}
 | |
| 
 | |
| 	d->decl_stack[d->decl_stack_cnt++] = id;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emit type declaration (e.g., field type declaration in a struct or argument
 | |
|  * declaration in function prototype) in correct C syntax.
 | |
|  *
 | |
|  * For most types it's trivial, but there are few quirky type declaration
 | |
|  * cases worth mentioning:
 | |
|  *   - function prototypes (especially nesting of function prototypes);
 | |
|  *   - arrays;
 | |
|  *   - const/volatile/restrict for pointers vs other types.
 | |
|  *
 | |
|  * For a good discussion of *PARSING* C syntax (as a human), see
 | |
|  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
 | |
|  * Ch.3 "Unscrambling Declarations in C".
 | |
|  *
 | |
|  * It won't help with BTF to C conversion much, though, as it's an opposite
 | |
|  * problem. So we came up with this algorithm in reverse to van der Linden's
 | |
|  * parsing algorithm. It goes from structured BTF representation of type
 | |
|  * declaration to a valid compilable C syntax.
 | |
|  *
 | |
|  * For instance, consider this C typedef:
 | |
|  *	typedef const int * const * arr[10] arr_t;
 | |
|  * It will be represented in BTF with this chain of BTF types:
 | |
|  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
 | |
|  *
 | |
|  * Notice how [const] modifier always goes before type it modifies in BTF type
 | |
|  * graph, but in C syntax, const/volatile/restrict modifiers are written to
 | |
|  * the right of pointers, but to the left of other types. There are also other
 | |
|  * quirks, like function pointers, arrays of them, functions returning other
 | |
|  * functions, etc.
 | |
|  *
 | |
|  * We handle that by pushing all the types to a stack, until we hit "terminal"
 | |
|  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
 | |
|  * top of a stack, modifiers are handled differently. Array/function pointers
 | |
|  * have also wildly different syntax and how nesting of them are done. See
 | |
|  * code for authoritative definition.
 | |
|  *
 | |
|  * To avoid allocating new stack for each independent chain of BTF types, we
 | |
|  * share one bigger stack, with each chain working only on its own local view
 | |
|  * of a stack frame. Some care is required to "pop" stack frames after
 | |
|  * processing type declaration chain.
 | |
|  */
 | |
| int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
 | |
| 			     const struct btf_dump_emit_type_decl_opts *opts)
 | |
| {
 | |
| 	const char *fname;
 | |
| 	int lvl, err;
 | |
| 
 | |
| 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
 | |
| 		return libbpf_err(-EINVAL);
 | |
| 
 | |
| 	err = btf_dump_resize(d);
 | |
| 	if (err)
 | |
| 		return libbpf_err(err);
 | |
| 
 | |
| 	fname = OPTS_GET(opts, field_name, "");
 | |
| 	lvl = OPTS_GET(opts, indent_level, 0);
 | |
| 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
 | |
| 	btf_dump_emit_type_decl(d, id, fname, lvl);
 | |
| 	d->strip_mods = false;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 | |
| 				    const char *fname, int lvl)
 | |
| {
 | |
| 	struct id_stack decl_stack;
 | |
| 	const struct btf_type *t;
 | |
| 	int err, stack_start;
 | |
| 
 | |
| 	stack_start = d->decl_stack_cnt;
 | |
| 	for (;;) {
 | |
| 		t = btf__type_by_id(d->btf, id);
 | |
| 		if (d->strip_mods && btf_is_mod(t))
 | |
| 			goto skip_mod;
 | |
| 
 | |
| 		err = btf_dump_push_decl_stack_id(d, id);
 | |
| 		if (err < 0) {
 | |
| 			/*
 | |
| 			 * if we don't have enough memory for entire type decl
 | |
| 			 * chain, restore stack, emit warning, and try to
 | |
| 			 * proceed nevertheless
 | |
| 			 */
 | |
| 			pr_warn("not enough memory for decl stack:%d", err);
 | |
| 			d->decl_stack_cnt = stack_start;
 | |
| 			return;
 | |
| 		}
 | |
| skip_mod:
 | |
| 		/* VOID */
 | |
| 		if (id == 0)
 | |
| 			break;
 | |
| 
 | |
| 		switch (btf_kind(t)) {
 | |
| 		case BTF_KIND_PTR:
 | |
| 		case BTF_KIND_VOLATILE:
 | |
| 		case BTF_KIND_CONST:
 | |
| 		case BTF_KIND_RESTRICT:
 | |
| 		case BTF_KIND_FUNC_PROTO:
 | |
| 		case BTF_KIND_TYPE_TAG:
 | |
| 			id = t->type;
 | |
| 			break;
 | |
| 		case BTF_KIND_ARRAY:
 | |
| 			id = btf_array(t)->type;
 | |
| 			break;
 | |
| 		case BTF_KIND_INT:
 | |
| 		case BTF_KIND_ENUM:
 | |
| 		case BTF_KIND_ENUM64:
 | |
| 		case BTF_KIND_FWD:
 | |
| 		case BTF_KIND_STRUCT:
 | |
| 		case BTF_KIND_UNION:
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 		case BTF_KIND_FLOAT:
 | |
| 			goto done;
 | |
| 		default:
 | |
| 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
 | |
| 				btf_kind(t), id);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	/*
 | |
| 	 * We might be inside a chain of declarations (e.g., array of function
 | |
| 	 * pointers returning anonymous (so inlined) structs, having another
 | |
| 	 * array field). Each of those needs its own "stack frame" to handle
 | |
| 	 * emitting of declarations. Those stack frames are non-overlapping
 | |
| 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
 | |
| 	 * handle this set of nested stacks, we create a view corresponding to
 | |
| 	 * our own "stack frame" and work with it as an independent stack.
 | |
| 	 * We'll need to clean up after emit_type_chain() returns, though.
 | |
| 	 */
 | |
| 	decl_stack.ids = d->decl_stack + stack_start;
 | |
| 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
 | |
| 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
 | |
| 	/*
 | |
| 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
 | |
| 	 * frame before returning. But it works with a read-only view into
 | |
| 	 * decl_stack, so it doesn't actually pop anything from the
 | |
| 	 * perspective of shared btf_dump->decl_stack, per se. We need to
 | |
| 	 * reset decl_stack state to how it was before us to avoid it growing
 | |
| 	 * all the time.
 | |
| 	 */
 | |
| 	d->decl_stack_cnt = stack_start;
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 	__u32 id;
 | |
| 
 | |
| 	while (decl_stack->cnt) {
 | |
| 		id = decl_stack->ids[decl_stack->cnt - 1];
 | |
| 		t = btf__type_by_id(d->btf, id);
 | |
| 
 | |
| 		switch (btf_kind(t)) {
 | |
| 		case BTF_KIND_VOLATILE:
 | |
| 			btf_dump_printf(d, "volatile ");
 | |
| 			break;
 | |
| 		case BTF_KIND_CONST:
 | |
| 			btf_dump_printf(d, "const ");
 | |
| 			break;
 | |
| 		case BTF_KIND_RESTRICT:
 | |
| 			btf_dump_printf(d, "restrict ");
 | |
| 			break;
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 		decl_stack->cnt--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 	__u32 id;
 | |
| 
 | |
| 	while (decl_stack->cnt) {
 | |
| 		id = decl_stack->ids[decl_stack->cnt - 1];
 | |
| 		t = btf__type_by_id(d->btf, id);
 | |
| 		if (!btf_is_mod(t))
 | |
| 			return;
 | |
| 		decl_stack->cnt--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_name(const struct btf_dump *d,
 | |
| 			       const char *name, bool last_was_ptr)
 | |
| {
 | |
| 	bool separate = name[0] && !last_was_ptr;
 | |
| 
 | |
| 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
 | |
| }
 | |
| 
 | |
| static void btf_dump_emit_type_chain(struct btf_dump *d,
 | |
| 				     struct id_stack *decls,
 | |
| 				     const char *fname, int lvl)
 | |
| {
 | |
| 	/*
 | |
| 	 * last_was_ptr is used to determine if we need to separate pointer
 | |
| 	 * asterisk (*) from previous part of type signature with space, so
 | |
| 	 * that we get `int ***`, instead of `int * * *`. We default to true
 | |
| 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
 | |
| 	 * func_proto case. func_proto will start a new emit_type_chain call
 | |
| 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
 | |
| 	 * don't want to prepend space for that last pointer.
 | |
| 	 */
 | |
| 	bool last_was_ptr = true;
 | |
| 	const struct btf_type *t;
 | |
| 	const char *name;
 | |
| 	__u16 kind;
 | |
| 	__u32 id;
 | |
| 
 | |
| 	while (decls->cnt) {
 | |
| 		id = decls->ids[--decls->cnt];
 | |
| 		if (id == 0) {
 | |
| 			/* VOID is a special snowflake */
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			btf_dump_printf(d, "void");
 | |
| 			last_was_ptr = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		t = btf__type_by_id(d->btf, id);
 | |
| 		kind = btf_kind(t);
 | |
| 
 | |
| 		switch (kind) {
 | |
| 		case BTF_KIND_INT:
 | |
| 		case BTF_KIND_FLOAT:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			name = btf_name_of(d, t->name_off);
 | |
| 			btf_dump_printf(d, "%s", name);
 | |
| 			break;
 | |
| 		case BTF_KIND_STRUCT:
 | |
| 		case BTF_KIND_UNION:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			/* inline anonymous struct/union */
 | |
| 			if (t->name_off == 0 && !d->skip_anon_defs)
 | |
| 				btf_dump_emit_struct_def(d, id, t, lvl);
 | |
| 			else
 | |
| 				btf_dump_emit_struct_fwd(d, id, t);
 | |
| 			break;
 | |
| 		case BTF_KIND_ENUM:
 | |
| 		case BTF_KIND_ENUM64:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			/* inline anonymous enum */
 | |
| 			if (t->name_off == 0 && !d->skip_anon_defs)
 | |
| 				btf_dump_emit_enum_def(d, id, t, lvl);
 | |
| 			else
 | |
| 				btf_dump_emit_enum_fwd(d, id, t);
 | |
| 			break;
 | |
| 		case BTF_KIND_FWD:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			btf_dump_emit_fwd_def(d, id, t);
 | |
| 			break;
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
 | |
| 			break;
 | |
| 		case BTF_KIND_PTR:
 | |
| 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
 | |
| 			break;
 | |
| 		case BTF_KIND_VOLATILE:
 | |
| 			btf_dump_printf(d, " volatile");
 | |
| 			break;
 | |
| 		case BTF_KIND_CONST:
 | |
| 			btf_dump_printf(d, " const");
 | |
| 			break;
 | |
| 		case BTF_KIND_RESTRICT:
 | |
| 			btf_dump_printf(d, " restrict");
 | |
| 			break;
 | |
| 		case BTF_KIND_TYPE_TAG:
 | |
| 			btf_dump_emit_mods(d, decls);
 | |
| 			name = btf_name_of(d, t->name_off);
 | |
| 			btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
 | |
| 			break;
 | |
| 		case BTF_KIND_ARRAY: {
 | |
| 			const struct btf_array *a = btf_array(t);
 | |
| 			const struct btf_type *next_t;
 | |
| 			__u32 next_id;
 | |
| 			bool multidim;
 | |
| 			/*
 | |
| 			 * GCC has a bug
 | |
| 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
 | |
| 			 * which causes it to emit extra const/volatile
 | |
| 			 * modifiers for an array, if array's element type has
 | |
| 			 * const/volatile modifiers. Clang doesn't do that.
 | |
| 			 * In general, it doesn't seem very meaningful to have
 | |
| 			 * a const/volatile modifier for array, so we are
 | |
| 			 * going to silently skip them here.
 | |
| 			 */
 | |
| 			btf_dump_drop_mods(d, decls);
 | |
| 
 | |
| 			if (decls->cnt == 0) {
 | |
| 				btf_dump_emit_name(d, fname, last_was_ptr);
 | |
| 				btf_dump_printf(d, "[%u]", a->nelems);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			next_id = decls->ids[decls->cnt - 1];
 | |
| 			next_t = btf__type_by_id(d->btf, next_id);
 | |
| 			multidim = btf_is_array(next_t);
 | |
| 			/* we need space if we have named non-pointer */
 | |
| 			if (fname[0] && !last_was_ptr)
 | |
| 				btf_dump_printf(d, " ");
 | |
| 			/* no parentheses for multi-dimensional array */
 | |
| 			if (!multidim)
 | |
| 				btf_dump_printf(d, "(");
 | |
| 			btf_dump_emit_type_chain(d, decls, fname, lvl);
 | |
| 			if (!multidim)
 | |
| 				btf_dump_printf(d, ")");
 | |
| 			btf_dump_printf(d, "[%u]", a->nelems);
 | |
| 			return;
 | |
| 		}
 | |
| 		case BTF_KIND_FUNC_PROTO: {
 | |
| 			const struct btf_param *p = btf_params(t);
 | |
| 			__u16 vlen = btf_vlen(t);
 | |
| 			int i;
 | |
| 
 | |
| 			/*
 | |
| 			 * GCC emits extra volatile qualifier for
 | |
| 			 * __attribute__((noreturn)) function pointers. Clang
 | |
| 			 * doesn't do it. It's a GCC quirk for backwards
 | |
| 			 * compatibility with code written for GCC <2.5. So,
 | |
| 			 * similarly to extra qualifiers for array, just drop
 | |
| 			 * them, instead of handling them.
 | |
| 			 */
 | |
| 			btf_dump_drop_mods(d, decls);
 | |
| 			if (decls->cnt) {
 | |
| 				btf_dump_printf(d, " (");
 | |
| 				btf_dump_emit_type_chain(d, decls, fname, lvl);
 | |
| 				btf_dump_printf(d, ")");
 | |
| 			} else {
 | |
| 				btf_dump_emit_name(d, fname, last_was_ptr);
 | |
| 			}
 | |
| 			btf_dump_printf(d, "(");
 | |
| 			/*
 | |
| 			 * Clang for BPF target generates func_proto with no
 | |
| 			 * args as a func_proto with a single void arg (e.g.,
 | |
| 			 * `int (*f)(void)` vs just `int (*f)()`). We are
 | |
| 			 * going to emit valid empty args (void) syntax for
 | |
| 			 * such case. Similarly and conveniently, valid
 | |
| 			 * no args case can be special-cased here as well.
 | |
| 			 */
 | |
| 			if (vlen == 0 || (vlen == 1 && p->type == 0)) {
 | |
| 				btf_dump_printf(d, "void)");
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			for (i = 0; i < vlen; i++, p++) {
 | |
| 				if (i > 0)
 | |
| 					btf_dump_printf(d, ", ");
 | |
| 
 | |
| 				/* last arg of type void is vararg */
 | |
| 				if (i == vlen - 1 && p->type == 0) {
 | |
| 					btf_dump_printf(d, "...");
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				name = btf_name_of(d, p->name_off);
 | |
| 				btf_dump_emit_type_decl(d, p->type, name, lvl);
 | |
| 			}
 | |
| 
 | |
| 			btf_dump_printf(d, ")");
 | |
| 			return;
 | |
| 		}
 | |
| 		default:
 | |
| 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
 | |
| 				kind, id);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		last_was_ptr = kind == BTF_KIND_PTR;
 | |
| 	}
 | |
| 
 | |
| 	btf_dump_emit_name(d, fname, last_was_ptr);
 | |
| }
 | |
| 
 | |
| /* show type name as (type_name) */
 | |
| static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
 | |
| 				    bool top_level)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 
 | |
| 	/* for array members, we don't bother emitting type name for each
 | |
| 	 * member to avoid the redundancy of
 | |
| 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
 | |
| 	 */
 | |
| 	if (d->typed_dump->is_array_member)
 | |
| 		return;
 | |
| 
 | |
| 	/* avoid type name specification for variable/section; it will be done
 | |
| 	 * for the associated variable value(s).
 | |
| 	 */
 | |
| 	t = btf__type_by_id(d->btf, id);
 | |
| 	if (btf_is_var(t) || btf_is_datasec(t))
 | |
| 		return;
 | |
| 
 | |
| 	if (top_level)
 | |
| 		btf_dump_printf(d, "(");
 | |
| 
 | |
| 	d->skip_anon_defs = true;
 | |
| 	d->strip_mods = true;
 | |
| 	btf_dump_emit_type_decl(d, id, "", 0);
 | |
| 	d->strip_mods = false;
 | |
| 	d->skip_anon_defs = false;
 | |
| 
 | |
| 	if (top_level)
 | |
| 		btf_dump_printf(d, ")");
 | |
| }
 | |
| 
 | |
| /* return number of duplicates (occurrences) of a given name */
 | |
| static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 | |
| 				 const char *orig_name)
 | |
| {
 | |
| 	char *old_name, *new_name;
 | |
| 	size_t dup_cnt = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	new_name = strdup(orig_name);
 | |
| 	if (!new_name)
 | |
| 		return 1;
 | |
| 
 | |
| 	(void)hashmap__find(name_map, orig_name, &dup_cnt);
 | |
| 	dup_cnt++;
 | |
| 
 | |
| 	err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
 | |
| 	if (err)
 | |
| 		free(new_name);
 | |
| 
 | |
| 	free(old_name);
 | |
| 
 | |
| 	return dup_cnt;
 | |
| }
 | |
| 
 | |
| static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
 | |
| 					 struct hashmap *name_map)
 | |
| {
 | |
| 	struct btf_dump_type_aux_state *s = &d->type_states[id];
 | |
| 	const struct btf_type *t = btf__type_by_id(d->btf, id);
 | |
| 	const char *orig_name = btf_name_of(d, t->name_off);
 | |
| 	const char **cached_name = &d->cached_names[id];
 | |
| 	size_t dup_cnt;
 | |
| 
 | |
| 	if (t->name_off == 0)
 | |
| 		return "";
 | |
| 
 | |
| 	if (s->name_resolved)
 | |
| 		return *cached_name ? *cached_name : orig_name;
 | |
| 
 | |
| 	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
 | |
| 		s->name_resolved = 1;
 | |
| 		return orig_name;
 | |
| 	}
 | |
| 
 | |
| 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
 | |
| 	if (dup_cnt > 1) {
 | |
| 		const size_t max_len = 256;
 | |
| 		char new_name[max_len];
 | |
| 
 | |
| 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
 | |
| 		*cached_name = strdup(new_name);
 | |
| 	}
 | |
| 
 | |
| 	s->name_resolved = 1;
 | |
| 	return *cached_name ? *cached_name : orig_name;
 | |
| }
 | |
| 
 | |
| static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	return btf_dump_resolve_name(d, id, d->type_names);
 | |
| }
 | |
| 
 | |
| static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
 | |
| {
 | |
| 	return btf_dump_resolve_name(d, id, d->ident_names);
 | |
| }
 | |
| 
 | |
| static int btf_dump_dump_type_data(struct btf_dump *d,
 | |
| 				   const char *fname,
 | |
| 				   const struct btf_type *t,
 | |
| 				   __u32 id,
 | |
| 				   const void *data,
 | |
| 				   __u8 bits_offset,
 | |
| 				   __u8 bit_sz);
 | |
| 
 | |
| static const char *btf_dump_data_newline(struct btf_dump *d)
 | |
| {
 | |
| 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
 | |
| }
 | |
| 
 | |
| static const char *btf_dump_data_delim(struct btf_dump *d)
 | |
| {
 | |
| 	return d->typed_dump->depth == 0 ? "" : ",";
 | |
| }
 | |
| 
 | |
| static void btf_dump_data_pfx(struct btf_dump *d)
 | |
| {
 | |
| 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
 | |
| 
 | |
| 	if (d->typed_dump->compact)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < lvl; i++)
 | |
| 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
 | |
| }
 | |
| 
 | |
| /* A macro is used here as btf_type_value[s]() appends format specifiers
 | |
|  * to the format specifier passed in; these do the work of appending
 | |
|  * delimiters etc while the caller simply has to specify the type values
 | |
|  * in the format specifier + value(s).
 | |
|  */
 | |
| #define btf_dump_type_values(d, fmt, ...)				\
 | |
| 	btf_dump_printf(d, fmt "%s%s",					\
 | |
| 			##__VA_ARGS__,					\
 | |
| 			btf_dump_data_delim(d),				\
 | |
| 			btf_dump_data_newline(d))
 | |
| 
 | |
| static int btf_dump_unsupported_data(struct btf_dump *d,
 | |
| 				     const struct btf_type *t,
 | |
| 				     __u32 id)
 | |
| {
 | |
| 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
 | |
| 	return -ENOTSUP;
 | |
| }
 | |
| 
 | |
| static int btf_dump_get_bitfield_value(struct btf_dump *d,
 | |
| 				       const struct btf_type *t,
 | |
| 				       const void *data,
 | |
| 				       __u8 bits_offset,
 | |
| 				       __u8 bit_sz,
 | |
| 				       __u64 *value)
 | |
| {
 | |
| 	__u16 left_shift_bits, right_shift_bits;
 | |
| 	const __u8 *bytes = data;
 | |
| 	__u8 nr_copy_bits;
 | |
| 	__u64 num = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Maximum supported bitfield size is 64 bits */
 | |
| 	if (t->size > 8) {
 | |
| 		pr_warn("unexpected bitfield size %d\n", t->size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
 | |
| 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
 | |
| 	 */
 | |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 | |
| 	for (i = t->size - 1; i >= 0; i--)
 | |
| 		num = num * 256 + bytes[i];
 | |
| 	nr_copy_bits = bit_sz + bits_offset;
 | |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
| 	for (i = 0; i < t->size; i++)
 | |
| 		num = num * 256 + bytes[i];
 | |
| 	nr_copy_bits = t->size * 8 - bits_offset;
 | |
| #else
 | |
| # error "Unrecognized __BYTE_ORDER__"
 | |
| #endif
 | |
| 	left_shift_bits = 64 - nr_copy_bits;
 | |
| 	right_shift_bits = 64 - bit_sz;
 | |
| 
 | |
| 	*value = (num << left_shift_bits) >> right_shift_bits;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_bitfield_check_zero(struct btf_dump *d,
 | |
| 					const struct btf_type *t,
 | |
| 					const void *data,
 | |
| 					__u8 bits_offset,
 | |
| 					__u8 bit_sz)
 | |
| {
 | |
| 	__u64 check_num;
 | |
| 	int err;
 | |
| 
 | |
| 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (check_num == 0)
 | |
| 		return -ENODATA;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_bitfield_data(struct btf_dump *d,
 | |
| 				  const struct btf_type *t,
 | |
| 				  const void *data,
 | |
| 				  __u8 bits_offset,
 | |
| 				  __u8 bit_sz)
 | |
| {
 | |
| 	__u64 print_num;
 | |
| 	int err;
 | |
| 
 | |
| 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ints, floats and ptrs */
 | |
| static int btf_dump_base_type_check_zero(struct btf_dump *d,
 | |
| 					 const struct btf_type *t,
 | |
| 					 __u32 id,
 | |
| 					 const void *data)
 | |
| {
 | |
| 	static __u8 bytecmp[16] = {};
 | |
| 	int nr_bytes;
 | |
| 
 | |
| 	/* For pointer types, pointer size is not defined on a per-type basis.
 | |
| 	 * On dump creation however, we store the pointer size.
 | |
| 	 */
 | |
| 	if (btf_kind(t) == BTF_KIND_PTR)
 | |
| 		nr_bytes = d->ptr_sz;
 | |
| 	else
 | |
| 		nr_bytes = t->size;
 | |
| 
 | |
| 	if (nr_bytes < 1 || nr_bytes > 16) {
 | |
| 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (memcmp(data, bytecmp, nr_bytes) == 0)
 | |
| 		return -ENODATA;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
 | |
| 			   const void *data)
 | |
| {
 | |
| 	int alignment = btf__align_of(btf, type_id);
 | |
| 
 | |
| 	if (alignment == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return ((uintptr_t)data) % alignment == 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_int_data(struct btf_dump *d,
 | |
| 			     const struct btf_type *t,
 | |
| 			     __u32 type_id,
 | |
| 			     const void *data,
 | |
| 			     __u8 bits_offset)
 | |
| {
 | |
| 	__u8 encoding = btf_int_encoding(t);
 | |
| 	bool sign = encoding & BTF_INT_SIGNED;
 | |
| 	char buf[16] __attribute__((aligned(16)));
 | |
| 	int sz = t->size;
 | |
| 
 | |
| 	if (sz == 0 || sz > sizeof(buf)) {
 | |
| 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* handle packed int data - accesses of integers not aligned on
 | |
| 	 * int boundaries can cause problems on some platforms.
 | |
| 	 */
 | |
| 	if (!ptr_is_aligned(d->btf, type_id, data)) {
 | |
| 		memcpy(buf, data, sz);
 | |
| 		data = buf;
 | |
| 	}
 | |
| 
 | |
| 	switch (sz) {
 | |
| 	case 16: {
 | |
| 		const __u64 *ints = data;
 | |
| 		__u64 lsi, msi;
 | |
| 
 | |
| 		/* avoid use of __int128 as some 32-bit platforms do not
 | |
| 		 * support it.
 | |
| 		 */
 | |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 | |
| 		lsi = ints[0];
 | |
| 		msi = ints[1];
 | |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
| 		lsi = ints[1];
 | |
| 		msi = ints[0];
 | |
| #else
 | |
| # error "Unrecognized __BYTE_ORDER__"
 | |
| #endif
 | |
| 		if (msi == 0)
 | |
| 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
 | |
| 					     (unsigned long long)lsi);
 | |
| 		break;
 | |
| 	}
 | |
| 	case 8:
 | |
| 		if (sign)
 | |
| 			btf_dump_type_values(d, "%lld", *(long long *)data);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		if (sign)
 | |
| 			btf_dump_type_values(d, "%d", *(__s32 *)data);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "%u", *(__u32 *)data);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		if (sign)
 | |
| 			btf_dump_type_values(d, "%d", *(__s16 *)data);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "%u", *(__u16 *)data);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if (d->typed_dump->is_array_char) {
 | |
| 			/* check for null terminator */
 | |
| 			if (d->typed_dump->is_array_terminated)
 | |
| 				break;
 | |
| 			if (*(char *)data == '\0') {
 | |
| 				btf_dump_type_values(d, "'\\0'");
 | |
| 				d->typed_dump->is_array_terminated = true;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (isprint(*(char *)data)) {
 | |
| 				btf_dump_type_values(d, "'%c'", *(char *)data);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (sign)
 | |
| 			btf_dump_type_values(d, "%d", *(__s8 *)data);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "%u", *(__u8 *)data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| union float_data {
 | |
| 	long double ld;
 | |
| 	double d;
 | |
| 	float f;
 | |
| };
 | |
| 
 | |
| static int btf_dump_float_data(struct btf_dump *d,
 | |
| 			       const struct btf_type *t,
 | |
| 			       __u32 type_id,
 | |
| 			       const void *data)
 | |
| {
 | |
| 	const union float_data *flp = data;
 | |
| 	union float_data fl;
 | |
| 	int sz = t->size;
 | |
| 
 | |
| 	/* handle unaligned data; copy to local union */
 | |
| 	if (!ptr_is_aligned(d->btf, type_id, data)) {
 | |
| 		memcpy(&fl, data, sz);
 | |
| 		flp = &fl;
 | |
| 	}
 | |
| 
 | |
| 	switch (sz) {
 | |
| 	case 16:
 | |
| 		btf_dump_type_values(d, "%Lf", flp->ld);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		btf_dump_type_values(d, "%lf", flp->d);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		btf_dump_type_values(d, "%f", flp->f);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_var_data(struct btf_dump *d,
 | |
| 			     const struct btf_type *v,
 | |
| 			     __u32 id,
 | |
| 			     const void *data)
 | |
| {
 | |
| 	enum btf_func_linkage linkage = btf_var(v)->linkage;
 | |
| 	const struct btf_type *t;
 | |
| 	const char *l;
 | |
| 	__u32 type_id;
 | |
| 
 | |
| 	switch (linkage) {
 | |
| 	case BTF_FUNC_STATIC:
 | |
| 		l = "static ";
 | |
| 		break;
 | |
| 	case BTF_FUNC_EXTERN:
 | |
| 		l = "extern ";
 | |
| 		break;
 | |
| 	case BTF_FUNC_GLOBAL:
 | |
| 	default:
 | |
| 		l = "";
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* format of output here is [linkage] [type] [varname] = (type)value,
 | |
| 	 * for example "static int cpu_profile_flip = (int)1"
 | |
| 	 */
 | |
| 	btf_dump_printf(d, "%s", l);
 | |
| 	type_id = v->type;
 | |
| 	t = btf__type_by_id(d->btf, type_id);
 | |
| 	btf_dump_emit_type_cast(d, type_id, false);
 | |
| 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
 | |
| 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
 | |
| }
 | |
| 
 | |
| static int btf_dump_array_data(struct btf_dump *d,
 | |
| 			       const struct btf_type *t,
 | |
| 			       __u32 id,
 | |
| 			       const void *data)
 | |
| {
 | |
| 	const struct btf_array *array = btf_array(t);
 | |
| 	const struct btf_type *elem_type;
 | |
| 	__u32 i, elem_type_id;
 | |
| 	__s64 elem_size;
 | |
| 	bool is_array_member;
 | |
| 	bool is_array_terminated;
 | |
| 
 | |
| 	elem_type_id = array->type;
 | |
| 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
 | |
| 	elem_size = btf__resolve_size(d->btf, elem_type_id);
 | |
| 	if (elem_size <= 0) {
 | |
| 		pr_warn("unexpected elem size %zd for array type [%u]\n",
 | |
| 			(ssize_t)elem_size, id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_is_int(elem_type)) {
 | |
| 		/*
 | |
| 		 * BTF_INT_CHAR encoding never seems to be set for
 | |
| 		 * char arrays, so if size is 1 and element is
 | |
| 		 * printable as a char, we'll do that.
 | |
| 		 */
 | |
| 		if (elem_size == 1)
 | |
| 			d->typed_dump->is_array_char = true;
 | |
| 	}
 | |
| 
 | |
| 	/* note that we increment depth before calling btf_dump_print() below;
 | |
| 	 * this is intentional.  btf_dump_data_newline() will not print a
 | |
| 	 * newline for depth 0 (since this leaves us with trailing newlines
 | |
| 	 * at the end of typed display), so depth is incremented first.
 | |
| 	 * For similar reasons, we decrement depth before showing the closing
 | |
| 	 * parenthesis.
 | |
| 	 */
 | |
| 	d->typed_dump->depth++;
 | |
| 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
 | |
| 
 | |
| 	/* may be a multidimensional array, so store current "is array member"
 | |
| 	 * status so we can restore it correctly later.
 | |
| 	 */
 | |
| 	is_array_member = d->typed_dump->is_array_member;
 | |
| 	d->typed_dump->is_array_member = true;
 | |
| 	is_array_terminated = d->typed_dump->is_array_terminated;
 | |
| 	d->typed_dump->is_array_terminated = false;
 | |
| 	for (i = 0; i < array->nelems; i++, data += elem_size) {
 | |
| 		if (d->typed_dump->is_array_terminated)
 | |
| 			break;
 | |
| 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
 | |
| 	}
 | |
| 	d->typed_dump->is_array_member = is_array_member;
 | |
| 	d->typed_dump->is_array_terminated = is_array_terminated;
 | |
| 	d->typed_dump->depth--;
 | |
| 	btf_dump_data_pfx(d);
 | |
| 	btf_dump_type_values(d, "]");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_struct_data(struct btf_dump *d,
 | |
| 				const struct btf_type *t,
 | |
| 				__u32 id,
 | |
| 				const void *data)
 | |
| {
 | |
| 	const struct btf_member *m = btf_members(t);
 | |
| 	__u16 n = btf_vlen(t);
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	/* note that we increment depth before calling btf_dump_print() below;
 | |
| 	 * this is intentional.  btf_dump_data_newline() will not print a
 | |
| 	 * newline for depth 0 (since this leaves us with trailing newlines
 | |
| 	 * at the end of typed display), so depth is incremented first.
 | |
| 	 * For similar reasons, we decrement depth before showing the closing
 | |
| 	 * parenthesis.
 | |
| 	 */
 | |
| 	d->typed_dump->depth++;
 | |
| 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
 | |
| 
 | |
| 	for (i = 0; i < n; i++, m++) {
 | |
| 		const struct btf_type *mtype;
 | |
| 		const char *mname;
 | |
| 		__u32 moffset;
 | |
| 		__u8 bit_sz;
 | |
| 
 | |
| 		mtype = btf__type_by_id(d->btf, m->type);
 | |
| 		mname = btf_name_of(d, m->name_off);
 | |
| 		moffset = btf_member_bit_offset(t, i);
 | |
| 
 | |
| 		bit_sz = btf_member_bitfield_size(t, i);
 | |
| 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
 | |
| 					      moffset % 8, bit_sz);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 	d->typed_dump->depth--;
 | |
| 	btf_dump_data_pfx(d);
 | |
| 	btf_dump_type_values(d, "}");
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| union ptr_data {
 | |
| 	unsigned int p;
 | |
| 	unsigned long long lp;
 | |
| };
 | |
| 
 | |
| static int btf_dump_ptr_data(struct btf_dump *d,
 | |
| 			      const struct btf_type *t,
 | |
| 			      __u32 id,
 | |
| 			      const void *data)
 | |
| {
 | |
| 	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
 | |
| 		btf_dump_type_values(d, "%p", *(void **)data);
 | |
| 	} else {
 | |
| 		union ptr_data pt;
 | |
| 
 | |
| 		memcpy(&pt, data, d->ptr_sz);
 | |
| 		if (d->ptr_sz == 4)
 | |
| 			btf_dump_type_values(d, "0x%x", pt.p);
 | |
| 		else
 | |
| 			btf_dump_type_values(d, "0x%llx", pt.lp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_get_enum_value(struct btf_dump *d,
 | |
| 				   const struct btf_type *t,
 | |
| 				   const void *data,
 | |
| 				   __u32 id,
 | |
| 				   __s64 *value)
 | |
| {
 | |
| 	bool is_signed = btf_kflag(t);
 | |
| 
 | |
| 	if (!ptr_is_aligned(d->btf, id, data)) {
 | |
| 		__u64 val;
 | |
| 		int err;
 | |
| 
 | |
| 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		*value = (__s64)val;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (t->size) {
 | |
| 	case 8:
 | |
| 		*value = *(__s64 *)data;
 | |
| 		return 0;
 | |
| 	case 4:
 | |
| 		*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
 | |
| 		return 0;
 | |
| 	case 2:
 | |
| 		*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
 | |
| 		return 0;
 | |
| 	case 1:
 | |
| 		*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int btf_dump_enum_data(struct btf_dump *d,
 | |
| 			      const struct btf_type *t,
 | |
| 			      __u32 id,
 | |
| 			      const void *data)
 | |
| {
 | |
| 	bool is_signed;
 | |
| 	__s64 value;
 | |
| 	int i, err;
 | |
| 
 | |
| 	err = btf_dump_get_enum_value(d, t, data, id, &value);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	is_signed = btf_kflag(t);
 | |
| 	if (btf_is_enum(t)) {
 | |
| 		const struct btf_enum *e;
 | |
| 
 | |
| 		for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
 | |
| 			if (value != e->val)
 | |
| 				continue;
 | |
| 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
 | |
| 	} else {
 | |
| 		const struct btf_enum64 *e;
 | |
| 
 | |
| 		for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
 | |
| 			if (value != btf_enum64_value(e))
 | |
| 				continue;
 | |
| 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
 | |
| 				     (unsigned long long)value);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_dump_datasec_data(struct btf_dump *d,
 | |
| 				 const struct btf_type *t,
 | |
| 				 __u32 id,
 | |
| 				 const void *data)
 | |
| {
 | |
| 	const struct btf_var_secinfo *vsi;
 | |
| 	const struct btf_type *var;
 | |
| 	__u32 i;
 | |
| 	int err;
 | |
| 
 | |
| 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
 | |
| 
 | |
| 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
 | |
| 		var = btf__type_by_id(d->btf, vsi->type);
 | |
| 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		btf_dump_printf(d, ";");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* return size of type, or if base type overflows, return -E2BIG. */
 | |
| static int btf_dump_type_data_check_overflow(struct btf_dump *d,
 | |
| 					     const struct btf_type *t,
 | |
| 					     __u32 id,
 | |
| 					     const void *data,
 | |
| 					     __u8 bits_offset,
 | |
| 					     __u8 bit_sz)
 | |
| {
 | |
| 	__s64 size;
 | |
| 
 | |
| 	if (bit_sz) {
 | |
| 		/* bits_offset is at most 7. bit_sz is at most 128. */
 | |
| 		__u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
 | |
| 
 | |
| 		/* When bit_sz is non zero, it is called from
 | |
| 		 * btf_dump_struct_data() where it only cares about
 | |
| 		 * negative error value.
 | |
| 		 * Return nr_bytes in success case to make it
 | |
| 		 * consistent as the regular integer case below.
 | |
| 		 */
 | |
| 		return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
 | |
| 	}
 | |
| 
 | |
| 	size = btf__resolve_size(d->btf, id);
 | |
| 
 | |
| 	if (size < 0 || size >= INT_MAX) {
 | |
| 		pr_warn("unexpected size [%zu] for id [%u]\n",
 | |
| 			(size_t)size, id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Only do overflow checking for base types; we do not want to
 | |
| 	 * avoid showing part of a struct, union or array, even if we
 | |
| 	 * do not have enough data to show the full object.  By
 | |
| 	 * restricting overflow checking to base types we can ensure
 | |
| 	 * that partial display succeeds, while avoiding overflowing
 | |
| 	 * and using bogus data for display.
 | |
| 	 */
 | |
| 	t = skip_mods_and_typedefs(d->btf, id, NULL);
 | |
| 	if (!t) {
 | |
| 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
 | |
| 			id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (btf_kind(t)) {
 | |
| 	case BTF_KIND_INT:
 | |
| 	case BTF_KIND_FLOAT:
 | |
| 	case BTF_KIND_PTR:
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
 | |
| 			return -E2BIG;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return (int)size;
 | |
| }
 | |
| 
 | |
| static int btf_dump_type_data_check_zero(struct btf_dump *d,
 | |
| 					 const struct btf_type *t,
 | |
| 					 __u32 id,
 | |
| 					 const void *data,
 | |
| 					 __u8 bits_offset,
 | |
| 					 __u8 bit_sz)
 | |
| {
 | |
| 	__s64 value;
 | |
| 	int i, err;
 | |
| 
 | |
| 	/* toplevel exceptions; we show zero values if
 | |
| 	 * - we ask for them (emit_zeros)
 | |
| 	 * - if we are at top-level so we see "struct empty { }"
 | |
| 	 * - or if we are an array member and the array is non-empty and
 | |
| 	 *   not a char array; we don't want to be in a situation where we
 | |
| 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
 | |
| 	 *   If the array contains zeroes only, or is a char array starting
 | |
| 	 *   with a '\0', the array-level check_zero() will prevent showing it;
 | |
| 	 *   we are concerned with determining zero value at the array member
 | |
| 	 *   level here.
 | |
| 	 */
 | |
| 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
 | |
| 	    (d->typed_dump->is_array_member &&
 | |
| 	     !d->typed_dump->is_array_char))
 | |
| 		return 0;
 | |
| 
 | |
| 	t = skip_mods_and_typedefs(d->btf, id, NULL);
 | |
| 
 | |
| 	switch (btf_kind(t)) {
 | |
| 	case BTF_KIND_INT:
 | |
| 		if (bit_sz)
 | |
| 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
 | |
| 		return btf_dump_base_type_check_zero(d, t, id, data);
 | |
| 	case BTF_KIND_FLOAT:
 | |
| 	case BTF_KIND_PTR:
 | |
| 		return btf_dump_base_type_check_zero(d, t, id, data);
 | |
| 	case BTF_KIND_ARRAY: {
 | |
| 		const struct btf_array *array = btf_array(t);
 | |
| 		const struct btf_type *elem_type;
 | |
| 		__u32 elem_type_id, elem_size;
 | |
| 		bool ischar;
 | |
| 
 | |
| 		elem_type_id = array->type;
 | |
| 		elem_size = btf__resolve_size(d->btf, elem_type_id);
 | |
| 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
 | |
| 
 | |
| 		ischar = btf_is_int(elem_type) && elem_size == 1;
 | |
| 
 | |
| 		/* check all elements; if _any_ element is nonzero, all
 | |
| 		 * of array is displayed.  We make an exception however
 | |
| 		 * for char arrays where the first element is 0; these
 | |
| 		 * are considered zeroed also, even if later elements are
 | |
| 		 * non-zero because the string is terminated.
 | |
| 		 */
 | |
| 		for (i = 0; i < array->nelems; i++) {
 | |
| 			if (i == 0 && ischar && *(char *)data == 0)
 | |
| 				return -ENODATA;
 | |
| 			err = btf_dump_type_data_check_zero(d, elem_type,
 | |
| 							    elem_type_id,
 | |
| 							    data +
 | |
| 							    (i * elem_size),
 | |
| 							    bits_offset, 0);
 | |
| 			if (err != -ENODATA)
 | |
| 				return err;
 | |
| 		}
 | |
| 		return -ENODATA;
 | |
| 	}
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION: {
 | |
| 		const struct btf_member *m = btf_members(t);
 | |
| 		__u16 n = btf_vlen(t);
 | |
| 
 | |
| 		/* if any struct/union member is non-zero, the struct/union
 | |
| 		 * is considered non-zero and dumped.
 | |
| 		 */
 | |
| 		for (i = 0; i < n; i++, m++) {
 | |
| 			const struct btf_type *mtype;
 | |
| 			__u32 moffset;
 | |
| 
 | |
| 			mtype = btf__type_by_id(d->btf, m->type);
 | |
| 			moffset = btf_member_bit_offset(t, i);
 | |
| 
 | |
| 			/* btf_int_bits() does not store member bitfield size;
 | |
| 			 * bitfield size needs to be stored here so int display
 | |
| 			 * of member can retrieve it.
 | |
| 			 */
 | |
| 			bit_sz = btf_member_bitfield_size(t, i);
 | |
| 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
 | |
| 							    moffset % 8, bit_sz);
 | |
| 			if (err != ENODATA)
 | |
| 				return err;
 | |
| 		}
 | |
| 		return -ENODATA;
 | |
| 	}
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		err = btf_dump_get_enum_value(d, t, data, id, &value);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		if (value == 0)
 | |
| 			return -ENODATA;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* returns size of data dumped, or error. */
 | |
| static int btf_dump_dump_type_data(struct btf_dump *d,
 | |
| 				   const char *fname,
 | |
| 				   const struct btf_type *t,
 | |
| 				   __u32 id,
 | |
| 				   const void *data,
 | |
| 				   __u8 bits_offset,
 | |
| 				   __u8 bit_sz)
 | |
| {
 | |
| 	int size, err = 0;
 | |
| 
 | |
| 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
 | |
| 	if (size < 0)
 | |
| 		return size;
 | |
| 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
 | |
| 	if (err) {
 | |
| 		/* zeroed data is expected and not an error, so simply skip
 | |
| 		 * dumping such data.  Record other errors however.
 | |
| 		 */
 | |
| 		if (err == -ENODATA)
 | |
| 			return size;
 | |
| 		return err;
 | |
| 	}
 | |
| 	btf_dump_data_pfx(d);
 | |
| 
 | |
| 	if (!d->typed_dump->skip_names) {
 | |
| 		if (fname && strlen(fname) > 0)
 | |
| 			btf_dump_printf(d, ".%s = ", fname);
 | |
| 		btf_dump_emit_type_cast(d, id, true);
 | |
| 	}
 | |
| 
 | |
| 	t = skip_mods_and_typedefs(d->btf, id, NULL);
 | |
| 
 | |
| 	switch (btf_kind(t)) {
 | |
| 	case BTF_KIND_UNKN:
 | |
| 	case BTF_KIND_FWD:
 | |
| 	case BTF_KIND_FUNC:
 | |
| 	case BTF_KIND_FUNC_PROTO:
 | |
| 	case BTF_KIND_DECL_TAG:
 | |
| 		err = btf_dump_unsupported_data(d, t, id);
 | |
| 		break;
 | |
| 	case BTF_KIND_INT:
 | |
| 		if (bit_sz)
 | |
| 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
 | |
| 		else
 | |
| 			err = btf_dump_int_data(d, t, id, data, bits_offset);
 | |
| 		break;
 | |
| 	case BTF_KIND_FLOAT:
 | |
| 		err = btf_dump_float_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_PTR:
 | |
| 		err = btf_dump_ptr_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_ARRAY:
 | |
| 		err = btf_dump_array_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION:
 | |
| 		err = btf_dump_struct_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		/* handle bitfield and int enum values */
 | |
| 		if (bit_sz) {
 | |
| 			__u64 print_num;
 | |
| 			__s64 enum_val;
 | |
| 
 | |
| 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
 | |
| 							  &print_num);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			enum_val = (__s64)print_num;
 | |
| 			err = btf_dump_enum_data(d, t, id, &enum_val);
 | |
| 		} else
 | |
| 			err = btf_dump_enum_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_VAR:
 | |
| 		err = btf_dump_var_data(d, t, id, data);
 | |
| 		break;
 | |
| 	case BTF_KIND_DATASEC:
 | |
| 		err = btf_dump_datasec_data(d, t, id, data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_warn("unexpected kind [%u] for id [%u]\n",
 | |
| 			BTF_INFO_KIND(t->info), id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
 | |
| 			     const void *data, size_t data_sz,
 | |
| 			     const struct btf_dump_type_data_opts *opts)
 | |
| {
 | |
| 	struct btf_dump_data typed_dump = {};
 | |
| 	const struct btf_type *t;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
 | |
| 		return libbpf_err(-EINVAL);
 | |
| 
 | |
| 	t = btf__type_by_id(d->btf, id);
 | |
| 	if (!t)
 | |
| 		return libbpf_err(-ENOENT);
 | |
| 
 | |
| 	d->typed_dump = &typed_dump;
 | |
| 	d->typed_dump->data_end = data + data_sz;
 | |
| 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
 | |
| 
 | |
| 	/* default indent string is a tab */
 | |
| 	if (!OPTS_GET(opts, indent_str, NULL))
 | |
| 		d->typed_dump->indent_str[0] = '\t';
 | |
| 	else
 | |
| 		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
 | |
| 			       sizeof(d->typed_dump->indent_str));
 | |
| 
 | |
| 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
 | |
| 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
 | |
| 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
 | |
| 
 | |
| 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
 | |
| 
 | |
| 	d->typed_dump = NULL;
 | |
| 
 | |
| 	return libbpf_err(ret);
 | |
| }
 |