1056 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1056 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
 | 
						|
 * scalable techniques.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2017 Facebook
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/sbitmap.h>
 | 
						|
 | 
						|
#include <trace/events/block.h>
 | 
						|
 | 
						|
#include "elevator.h"
 | 
						|
#include "blk.h"
 | 
						|
#include "blk-mq.h"
 | 
						|
#include "blk-mq-debugfs.h"
 | 
						|
#include "blk-mq-sched.h"
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/kyber.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Scheduling domains: the device is divided into multiple domains based on the
 | 
						|
 * request type.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	KYBER_READ,
 | 
						|
	KYBER_WRITE,
 | 
						|
	KYBER_DISCARD,
 | 
						|
	KYBER_OTHER,
 | 
						|
	KYBER_NUM_DOMAINS,
 | 
						|
};
 | 
						|
 | 
						|
static const char *kyber_domain_names[] = {
 | 
						|
	[KYBER_READ] = "READ",
 | 
						|
	[KYBER_WRITE] = "WRITE",
 | 
						|
	[KYBER_DISCARD] = "DISCARD",
 | 
						|
	[KYBER_OTHER] = "OTHER",
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	/*
 | 
						|
	 * In order to prevent starvation of synchronous requests by a flood of
 | 
						|
	 * asynchronous requests, we reserve 25% of requests for synchronous
 | 
						|
	 * operations.
 | 
						|
	 */
 | 
						|
	KYBER_ASYNC_PERCENT = 75,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum device-wide depth for each scheduling domain.
 | 
						|
 *
 | 
						|
 * Even for fast devices with lots of tags like NVMe, you can saturate the
 | 
						|
 * device with only a fraction of the maximum possible queue depth. So, we cap
 | 
						|
 * these to a reasonable value.
 | 
						|
 */
 | 
						|
static const unsigned int kyber_depth[] = {
 | 
						|
	[KYBER_READ] = 256,
 | 
						|
	[KYBER_WRITE] = 128,
 | 
						|
	[KYBER_DISCARD] = 64,
 | 
						|
	[KYBER_OTHER] = 16,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Default latency targets for each scheduling domain.
 | 
						|
 */
 | 
						|
static const u64 kyber_latency_targets[] = {
 | 
						|
	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
 | 
						|
	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
 | 
						|
	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Batch size (number of requests we'll dispatch in a row) for each scheduling
 | 
						|
 * domain.
 | 
						|
 */
 | 
						|
static const unsigned int kyber_batch_size[] = {
 | 
						|
	[KYBER_READ] = 16,
 | 
						|
	[KYBER_WRITE] = 8,
 | 
						|
	[KYBER_DISCARD] = 1,
 | 
						|
	[KYBER_OTHER] = 1,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Requests latencies are recorded in a histogram with buckets defined relative
 | 
						|
 * to the target latency:
 | 
						|
 *
 | 
						|
 * <= 1/4 * target latency
 | 
						|
 * <= 1/2 * target latency
 | 
						|
 * <= 3/4 * target latency
 | 
						|
 * <= target latency
 | 
						|
 * <= 1 1/4 * target latency
 | 
						|
 * <= 1 1/2 * target latency
 | 
						|
 * <= 1 3/4 * target latency
 | 
						|
 * > 1 3/4 * target latency
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	/*
 | 
						|
	 * The width of the latency histogram buckets is
 | 
						|
	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 | 
						|
	 */
 | 
						|
	KYBER_LATENCY_SHIFT = 2,
 | 
						|
	/*
 | 
						|
	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 | 
						|
	 * thus, "good".
 | 
						|
	 */
 | 
						|
	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 | 
						|
	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 | 
						|
	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * We measure both the total latency and the I/O latency (i.e., latency after
 | 
						|
 * submitting to the device).
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	KYBER_TOTAL_LATENCY,
 | 
						|
	KYBER_IO_LATENCY,
 | 
						|
};
 | 
						|
 | 
						|
static const char *kyber_latency_type_names[] = {
 | 
						|
	[KYBER_TOTAL_LATENCY] = "total",
 | 
						|
	[KYBER_IO_LATENCY] = "I/O",
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 | 
						|
 * domain except for KYBER_OTHER.
 | 
						|
 */
 | 
						|
struct kyber_cpu_latency {
 | 
						|
	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * There is a same mapping between ctx & hctx and kcq & khd,
 | 
						|
 * we use request->mq_ctx->index_hw to index the kcq in khd.
 | 
						|
 */
 | 
						|
struct kyber_ctx_queue {
 | 
						|
	/*
 | 
						|
	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 | 
						|
	 * Also protect the rqs on rq_list when merge.
 | 
						|
	 */
 | 
						|
	spinlock_t lock;
 | 
						|
	struct list_head rq_list[KYBER_NUM_DOMAINS];
 | 
						|
} ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
struct kyber_queue_data {
 | 
						|
	struct request_queue *q;
 | 
						|
	dev_t dev;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Each scheduling domain has a limited number of in-flight requests
 | 
						|
	 * device-wide, limited by these tokens.
 | 
						|
	 */
 | 
						|
	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Async request percentage, converted to per-word depth for
 | 
						|
	 * sbitmap_get_shallow().
 | 
						|
	 */
 | 
						|
	unsigned int async_depth;
 | 
						|
 | 
						|
	struct kyber_cpu_latency __percpu *cpu_latency;
 | 
						|
 | 
						|
	/* Timer for stats aggregation and adjusting domain tokens. */
 | 
						|
	struct timer_list timer;
 | 
						|
 | 
						|
	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 | 
						|
 | 
						|
	unsigned long latency_timeout[KYBER_OTHER];
 | 
						|
 | 
						|
	int domain_p99[KYBER_OTHER];
 | 
						|
 | 
						|
	/* Target latencies in nanoseconds. */
 | 
						|
	u64 latency_targets[KYBER_OTHER];
 | 
						|
};
 | 
						|
 | 
						|
struct kyber_hctx_data {
 | 
						|
	spinlock_t lock;
 | 
						|
	struct list_head rqs[KYBER_NUM_DOMAINS];
 | 
						|
	unsigned int cur_domain;
 | 
						|
	unsigned int batching;
 | 
						|
	struct kyber_ctx_queue *kcqs;
 | 
						|
	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 | 
						|
	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 | 
						|
	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 | 
						|
	atomic_t wait_index[KYBER_NUM_DOMAINS];
 | 
						|
};
 | 
						|
 | 
						|
static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 | 
						|
			     void *key);
 | 
						|
 | 
						|
static unsigned int kyber_sched_domain(blk_opf_t opf)
 | 
						|
{
 | 
						|
	switch (opf & REQ_OP_MASK) {
 | 
						|
	case REQ_OP_READ:
 | 
						|
		return KYBER_READ;
 | 
						|
	case REQ_OP_WRITE:
 | 
						|
		return KYBER_WRITE;
 | 
						|
	case REQ_OP_DISCARD:
 | 
						|
		return KYBER_DISCARD;
 | 
						|
	default:
 | 
						|
		return KYBER_OTHER;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void flush_latency_buckets(struct kyber_queue_data *kqd,
 | 
						|
				  struct kyber_cpu_latency *cpu_latency,
 | 
						|
				  unsigned int sched_domain, unsigned int type)
 | 
						|
{
 | 
						|
	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 | 
						|
	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 | 
						|
	unsigned int bucket;
 | 
						|
 | 
						|
	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 | 
						|
		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 | 
						|
 * aren't enough samples yet.
 | 
						|
 */
 | 
						|
static int calculate_percentile(struct kyber_queue_data *kqd,
 | 
						|
				unsigned int sched_domain, unsigned int type,
 | 
						|
				unsigned int percentile)
 | 
						|
{
 | 
						|
	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 | 
						|
	unsigned int bucket, samples = 0, percentile_samples;
 | 
						|
 | 
						|
	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 | 
						|
		samples += buckets[bucket];
 | 
						|
 | 
						|
	if (!samples)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We do the calculation once we have 500 samples or one second passes
 | 
						|
	 * since the first sample was recorded, whichever comes first.
 | 
						|
	 */
 | 
						|
	if (!kqd->latency_timeout[sched_domain])
 | 
						|
		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 | 
						|
	if (samples < 500 &&
 | 
						|
	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	kqd->latency_timeout[sched_domain] = 0;
 | 
						|
 | 
						|
	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 | 
						|
	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 | 
						|
		if (buckets[bucket] >= percentile_samples)
 | 
						|
			break;
 | 
						|
		percentile_samples -= buckets[bucket];
 | 
						|
	}
 | 
						|
	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 | 
						|
 | 
						|
	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
 | 
						|
			    kyber_latency_type_names[type], percentile,
 | 
						|
			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 | 
						|
 | 
						|
	return bucket;
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_resize_domain(struct kyber_queue_data *kqd,
 | 
						|
				unsigned int sched_domain, unsigned int depth)
 | 
						|
{
 | 
						|
	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 | 
						|
	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 | 
						|
		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 | 
						|
		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
 | 
						|
				   depth);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_timer_fn(struct timer_list *t)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 | 
						|
	unsigned int sched_domain;
 | 
						|
	int cpu;
 | 
						|
	bool bad = false;
 | 
						|
 | 
						|
	/* Sum all of the per-cpu latency histograms. */
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct kyber_cpu_latency *cpu_latency;
 | 
						|
 | 
						|
		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 | 
						|
		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 | 
						|
			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 | 
						|
					      KYBER_TOTAL_LATENCY);
 | 
						|
			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 | 
						|
					      KYBER_IO_LATENCY);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if any domains have a high I/O latency, which might indicate
 | 
						|
	 * congestion in the device. Note that we use the p90; we don't want to
 | 
						|
	 * be too sensitive to outliers here.
 | 
						|
	 */
 | 
						|
	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 | 
						|
		int p90;
 | 
						|
 | 
						|
		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 | 
						|
					   90);
 | 
						|
		if (p90 >= KYBER_GOOD_BUCKETS)
 | 
						|
			bad = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adjust the scheduling domain depths. If we determined that there was
 | 
						|
	 * congestion, we throttle all domains with good latencies. Either way,
 | 
						|
	 * we ease up on throttling domains with bad latencies.
 | 
						|
	 */
 | 
						|
	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 | 
						|
		unsigned int orig_depth, depth;
 | 
						|
		int p99;
 | 
						|
 | 
						|
		p99 = calculate_percentile(kqd, sched_domain,
 | 
						|
					   KYBER_TOTAL_LATENCY, 99);
 | 
						|
		/*
 | 
						|
		 * This is kind of subtle: different domains will not
 | 
						|
		 * necessarily have enough samples to calculate the latency
 | 
						|
		 * percentiles during the same window, so we have to remember
 | 
						|
		 * the p99 for the next time we observe congestion; once we do,
 | 
						|
		 * we don't want to throttle again until we get more data, so we
 | 
						|
		 * reset it to -1.
 | 
						|
		 */
 | 
						|
		if (bad) {
 | 
						|
			if (p99 < 0)
 | 
						|
				p99 = kqd->domain_p99[sched_domain];
 | 
						|
			kqd->domain_p99[sched_domain] = -1;
 | 
						|
		} else if (p99 >= 0) {
 | 
						|
			kqd->domain_p99[sched_domain] = p99;
 | 
						|
		}
 | 
						|
		if (p99 < 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this domain has bad latency, throttle less. Otherwise,
 | 
						|
		 * throttle more iff we determined that there is congestion.
 | 
						|
		 *
 | 
						|
		 * The new depth is scaled linearly with the p99 latency vs the
 | 
						|
		 * latency target. E.g., if the p99 is 3/4 of the target, then
 | 
						|
		 * we throttle down to 3/4 of the current depth, and if the p99
 | 
						|
		 * is 2x the target, then we double the depth.
 | 
						|
		 */
 | 
						|
		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 | 
						|
			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 | 
						|
			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 | 
						|
			kyber_resize_domain(kqd, sched_domain, depth);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
	int i;
 | 
						|
 | 
						|
	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 | 
						|
	if (!kqd)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	kqd->q = q;
 | 
						|
	kqd->dev = disk_devt(q->disk);
 | 
						|
 | 
						|
	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 | 
						|
					    GFP_KERNEL | __GFP_ZERO);
 | 
						|
	if (!kqd->cpu_latency)
 | 
						|
		goto err_kqd;
 | 
						|
 | 
						|
	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | 
						|
		WARN_ON(!kyber_depth[i]);
 | 
						|
		WARN_ON(!kyber_batch_size[i]);
 | 
						|
		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 | 
						|
					      kyber_depth[i], -1, false,
 | 
						|
					      GFP_KERNEL, q->node);
 | 
						|
		if (ret) {
 | 
						|
			while (--i >= 0)
 | 
						|
				sbitmap_queue_free(&kqd->domain_tokens[i]);
 | 
						|
			goto err_buckets;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_OTHER; i++) {
 | 
						|
		kqd->domain_p99[i] = -1;
 | 
						|
		kqd->latency_targets[i] = kyber_latency_targets[i];
 | 
						|
	}
 | 
						|
 | 
						|
	return kqd;
 | 
						|
 | 
						|
err_buckets:
 | 
						|
	free_percpu(kqd->cpu_latency);
 | 
						|
err_kqd:
 | 
						|
	kfree(kqd);
 | 
						|
err:
 | 
						|
	return ERR_PTR(ret);
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd;
 | 
						|
	struct elevator_queue *eq;
 | 
						|
 | 
						|
	eq = elevator_alloc(q, e);
 | 
						|
	if (!eq)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	kqd = kyber_queue_data_alloc(q);
 | 
						|
	if (IS_ERR(kqd)) {
 | 
						|
		kobject_put(&eq->kobj);
 | 
						|
		return PTR_ERR(kqd);
 | 
						|
	}
 | 
						|
 | 
						|
	blk_stat_enable_accounting(q);
 | 
						|
 | 
						|
	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
 | 
						|
 | 
						|
	eq->elevator_data = kqd;
 | 
						|
	q->elevator = eq;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_exit_sched(struct elevator_queue *e)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = e->elevator_data;
 | 
						|
	int i;
 | 
						|
 | 
						|
	timer_shutdown_sync(&kqd->timer);
 | 
						|
	blk_stat_disable_accounting(kqd->q);
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | 
						|
		sbitmap_queue_free(&kqd->domain_tokens[i]);
 | 
						|
	free_percpu(kqd->cpu_latency);
 | 
						|
	kfree(kqd);
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	spin_lock_init(&kcq->lock);
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | 
						|
		INIT_LIST_HEAD(&kcq->rq_list[i]);
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 | 
						|
	struct blk_mq_tags *tags = hctx->sched_tags;
 | 
						|
	unsigned int shift = tags->bitmap_tags.sb.shift;
 | 
						|
 | 
						|
	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 | 
						|
 | 
						|
	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 | 
						|
{
 | 
						|
	struct kyber_hctx_data *khd;
 | 
						|
	int i;
 | 
						|
 | 
						|
	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 | 
						|
	if (!khd)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 | 
						|
				       sizeof(struct kyber_ctx_queue),
 | 
						|
				       GFP_KERNEL, hctx->numa_node);
 | 
						|
	if (!khd->kcqs)
 | 
						|
		goto err_khd;
 | 
						|
 | 
						|
	for (i = 0; i < hctx->nr_ctx; i++)
 | 
						|
		kyber_ctx_queue_init(&khd->kcqs[i]);
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | 
						|
		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 | 
						|
				      ilog2(8), GFP_KERNEL, hctx->numa_node,
 | 
						|
				      false, false)) {
 | 
						|
			while (--i >= 0)
 | 
						|
				sbitmap_free(&khd->kcq_map[i]);
 | 
						|
			goto err_kcqs;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_init(&khd->lock);
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | 
						|
		INIT_LIST_HEAD(&khd->rqs[i]);
 | 
						|
		khd->domain_wait[i].sbq = NULL;
 | 
						|
		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 | 
						|
					  kyber_domain_wake);
 | 
						|
		khd->domain_wait[i].wait.private = hctx;
 | 
						|
		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 | 
						|
		atomic_set(&khd->wait_index[i], 0);
 | 
						|
	}
 | 
						|
 | 
						|
	khd->cur_domain = 0;
 | 
						|
	khd->batching = 0;
 | 
						|
 | 
						|
	hctx->sched_data = khd;
 | 
						|
	kyber_depth_updated(hctx);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_kcqs:
 | 
						|
	kfree(khd->kcqs);
 | 
						|
err_khd:
 | 
						|
	kfree(khd);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 | 
						|
{
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | 
						|
		sbitmap_free(&khd->kcq_map[i]);
 | 
						|
	kfree(khd->kcqs);
 | 
						|
	kfree(hctx->sched_data);
 | 
						|
}
 | 
						|
 | 
						|
static int rq_get_domain_token(struct request *rq)
 | 
						|
{
 | 
						|
	return (long)rq->elv.priv[0];
 | 
						|
}
 | 
						|
 | 
						|
static void rq_set_domain_token(struct request *rq, int token)
 | 
						|
{
 | 
						|
	rq->elv.priv[0] = (void *)(long)token;
 | 
						|
}
 | 
						|
 | 
						|
static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 | 
						|
				  struct request *rq)
 | 
						|
{
 | 
						|
	unsigned int sched_domain;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	nr = rq_get_domain_token(rq);
 | 
						|
	if (nr != -1) {
 | 
						|
		sched_domain = kyber_sched_domain(rq->cmd_flags);
 | 
						|
		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 | 
						|
				    rq->mq_ctx->cpu);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We use the scheduler tags as per-hardware queue queueing tokens.
 | 
						|
	 * Async requests can be limited at this stage.
 | 
						|
	 */
 | 
						|
	if (!op_is_sync(opf)) {
 | 
						|
		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 | 
						|
 | 
						|
		data->shallow_depth = kqd->async_depth;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
 | 
						|
		unsigned int nr_segs)
 | 
						|
{
 | 
						|
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 | 
						|
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 | 
						|
	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 | 
						|
	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 | 
						|
	bool merged;
 | 
						|
 | 
						|
	spin_lock(&kcq->lock);
 | 
						|
	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 | 
						|
	spin_unlock(&kcq->lock);
 | 
						|
 | 
						|
	return merged;
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_prepare_request(struct request *rq)
 | 
						|
{
 | 
						|
	rq_set_domain_token(rq, -1);
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 | 
						|
				  struct list_head *rq_list,
 | 
						|
				  blk_insert_t flags)
 | 
						|
{
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
	struct request *rq, *next;
 | 
						|
 | 
						|
	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 | 
						|
		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 | 
						|
		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 | 
						|
		struct list_head *head = &kcq->rq_list[sched_domain];
 | 
						|
 | 
						|
		spin_lock(&kcq->lock);
 | 
						|
		trace_block_rq_insert(rq);
 | 
						|
		if (flags & BLK_MQ_INSERT_AT_HEAD)
 | 
						|
			list_move(&rq->queuelist, head);
 | 
						|
		else
 | 
						|
			list_move_tail(&rq->queuelist, head);
 | 
						|
		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 | 
						|
				rq->mq_ctx->index_hw[hctx->type]);
 | 
						|
		spin_unlock(&kcq->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_finish_request(struct request *rq)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 | 
						|
 | 
						|
	rq_clear_domain_token(kqd, rq);
 | 
						|
}
 | 
						|
 | 
						|
static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 | 
						|
			       unsigned int sched_domain, unsigned int type,
 | 
						|
			       u64 target, u64 latency)
 | 
						|
{
 | 
						|
	unsigned int bucket;
 | 
						|
	u64 divisor;
 | 
						|
 | 
						|
	if (latency > 0) {
 | 
						|
		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 | 
						|
		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 | 
						|
			       KYBER_LATENCY_BUCKETS - 1);
 | 
						|
	} else {
 | 
						|
		bucket = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_completed_request(struct request *rq, u64 now)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 | 
						|
	struct kyber_cpu_latency *cpu_latency;
 | 
						|
	unsigned int sched_domain;
 | 
						|
	u64 target;
 | 
						|
 | 
						|
	sched_domain = kyber_sched_domain(rq->cmd_flags);
 | 
						|
	if (sched_domain == KYBER_OTHER)
 | 
						|
		return;
 | 
						|
 | 
						|
	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 | 
						|
	target = kqd->latency_targets[sched_domain];
 | 
						|
	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 | 
						|
			   target, now - rq->start_time_ns);
 | 
						|
	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 | 
						|
			   now - rq->io_start_time_ns);
 | 
						|
	put_cpu_ptr(kqd->cpu_latency);
 | 
						|
 | 
						|
	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 | 
						|
}
 | 
						|
 | 
						|
struct flush_kcq_data {
 | 
						|
	struct kyber_hctx_data *khd;
 | 
						|
	unsigned int sched_domain;
 | 
						|
	struct list_head *list;
 | 
						|
};
 | 
						|
 | 
						|
static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 | 
						|
{
 | 
						|
	struct flush_kcq_data *flush_data = data;
 | 
						|
	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 | 
						|
 | 
						|
	spin_lock(&kcq->lock);
 | 
						|
	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 | 
						|
			      flush_data->list);
 | 
						|
	sbitmap_clear_bit(sb, bitnr);
 | 
						|
	spin_unlock(&kcq->lock);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 | 
						|
				  unsigned int sched_domain,
 | 
						|
				  struct list_head *list)
 | 
						|
{
 | 
						|
	struct flush_kcq_data data = {
 | 
						|
		.khd = khd,
 | 
						|
		.sched_domain = sched_domain,
 | 
						|
		.list = list,
 | 
						|
	};
 | 
						|
 | 
						|
	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 | 
						|
			     flush_busy_kcq, &data);
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 | 
						|
			     void *key)
 | 
						|
{
 | 
						|
	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 | 
						|
	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 | 
						|
 | 
						|
	sbitmap_del_wait_queue(wait);
 | 
						|
	blk_mq_run_hw_queue(hctx, true);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 | 
						|
				  struct kyber_hctx_data *khd,
 | 
						|
				  struct blk_mq_hw_ctx *hctx)
 | 
						|
{
 | 
						|
	unsigned int sched_domain = khd->cur_domain;
 | 
						|
	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 | 
						|
	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 | 
						|
	struct sbq_wait_state *ws;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	nr = __sbitmap_queue_get(domain_tokens);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we failed to get a domain token, make sure the hardware queue is
 | 
						|
	 * run when one becomes available. Note that this is serialized on
 | 
						|
	 * khd->lock, but we still need to be careful about the waker.
 | 
						|
	 */
 | 
						|
	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 | 
						|
		ws = sbq_wait_ptr(domain_tokens,
 | 
						|
				  &khd->wait_index[sched_domain]);
 | 
						|
		khd->domain_ws[sched_domain] = ws;
 | 
						|
		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Try again in case a token was freed before we got on the wait
 | 
						|
		 * queue.
 | 
						|
		 */
 | 
						|
		nr = __sbitmap_queue_get(domain_tokens);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we got a token while we were on the wait queue, remove ourselves
 | 
						|
	 * from the wait queue to ensure that all wake ups make forward
 | 
						|
	 * progress. It's possible that the waker already deleted the entry
 | 
						|
	 * between the !list_empty_careful() check and us grabbing the lock, but
 | 
						|
	 * list_del_init() is okay with that.
 | 
						|
	 */
 | 
						|
	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 | 
						|
		ws = khd->domain_ws[sched_domain];
 | 
						|
		spin_lock_irq(&ws->wait.lock);
 | 
						|
		sbitmap_del_wait_queue(wait);
 | 
						|
		spin_unlock_irq(&ws->wait.lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
static struct request *
 | 
						|
kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 | 
						|
			  struct kyber_hctx_data *khd,
 | 
						|
			  struct blk_mq_hw_ctx *hctx)
 | 
						|
{
 | 
						|
	struct list_head *rqs;
 | 
						|
	struct request *rq;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	rqs = &khd->rqs[khd->cur_domain];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we already have a flushed request, then we just need to get a
 | 
						|
	 * token for it. Otherwise, if there are pending requests in the kcqs,
 | 
						|
	 * flush the kcqs, but only if we can get a token. If not, we should
 | 
						|
	 * leave the requests in the kcqs so that they can be merged. Note that
 | 
						|
	 * khd->lock serializes the flushes, so if we observed any bit set in
 | 
						|
	 * the kcq_map, we will always get a request.
 | 
						|
	 */
 | 
						|
	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 | 
						|
	if (rq) {
 | 
						|
		nr = kyber_get_domain_token(kqd, khd, hctx);
 | 
						|
		if (nr >= 0) {
 | 
						|
			khd->batching++;
 | 
						|
			rq_set_domain_token(rq, nr);
 | 
						|
			list_del_init(&rq->queuelist);
 | 
						|
			return rq;
 | 
						|
		} else {
 | 
						|
			trace_kyber_throttled(kqd->dev,
 | 
						|
					      kyber_domain_names[khd->cur_domain]);
 | 
						|
		}
 | 
						|
	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 | 
						|
		nr = kyber_get_domain_token(kqd, khd, hctx);
 | 
						|
		if (nr >= 0) {
 | 
						|
			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 | 
						|
			rq = list_first_entry(rqs, struct request, queuelist);
 | 
						|
			khd->batching++;
 | 
						|
			rq_set_domain_token(rq, nr);
 | 
						|
			list_del_init(&rq->queuelist);
 | 
						|
			return rq;
 | 
						|
		} else {
 | 
						|
			trace_kyber_throttled(kqd->dev,
 | 
						|
					      kyber_domain_names[khd->cur_domain]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* There were either no pending requests or no tokens. */
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 | 
						|
{
 | 
						|
	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
	struct request *rq;
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock(&khd->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First, if we are still entitled to batch, try to dispatch a request
 | 
						|
	 * from the batch.
 | 
						|
	 */
 | 
						|
	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 | 
						|
		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 | 
						|
		if (rq)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Either,
 | 
						|
	 * 1. We were no longer entitled to a batch.
 | 
						|
	 * 2. The domain we were batching didn't have any requests.
 | 
						|
	 * 3. The domain we were batching was out of tokens.
 | 
						|
	 *
 | 
						|
	 * Start another batch. Note that this wraps back around to the original
 | 
						|
	 * domain if no other domains have requests or tokens.
 | 
						|
	 */
 | 
						|
	khd->batching = 0;
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | 
						|
		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 | 
						|
			khd->cur_domain = 0;
 | 
						|
		else
 | 
						|
			khd->cur_domain++;
 | 
						|
 | 
						|
		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 | 
						|
		if (rq)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	rq = NULL;
 | 
						|
out:
 | 
						|
	spin_unlock(&khd->lock);
 | 
						|
	return rq;
 | 
						|
}
 | 
						|
 | 
						|
static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 | 
						|
{
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | 
						|
		if (!list_empty_careful(&khd->rqs[i]) ||
 | 
						|
		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
#define KYBER_LAT_SHOW_STORE(domain, name)				\
 | 
						|
static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 | 
						|
				       char *page)			\
 | 
						|
{									\
 | 
						|
	struct kyber_queue_data *kqd = e->elevator_data;		\
 | 
						|
									\
 | 
						|
	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 | 
						|
}									\
 | 
						|
									\
 | 
						|
static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 | 
						|
					const char *page, size_t count)	\
 | 
						|
{									\
 | 
						|
	struct kyber_queue_data *kqd = e->elevator_data;		\
 | 
						|
	unsigned long long nsec;					\
 | 
						|
	int ret;							\
 | 
						|
									\
 | 
						|
	ret = kstrtoull(page, 10, &nsec);				\
 | 
						|
	if (ret)							\
 | 
						|
		return ret;						\
 | 
						|
									\
 | 
						|
	kqd->latency_targets[domain] = nsec;				\
 | 
						|
									\
 | 
						|
	return count;							\
 | 
						|
}
 | 
						|
KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 | 
						|
KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 | 
						|
#undef KYBER_LAT_SHOW_STORE
 | 
						|
 | 
						|
#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 | 
						|
static struct elv_fs_entry kyber_sched_attrs[] = {
 | 
						|
	KYBER_LAT_ATTR(read),
 | 
						|
	KYBER_LAT_ATTR(write),
 | 
						|
	__ATTR_NULL
 | 
						|
};
 | 
						|
#undef KYBER_LAT_ATTR
 | 
						|
 | 
						|
#ifdef CONFIG_BLK_DEBUG_FS
 | 
						|
#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 | 
						|
static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 | 
						|
{									\
 | 
						|
	struct request_queue *q = data;					\
 | 
						|
	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 | 
						|
									\
 | 
						|
	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 | 
						|
	return 0;							\
 | 
						|
}									\
 | 
						|
									\
 | 
						|
static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 | 
						|
	__acquires(&khd->lock)						\
 | 
						|
{									\
 | 
						|
	struct blk_mq_hw_ctx *hctx = m->private;			\
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | 
						|
									\
 | 
						|
	spin_lock(&khd->lock);						\
 | 
						|
	return seq_list_start(&khd->rqs[domain], *pos);			\
 | 
						|
}									\
 | 
						|
									\
 | 
						|
static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 | 
						|
				     loff_t *pos)			\
 | 
						|
{									\
 | 
						|
	struct blk_mq_hw_ctx *hctx = m->private;			\
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | 
						|
									\
 | 
						|
	return seq_list_next(v, &khd->rqs[domain], pos);		\
 | 
						|
}									\
 | 
						|
									\
 | 
						|
static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 | 
						|
	__releases(&khd->lock)						\
 | 
						|
{									\
 | 
						|
	struct blk_mq_hw_ctx *hctx = m->private;			\
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | 
						|
									\
 | 
						|
	spin_unlock(&khd->lock);					\
 | 
						|
}									\
 | 
						|
									\
 | 
						|
static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 | 
						|
	.start	= kyber_##name##_rqs_start,				\
 | 
						|
	.next	= kyber_##name##_rqs_next,				\
 | 
						|
	.stop	= kyber_##name##_rqs_stop,				\
 | 
						|
	.show	= blk_mq_debugfs_rq_show,				\
 | 
						|
};									\
 | 
						|
									\
 | 
						|
static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 | 
						|
{									\
 | 
						|
	struct blk_mq_hw_ctx *hctx = data;				\
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | 
						|
	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 | 
						|
									\
 | 
						|
	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 | 
						|
	return 0;							\
 | 
						|
}
 | 
						|
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 | 
						|
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 | 
						|
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 | 
						|
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 | 
						|
#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 | 
						|
 | 
						|
static int kyber_async_depth_show(void *data, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct request_queue *q = data;
 | 
						|
	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 | 
						|
 | 
						|
	seq_printf(m, "%u\n", kqd->async_depth);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_cur_domain_show(void *data, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct blk_mq_hw_ctx *hctx = data;
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
 | 
						|
	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kyber_batching_show(void *data, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct blk_mq_hw_ctx *hctx = data;
 | 
						|
	struct kyber_hctx_data *khd = hctx->sched_data;
 | 
						|
 | 
						|
	seq_printf(m, "%u\n", khd->batching);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 | 
						|
	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 | 
						|
static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 | 
						|
	KYBER_QUEUE_DOMAIN_ATTRS(read),
 | 
						|
	KYBER_QUEUE_DOMAIN_ATTRS(write),
 | 
						|
	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 | 
						|
	KYBER_QUEUE_DOMAIN_ATTRS(other),
 | 
						|
	{"async_depth", 0400, kyber_async_depth_show},
 | 
						|
	{},
 | 
						|
};
 | 
						|
#undef KYBER_QUEUE_DOMAIN_ATTRS
 | 
						|
 | 
						|
#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 | 
						|
	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 | 
						|
	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 | 
						|
static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 | 
						|
	KYBER_HCTX_DOMAIN_ATTRS(read),
 | 
						|
	KYBER_HCTX_DOMAIN_ATTRS(write),
 | 
						|
	KYBER_HCTX_DOMAIN_ATTRS(discard),
 | 
						|
	KYBER_HCTX_DOMAIN_ATTRS(other),
 | 
						|
	{"cur_domain", 0400, kyber_cur_domain_show},
 | 
						|
	{"batching", 0400, kyber_batching_show},
 | 
						|
	{},
 | 
						|
};
 | 
						|
#undef KYBER_HCTX_DOMAIN_ATTRS
 | 
						|
#endif
 | 
						|
 | 
						|
static struct elevator_type kyber_sched = {
 | 
						|
	.ops = {
 | 
						|
		.init_sched = kyber_init_sched,
 | 
						|
		.exit_sched = kyber_exit_sched,
 | 
						|
		.init_hctx = kyber_init_hctx,
 | 
						|
		.exit_hctx = kyber_exit_hctx,
 | 
						|
		.limit_depth = kyber_limit_depth,
 | 
						|
		.bio_merge = kyber_bio_merge,
 | 
						|
		.prepare_request = kyber_prepare_request,
 | 
						|
		.insert_requests = kyber_insert_requests,
 | 
						|
		.finish_request = kyber_finish_request,
 | 
						|
		.requeue_request = kyber_finish_request,
 | 
						|
		.completed_request = kyber_completed_request,
 | 
						|
		.dispatch_request = kyber_dispatch_request,
 | 
						|
		.has_work = kyber_has_work,
 | 
						|
		.depth_updated = kyber_depth_updated,
 | 
						|
	},
 | 
						|
#ifdef CONFIG_BLK_DEBUG_FS
 | 
						|
	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
 | 
						|
	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
 | 
						|
#endif
 | 
						|
	.elevator_attrs = kyber_sched_attrs,
 | 
						|
	.elevator_name = "kyber",
 | 
						|
	.elevator_owner = THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
static int __init kyber_init(void)
 | 
						|
{
 | 
						|
	return elv_register(&kyber_sched);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit kyber_exit(void)
 | 
						|
{
 | 
						|
	elv_unregister(&kyber_sched);
 | 
						|
}
 | 
						|
 | 
						|
module_init(kyber_init);
 | 
						|
module_exit(kyber_exit);
 | 
						|
 | 
						|
MODULE_AUTHOR("Omar Sandoval");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("Kyber I/O scheduler");
 |