1123 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1123 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Volume Management Device driver
 | |
|  * Copyright (c) 2015, Intel Corporation.
 | |
|  */
 | |
| 
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/msi.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci-acpi.h>
 | |
| #include <linux/pci-ecam.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/rcupdate.h>
 | |
| 
 | |
| #include <asm/irqdomain.h>
 | |
| 
 | |
| #define VMD_CFGBAR	0
 | |
| #define VMD_MEMBAR1	2
 | |
| #define VMD_MEMBAR2	4
 | |
| 
 | |
| #define PCI_REG_VMCAP		0x40
 | |
| #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 | |
| #define PCI_REG_VMCONFIG	0x44
 | |
| #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 | |
| #define VMCONFIG_MSI_REMAP	0x2
 | |
| #define PCI_REG_VMLOCK		0x70
 | |
| #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 | |
| 
 | |
| #define MB2_SHADOW_OFFSET	0x2000
 | |
| #define MB2_SHADOW_SIZE		16
 | |
| 
 | |
| enum vmd_features {
 | |
| 	/*
 | |
| 	 * Device may contain registers which hint the physical location of the
 | |
| 	 * membars, in order to allow proper address translation during
 | |
| 	 * resource assignment to enable guest virtualization
 | |
| 	 */
 | |
| 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
 | |
| 
 | |
| 	/*
 | |
| 	 * Device may provide root port configuration information which limits
 | |
| 	 * bus numbering
 | |
| 	 */
 | |
| 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
 | |
| 
 | |
| 	/*
 | |
| 	 * Device contains physical location shadow registers in
 | |
| 	 * vendor-specific capability space
 | |
| 	 */
 | |
| 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
 | |
| 
 | |
| 	/*
 | |
| 	 * Device may use MSI-X vector 0 for software triggering and will not
 | |
| 	 * be used for MSI remapping
 | |
| 	 */
 | |
| 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
 | |
| 
 | |
| 	/*
 | |
| 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
 | |
| 	 * avoiding the requirement of a VMD MSI domain for child device
 | |
| 	 * interrupt handling.
 | |
| 	 */
 | |
| 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable ASPM on the PCIE root ports and set the default LTR of the
 | |
| 	 * storage devices on platforms where these values are not configured by
 | |
| 	 * BIOS. This is needed for laptops, which require these settings for
 | |
| 	 * proper power management of the SoC.
 | |
| 	 */
 | |
| 	VMD_FEAT_BIOS_PM_QUIRK		= (1 << 5),
 | |
| };
 | |
| 
 | |
| #define VMD_BIOS_PM_QUIRK_LTR	0x1003	/* 3145728 ns */
 | |
| 
 | |
| #define VMD_FEATS_CLIENT	(VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |	\
 | |
| 				 VMD_FEAT_HAS_BUS_RESTRICTIONS |	\
 | |
| 				 VMD_FEAT_OFFSET_FIRST_VECTOR |		\
 | |
| 				 VMD_FEAT_BIOS_PM_QUIRK)
 | |
| 
 | |
| static DEFINE_IDA(vmd_instance_ida);
 | |
| 
 | |
| /*
 | |
|  * Lock for manipulating VMD IRQ lists.
 | |
|  */
 | |
| static DEFINE_RAW_SPINLOCK(list_lock);
 | |
| 
 | |
| /**
 | |
|  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 | |
|  * @node:	list item for parent traversal.
 | |
|  * @irq:	back pointer to parent.
 | |
|  * @enabled:	true if driver enabled IRQ
 | |
|  * @virq:	the virtual IRQ value provided to the requesting driver.
 | |
|  *
 | |
|  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 | |
|  * a VMD IRQ using this structure.
 | |
|  */
 | |
| struct vmd_irq {
 | |
| 	struct list_head	node;
 | |
| 	struct vmd_irq_list	*irq;
 | |
| 	bool			enabled;
 | |
| 	unsigned int		virq;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 | |
|  * @irq_list:	the list of irq's the VMD one demuxes to.
 | |
|  * @srcu:	SRCU struct for local synchronization.
 | |
|  * @count:	number of child IRQs assigned to this vector; used to track
 | |
|  *		sharing.
 | |
|  * @virq:	The underlying VMD Linux interrupt number
 | |
|  */
 | |
| struct vmd_irq_list {
 | |
| 	struct list_head	irq_list;
 | |
| 	struct srcu_struct	srcu;
 | |
| 	unsigned int		count;
 | |
| 	unsigned int		virq;
 | |
| };
 | |
| 
 | |
| struct vmd_dev {
 | |
| 	struct pci_dev		*dev;
 | |
| 
 | |
| 	spinlock_t		cfg_lock;
 | |
| 	void __iomem		*cfgbar;
 | |
| 
 | |
| 	int msix_count;
 | |
| 	struct vmd_irq_list	*irqs;
 | |
| 
 | |
| 	struct pci_sysdata	sysdata;
 | |
| 	struct resource		resources[3];
 | |
| 	struct irq_domain	*irq_domain;
 | |
| 	struct pci_bus		*bus;
 | |
| 	u8			busn_start;
 | |
| 	u8			first_vec;
 | |
| 	char			*name;
 | |
| 	int			instance;
 | |
| };
 | |
| 
 | |
| static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
 | |
| {
 | |
| 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
 | |
| }
 | |
| 
 | |
| static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
 | |
| 					   struct vmd_irq_list *irqs)
 | |
| {
 | |
| 	return irqs - vmd->irqs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
 | |
|  * but the MSI entry for the hardware it's driving will be programmed with a
 | |
|  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
 | |
|  * domain into one of its own, and the VMD driver de-muxes these for the
 | |
|  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
 | |
|  * and irq_chip to set this up.
 | |
|  */
 | |
| static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
 | |
| {
 | |
| 	struct vmd_irq *vmdirq = data->chip_data;
 | |
| 	struct vmd_irq_list *irq = vmdirq->irq;
 | |
| 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
 | |
| 
 | |
| 	memset(msg, 0, sizeof(*msg));
 | |
| 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
 | |
| 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
 | |
| 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
 | |
|  */
 | |
| static void vmd_irq_enable(struct irq_data *data)
 | |
| {
 | |
| 	struct vmd_irq *vmdirq = data->chip_data;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&list_lock, flags);
 | |
| 	WARN_ON(vmdirq->enabled);
 | |
| 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
 | |
| 	vmdirq->enabled = true;
 | |
| 	raw_spin_unlock_irqrestore(&list_lock, flags);
 | |
| 
 | |
| 	data->chip->irq_unmask(data);
 | |
| }
 | |
| 
 | |
| static void vmd_irq_disable(struct irq_data *data)
 | |
| {
 | |
| 	struct vmd_irq *vmdirq = data->chip_data;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	data->chip->irq_mask(data);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&list_lock, flags);
 | |
| 	if (vmdirq->enabled) {
 | |
| 		list_del_rcu(&vmdirq->node);
 | |
| 		vmdirq->enabled = false;
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&list_lock, flags);
 | |
| }
 | |
| 
 | |
| static struct irq_chip vmd_msi_controller = {
 | |
| 	.name			= "VMD-MSI",
 | |
| 	.irq_enable		= vmd_irq_enable,
 | |
| 	.irq_disable		= vmd_irq_disable,
 | |
| 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
 | |
| };
 | |
| 
 | |
| static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
 | |
| 				     msi_alloc_info_t *arg)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX: We can be even smarter selecting the best IRQ once we solve the
 | |
|  * affinity problem.
 | |
|  */
 | |
| static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i, best;
 | |
| 
 | |
| 	if (vmd->msix_count == 1 + vmd->first_vec)
 | |
| 		return &vmd->irqs[vmd->first_vec];
 | |
| 
 | |
| 	/*
 | |
| 	 * White list for fast-interrupt handlers. All others will share the
 | |
| 	 * "slow" interrupt vector.
 | |
| 	 */
 | |
| 	switch (msi_desc_to_pci_dev(desc)->class) {
 | |
| 	case PCI_CLASS_STORAGE_EXPRESS:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return &vmd->irqs[vmd->first_vec];
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&list_lock, flags);
 | |
| 	best = vmd->first_vec + 1;
 | |
| 	for (i = best; i < vmd->msix_count; i++)
 | |
| 		if (vmd->irqs[i].count < vmd->irqs[best].count)
 | |
| 			best = i;
 | |
| 	vmd->irqs[best].count++;
 | |
| 	raw_spin_unlock_irqrestore(&list_lock, flags);
 | |
| 
 | |
| 	return &vmd->irqs[best];
 | |
| }
 | |
| 
 | |
| static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
 | |
| 			unsigned int virq, irq_hw_number_t hwirq,
 | |
| 			msi_alloc_info_t *arg)
 | |
| {
 | |
| 	struct msi_desc *desc = arg->desc;
 | |
| 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
 | |
| 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
 | |
| 
 | |
| 	if (!vmdirq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&vmdirq->node);
 | |
| 	vmdirq->irq = vmd_next_irq(vmd, desc);
 | |
| 	vmdirq->virq = virq;
 | |
| 
 | |
| 	irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
 | |
| 			    handle_untracked_irq, vmd, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmd_msi_free(struct irq_domain *domain,
 | |
| 			struct msi_domain_info *info, unsigned int virq)
 | |
| {
 | |
| 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	synchronize_srcu(&vmdirq->irq->srcu);
 | |
| 
 | |
| 	/* XXX: Potential optimization to rebalance */
 | |
| 	raw_spin_lock_irqsave(&list_lock, flags);
 | |
| 	vmdirq->irq->count--;
 | |
| 	raw_spin_unlock_irqrestore(&list_lock, flags);
 | |
| 
 | |
| 	kfree(vmdirq);
 | |
| }
 | |
| 
 | |
| static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
 | |
| 			   int nvec, msi_alloc_info_t *arg)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 | |
| 
 | |
| 	if (nvec > vmd->msix_count)
 | |
| 		return vmd->msix_count;
 | |
| 
 | |
| 	memset(arg, 0, sizeof(*arg));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
 | |
| {
 | |
| 	arg->desc = desc;
 | |
| }
 | |
| 
 | |
| static struct msi_domain_ops vmd_msi_domain_ops = {
 | |
| 	.get_hwirq	= vmd_get_hwirq,
 | |
| 	.msi_init	= vmd_msi_init,
 | |
| 	.msi_free	= vmd_msi_free,
 | |
| 	.msi_prepare	= vmd_msi_prepare,
 | |
| 	.set_desc	= vmd_set_desc,
 | |
| };
 | |
| 
 | |
| static struct msi_domain_info vmd_msi_domain_info = {
 | |
| 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 | |
| 			  MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX,
 | |
| 	.ops		= &vmd_msi_domain_ops,
 | |
| 	.chip		= &vmd_msi_controller,
 | |
| };
 | |
| 
 | |
| static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
 | |
| 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
 | |
| 		       (reg | VMCONFIG_MSI_REMAP);
 | |
| 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
 | |
| }
 | |
| 
 | |
| static int vmd_create_irq_domain(struct vmd_dev *vmd)
 | |
| {
 | |
| 	struct fwnode_handle *fn;
 | |
| 
 | |
| 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
 | |
| 	if (!fn)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
 | |
| 	if (!vmd->irq_domain) {
 | |
| 		irq_domain_free_fwnode(fn);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmd_remove_irq_domain(struct vmd_dev *vmd)
 | |
| {
 | |
| 	/*
 | |
| 	 * Some production BIOS won't enable remapping between soft reboots.
 | |
| 	 * Ensure remapping is restored before unloading the driver.
 | |
| 	 */
 | |
| 	if (!vmd->msix_count)
 | |
| 		vmd_set_msi_remapping(vmd, true);
 | |
| 
 | |
| 	if (vmd->irq_domain) {
 | |
| 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
 | |
| 
 | |
| 		irq_domain_remove(vmd->irq_domain);
 | |
| 		irq_domain_free_fwnode(fn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 | |
| 				  unsigned int devfn, int reg, int len)
 | |
| {
 | |
| 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
 | |
| 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
 | |
| 
 | |
| 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return vmd->cfgbar + offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CPU may deadlock if config space is not serialized on some versions of this
 | |
|  * hardware, so all config space access is done under a spinlock.
 | |
|  */
 | |
| static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
 | |
| 			int len, u32 *value)
 | |
| {
 | |
| 	struct vmd_dev *vmd = vmd_from_bus(bus);
 | |
| 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	spin_lock_irqsave(&vmd->cfg_lock, flags);
 | |
| 	switch (len) {
 | |
| 	case 1:
 | |
| 		*value = readb(addr);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		*value = readw(addr);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		*value = readl(addr);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VMD h/w converts non-posted config writes to posted memory writes. The
 | |
|  * read-back in this function forces the completion so it returns only after
 | |
|  * the config space was written, as expected.
 | |
|  */
 | |
| static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
 | |
| 			 int len, u32 value)
 | |
| {
 | |
| 	struct vmd_dev *vmd = vmd_from_bus(bus);
 | |
| 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	spin_lock_irqsave(&vmd->cfg_lock, flags);
 | |
| 	switch (len) {
 | |
| 	case 1:
 | |
| 		writeb(value, addr);
 | |
| 		readb(addr);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		writew(value, addr);
 | |
| 		readw(addr);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		writel(value, addr);
 | |
| 		readl(addr);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct pci_ops vmd_ops = {
 | |
| 	.read		= vmd_pci_read,
 | |
| 	.write		= vmd_pci_write,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
 | |
| {
 | |
| 	struct pci_host_bridge *bridge;
 | |
| 	u32 busnr, addr;
 | |
| 
 | |
| 	if (pci_dev->bus->ops != &vmd_ops)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bridge = pci_find_host_bridge(pci_dev->bus);
 | |
| 	busnr = pci_dev->bus->number - bridge->bus->number;
 | |
| 	/*
 | |
| 	 * The address computation below is only applicable to relative bus
 | |
| 	 * numbers below 32.
 | |
| 	 */
 | |
| 	if (busnr > 31)
 | |
| 		return NULL;
 | |
| 
 | |
| 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
 | |
| 
 | |
| 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
 | |
| 		addr);
 | |
| 
 | |
| 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
 | |
| 				      false);
 | |
| }
 | |
| 
 | |
| static bool hook_installed;
 | |
| 
 | |
| static void vmd_acpi_begin(void)
 | |
| {
 | |
| 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
 | |
| 		return;
 | |
| 
 | |
| 	hook_installed = true;
 | |
| }
 | |
| 
 | |
| static void vmd_acpi_end(void)
 | |
| {
 | |
| 	if (!hook_installed)
 | |
| 		return;
 | |
| 
 | |
| 	pci_acpi_clear_companion_lookup_hook();
 | |
| 	hook_installed = false;
 | |
| }
 | |
| #else
 | |
| static inline void vmd_acpi_begin(void) { }
 | |
| static inline void vmd_acpi_end(void) { }
 | |
| #endif /* CONFIG_ACPI */
 | |
| 
 | |
| static void vmd_domain_reset(struct vmd_dev *vmd)
 | |
| {
 | |
| 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
 | |
| 	u8 dev, functions, fn, hdr_type;
 | |
| 	char __iomem *base;
 | |
| 
 | |
| 	for (bus = 0; bus < max_buses; bus++) {
 | |
| 		for (dev = 0; dev < 32; dev++) {
 | |
| 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
 | |
| 						PCI_DEVFN(dev, 0), 0);
 | |
| 
 | |
| 			hdr_type = readb(base + PCI_HEADER_TYPE);
 | |
| 
 | |
| 			functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
 | |
| 			for (fn = 0; fn < functions; fn++) {
 | |
| 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
 | |
| 						PCI_DEVFN(dev, fn), 0);
 | |
| 
 | |
| 				hdr_type = readb(base + PCI_HEADER_TYPE) &
 | |
| 						PCI_HEADER_TYPE_MASK;
 | |
| 
 | |
| 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
 | |
| 				    (readw(base + PCI_CLASS_DEVICE) !=
 | |
| 				     PCI_CLASS_BRIDGE_PCI))
 | |
| 					continue;
 | |
| 
 | |
| 				/*
 | |
| 				 * Temporarily disable the I/O range before updating
 | |
| 				 * PCI_IO_BASE.
 | |
| 				 */
 | |
| 				writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
 | |
| 				/* Update lower 16 bits of I/O base/limit */
 | |
| 				writew(0x00f0, base + PCI_IO_BASE);
 | |
| 				/* Update upper 16 bits of I/O base/limit */
 | |
| 				writel(0, base + PCI_IO_BASE_UPPER16);
 | |
| 
 | |
| 				/* MMIO Base/Limit */
 | |
| 				writel(0x0000fff0, base + PCI_MEMORY_BASE);
 | |
| 
 | |
| 				/* Prefetchable MMIO Base/Limit */
 | |
| 				writel(0, base + PCI_PREF_LIMIT_UPPER32);
 | |
| 				writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
 | |
| 				writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmd_attach_resources(struct vmd_dev *vmd)
 | |
| {
 | |
| 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
 | |
| 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
 | |
| }
 | |
| 
 | |
| static void vmd_detach_resources(struct vmd_dev *vmd)
 | |
| {
 | |
| 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
 | |
| 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
 | |
|  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
 | |
|  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
 | |
|  * currently reserved.
 | |
|  */
 | |
| static int vmd_find_free_domain(void)
 | |
| {
 | |
| 	int domain = 0xffff;
 | |
| 	struct pci_bus *bus = NULL;
 | |
| 
 | |
| 	while ((bus = pci_find_next_bus(bus)) != NULL)
 | |
| 		domain = max_t(int, domain, pci_domain_nr(bus));
 | |
| 	return domain + 1;
 | |
| }
 | |
| 
 | |
| static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
 | |
| 				resource_size_t *offset1,
 | |
| 				resource_size_t *offset2)
 | |
| {
 | |
| 	struct pci_dev *dev = vmd->dev;
 | |
| 	u64 phys1, phys2;
 | |
| 
 | |
| 	if (native_hint) {
 | |
| 		u32 vmlock;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
 | |
| 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		if (MB2_SHADOW_EN(vmlock)) {
 | |
| 			void __iomem *membar2;
 | |
| 
 | |
| 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
 | |
| 			if (!membar2)
 | |
| 				return -ENOMEM;
 | |
| 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
 | |
| 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
 | |
| 			pci_iounmap(dev, membar2);
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		/* Hypervisor-Emulated Vendor-Specific Capability */
 | |
| 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
 | |
| 		u32 reg, regu;
 | |
| 
 | |
| 		pci_read_config_dword(dev, pos + 4, ®);
 | |
| 
 | |
| 		/* "SHDW" */
 | |
| 		if (pos && reg == 0x53484457) {
 | |
| 			pci_read_config_dword(dev, pos + 8, ®);
 | |
| 			pci_read_config_dword(dev, pos + 12, ®u);
 | |
| 			phys1 = (u64) regu << 32 | reg;
 | |
| 
 | |
| 			pci_read_config_dword(dev, pos + 16, ®);
 | |
| 			pci_read_config_dword(dev, pos + 20, ®u);
 | |
| 			phys2 = (u64) regu << 32 | reg;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	*offset1 = dev->resource[VMD_MEMBAR1].start -
 | |
| 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
 | |
| 	*offset2 = dev->resource[VMD_MEMBAR2].start -
 | |
| 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmd_get_bus_number_start(struct vmd_dev *vmd)
 | |
| {
 | |
| 	struct pci_dev *dev = vmd->dev;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	pci_read_config_word(dev, PCI_REG_VMCAP, ®);
 | |
| 	if (BUS_RESTRICT_CAP(reg)) {
 | |
| 		pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
 | |
| 
 | |
| 		switch (BUS_RESTRICT_CFG(reg)) {
 | |
| 		case 0:
 | |
| 			vmd->busn_start = 0;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			vmd->busn_start = 128;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			vmd->busn_start = 224;
 | |
| 			break;
 | |
| 		default:
 | |
| 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
 | |
| 				BUS_RESTRICT_CFG(reg));
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t vmd_irq(int irq, void *data)
 | |
| {
 | |
| 	struct vmd_irq_list *irqs = data;
 | |
| 	struct vmd_irq *vmdirq;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&irqs->srcu);
 | |
| 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
 | |
| 		generic_handle_irq(vmdirq->virq);
 | |
| 	srcu_read_unlock(&irqs->srcu, idx);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int vmd_alloc_irqs(struct vmd_dev *vmd)
 | |
| {
 | |
| 	struct pci_dev *dev = vmd->dev;
 | |
| 	int i, err;
 | |
| 
 | |
| 	vmd->msix_count = pci_msix_vec_count(dev);
 | |
| 	if (vmd->msix_count < 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
 | |
| 						vmd->msix_count, PCI_IRQ_MSIX);
 | |
| 	if (vmd->msix_count < 0)
 | |
| 		return vmd->msix_count;
 | |
| 
 | |
| 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
 | |
| 				 GFP_KERNEL);
 | |
| 	if (!vmd->irqs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < vmd->msix_count; i++) {
 | |
| 		err = init_srcu_struct(&vmd->irqs[i].srcu);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
 | |
| 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
 | |
| 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
 | |
| 				       vmd_irq, IRQF_NO_THREAD,
 | |
| 				       vmd->name, &vmd->irqs[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since VMD is an aperture to regular PCIe root ports, only allow it to
 | |
|  * control features that the OS is allowed to control on the physical PCI bus.
 | |
|  */
 | |
| static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
 | |
| 				       struct pci_host_bridge *vmd_bridge)
 | |
| {
 | |
| 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
 | |
| 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
 | |
| 	vmd_bridge->native_aer = root_bridge->native_aer;
 | |
| 	vmd_bridge->native_pme = root_bridge->native_pme;
 | |
| 	vmd_bridge->native_ltr = root_bridge->native_ltr;
 | |
| 	vmd_bridge->native_dpc = root_bridge->native_dpc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
 | |
|  */
 | |
| static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
 | |
| {
 | |
| 	unsigned long features = *(unsigned long *)userdata;
 | |
| 	u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
 | |
| 	u32 ltr_reg;
 | |
| 	int pos;
 | |
| 
 | |
| 	if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
 | |
| 		return 0;
 | |
| 
 | |
| 	pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
 | |
| 
 | |
| 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
 | |
| 	if (!pos)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
 | |
| 	 * so the LTR quirk is not needed.
 | |
| 	 */
 | |
| 	pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
 | |
| 	if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the default values to the maximum required by the platform to
 | |
| 	 * allow the deepest power management savings. Write as a DWORD where
 | |
| 	 * the lower word is the max snoop latency and the upper word is the
 | |
| 	 * max non-snoop latency.
 | |
| 	 */
 | |
| 	ltr_reg = (ltr << 16) | ltr;
 | |
| 	pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
 | |
| 	pci_info(pdev, "VMD: Default LTR value set by driver\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
 | |
| {
 | |
| 	struct pci_sysdata *sd = &vmd->sysdata;
 | |
| 	struct resource *res;
 | |
| 	u32 upper_bits;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(resources);
 | |
| 	resource_size_t offset[2] = {0};
 | |
| 	resource_size_t membar2_offset = 0x2000;
 | |
| 	struct pci_bus *child;
 | |
| 	struct pci_dev *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Shadow registers may exist in certain VMD device ids which allow
 | |
| 	 * guests to correctly assign host physical addresses to the root ports
 | |
| 	 * and child devices. These registers will either return the host value
 | |
| 	 * or 0, depending on an enable bit in the VMD device.
 | |
| 	 */
 | |
| 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
 | |
| 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
 | |
| 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
 | |
| 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Certain VMD devices may have a root port configuration option which
 | |
| 	 * limits the bus range to between 0-127, 128-255, or 224-255
 | |
| 	 */
 | |
| 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
 | |
| 		ret = vmd_get_bus_number_start(vmd);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	res = &vmd->dev->resource[VMD_CFGBAR];
 | |
| 	vmd->resources[0] = (struct resource) {
 | |
| 		.name  = "VMD CFGBAR",
 | |
| 		.start = vmd->busn_start,
 | |
| 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
 | |
| 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
 | |
| 	 * put 32-bit resources in the window.
 | |
| 	 *
 | |
| 	 * There's no hardware reason why a 64-bit window *couldn't*
 | |
| 	 * contain a 32-bit resource, but pbus_size_mem() computes the
 | |
| 	 * bridge window size assuming a 64-bit window will contain no
 | |
| 	 * 32-bit resources.  __pci_assign_resource() enforces that
 | |
| 	 * artificial restriction to make sure everything will fit.
 | |
| 	 *
 | |
| 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
 | |
| 	 * if its address is <4GB so that we can convert it to a 32-bit
 | |
| 	 * resource.  To be visible to the host OS, all VMD endpoints must
 | |
| 	 * be initially configured by platform BIOS, which includes setting
 | |
| 	 * up these resources.  We can assume the device is configured
 | |
| 	 * according to the platform needs.
 | |
| 	 */
 | |
| 	res = &vmd->dev->resource[VMD_MEMBAR1];
 | |
| 	upper_bits = upper_32_bits(res->end);
 | |
| 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
 | |
| 	if (!upper_bits)
 | |
| 		flags &= ~IORESOURCE_MEM_64;
 | |
| 	vmd->resources[1] = (struct resource) {
 | |
| 		.name  = "VMD MEMBAR1",
 | |
| 		.start = res->start,
 | |
| 		.end   = res->end,
 | |
| 		.flags = flags,
 | |
| 		.parent = res,
 | |
| 	};
 | |
| 
 | |
| 	res = &vmd->dev->resource[VMD_MEMBAR2];
 | |
| 	upper_bits = upper_32_bits(res->end);
 | |
| 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
 | |
| 	if (!upper_bits)
 | |
| 		flags &= ~IORESOURCE_MEM_64;
 | |
| 	vmd->resources[2] = (struct resource) {
 | |
| 		.name  = "VMD MEMBAR2",
 | |
| 		.start = res->start + membar2_offset,
 | |
| 		.end   = res->end,
 | |
| 		.flags = flags,
 | |
| 		.parent = res,
 | |
| 	};
 | |
| 
 | |
| 	sd->vmd_dev = vmd->dev;
 | |
| 	sd->domain = vmd_find_free_domain();
 | |
| 	if (sd->domain < 0)
 | |
| 		return sd->domain;
 | |
| 
 | |
| 	sd->node = pcibus_to_node(vmd->dev->bus);
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently MSI remapping must be enabled in guest passthrough mode
 | |
| 	 * due to some missing interrupt remapping plumbing. This is probably
 | |
| 	 * acceptable because the guest is usually CPU-limited and MSI
 | |
| 	 * remapping doesn't become a performance bottleneck.
 | |
| 	 */
 | |
| 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
 | |
| 	    offset[0] || offset[1]) {
 | |
| 		ret = vmd_alloc_irqs(vmd);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		vmd_set_msi_remapping(vmd, true);
 | |
| 
 | |
| 		ret = vmd_create_irq_domain(vmd);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Override the IRQ domain bus token so the domain can be
 | |
| 		 * distinguished from a regular PCI/MSI domain.
 | |
| 		 */
 | |
| 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
 | |
| 	} else {
 | |
| 		vmd_set_msi_remapping(vmd, false);
 | |
| 	}
 | |
| 
 | |
| 	pci_add_resource(&resources, &vmd->resources[0]);
 | |
| 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
 | |
| 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
 | |
| 
 | |
| 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
 | |
| 				       &vmd_ops, sd, &resources);
 | |
| 	if (!vmd->bus) {
 | |
| 		pci_free_resource_list(&resources);
 | |
| 		vmd_remove_irq_domain(vmd);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
 | |
| 				   to_pci_host_bridge(vmd->bus->bridge));
 | |
| 
 | |
| 	vmd_attach_resources(vmd);
 | |
| 	if (vmd->irq_domain)
 | |
| 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 | |
| 	else
 | |
| 		dev_set_msi_domain(&vmd->bus->dev,
 | |
| 				   dev_get_msi_domain(&vmd->dev->dev));
 | |
| 
 | |
| 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
 | |
| 			       "domain"), "Can't create symlink to domain\n");
 | |
| 
 | |
| 	vmd_acpi_begin();
 | |
| 
 | |
| 	pci_scan_child_bus(vmd->bus);
 | |
| 	vmd_domain_reset(vmd);
 | |
| 
 | |
| 	/* When Intel VMD is enabled, the OS does not discover the Root Ports
 | |
| 	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
 | |
| 	 * a reset to the parent of the PCI device supplied as argument. This
 | |
| 	 * is why we pass a child device, so the reset can be triggered at
 | |
| 	 * the Intel bridge level and propagated to all the children in the
 | |
| 	 * hierarchy.
 | |
| 	 */
 | |
| 	list_for_each_entry(child, &vmd->bus->children, node) {
 | |
| 		if (!list_empty(&child->devices)) {
 | |
| 			dev = list_first_entry(&child->devices,
 | |
| 					       struct pci_dev, bus_list);
 | |
| 			ret = pci_reset_bus(dev);
 | |
| 			if (ret)
 | |
| 				pci_warn(dev, "can't reset device: %d\n", ret);
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pci_assign_unassigned_bus_resources(vmd->bus);
 | |
| 
 | |
| 	pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
 | |
| 
 | |
| 	/*
 | |
| 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
 | |
| 	 * and will fail pcie_bus_configure_settings() early. It can instead be
 | |
| 	 * run on each of the real root ports.
 | |
| 	 */
 | |
| 	list_for_each_entry(child, &vmd->bus->children, node)
 | |
| 		pcie_bus_configure_settings(child);
 | |
| 
 | |
| 	pci_bus_add_devices(vmd->bus);
 | |
| 
 | |
| 	vmd_acpi_end();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
 | |
| {
 | |
| 	unsigned long features = (unsigned long) id->driver_data;
 | |
| 	struct vmd_dev *vmd;
 | |
| 	int err;
 | |
| 
 | |
| 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
 | |
| 	if (!vmd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vmd->dev = dev;
 | |
| 	vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
 | |
| 	if (vmd->instance < 0)
 | |
| 		return vmd->instance;
 | |
| 
 | |
| 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
 | |
| 				   vmd->instance);
 | |
| 	if (!vmd->name) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_release_instance;
 | |
| 	}
 | |
| 
 | |
| 	err = pcim_enable_device(dev);
 | |
| 	if (err < 0)
 | |
| 		goto out_release_instance;
 | |
| 
 | |
| 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
 | |
| 	if (!vmd->cfgbar) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_release_instance;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(dev);
 | |
| 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
 | |
| 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
 | |
| 		err = -ENODEV;
 | |
| 		goto out_release_instance;
 | |
| 	}
 | |
| 
 | |
| 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
 | |
| 		vmd->first_vec = 1;
 | |
| 
 | |
| 	spin_lock_init(&vmd->cfg_lock);
 | |
| 	pci_set_drvdata(dev, vmd);
 | |
| 	err = vmd_enable_domain(vmd, features);
 | |
| 	if (err)
 | |
| 		goto out_release_instance;
 | |
| 
 | |
| 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
 | |
| 		 vmd->sysdata.domain);
 | |
| 	return 0;
 | |
| 
 | |
|  out_release_instance:
 | |
| 	ida_free(&vmd_instance_ida, vmd->instance);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void vmd_cleanup_srcu(struct vmd_dev *vmd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vmd->msix_count; i++)
 | |
| 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
 | |
| }
 | |
| 
 | |
| static void vmd_remove(struct pci_dev *dev)
 | |
| {
 | |
| 	struct vmd_dev *vmd = pci_get_drvdata(dev);
 | |
| 
 | |
| 	pci_stop_root_bus(vmd->bus);
 | |
| 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
 | |
| 	pci_remove_root_bus(vmd->bus);
 | |
| 	vmd_cleanup_srcu(vmd);
 | |
| 	vmd_detach_resources(vmd);
 | |
| 	vmd_remove_irq_domain(vmd);
 | |
| 	ida_free(&vmd_instance_ida, vmd->instance);
 | |
| }
 | |
| 
 | |
| static void vmd_shutdown(struct pci_dev *dev)
 | |
| {
 | |
| 	struct vmd_dev *vmd = pci_get_drvdata(dev);
 | |
| 
 | |
| 	vmd_remove_irq_domain(vmd);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int vmd_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vmd->msix_count; i++)
 | |
| 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmd_resume(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
 | |
| 	int err, i;
 | |
| 
 | |
| 	vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
 | |
| 
 | |
| 	for (i = 0; i < vmd->msix_count; i++) {
 | |
| 		err = devm_request_irq(dev, vmd->irqs[i].virq,
 | |
| 				       vmd_irq, IRQF_NO_THREAD,
 | |
| 				       vmd->name, &vmd->irqs[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
 | |
| 
 | |
| static const struct pci_device_id vmd_ids[] = {
 | |
| 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
 | |
| 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
 | |
| 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
 | |
| 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
 | |
| 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
 | |
| 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
 | |
| 	{PCI_VDEVICE(INTEL, 0x467f),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{PCI_VDEVICE(INTEL, 0x4c3d),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{PCI_VDEVICE(INTEL, 0xa77f),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{PCI_VDEVICE(INTEL, 0x7d0b),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{PCI_VDEVICE(INTEL, 0xad0b),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
 | |
| 		.driver_data = VMD_FEATS_CLIENT,},
 | |
| 	{0,}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, vmd_ids);
 | |
| 
 | |
| static struct pci_driver vmd_drv = {
 | |
| 	.name		= "vmd",
 | |
| 	.id_table	= vmd_ids,
 | |
| 	.probe		= vmd_probe,
 | |
| 	.remove		= vmd_remove,
 | |
| 	.shutdown	= vmd_shutdown,
 | |
| 	.driver		= {
 | |
| 		.pm	= &vmd_dev_pm_ops,
 | |
| 	},
 | |
| };
 | |
| module_pci_driver(vmd_drv);
 | |
| 
 | |
| MODULE_AUTHOR("Intel Corporation");
 | |
| MODULE_DESCRIPTION("Volume Management Device driver");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_VERSION("0.6");
 |