481 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			481 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2015 - 2016 Cavium, Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_pci.h>
 | |
| #include <linux/pci-acpi.h>
 | |
| #include <linux/pci-ecam.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/io-64-nonatomic-lo-hi.h>
 | |
| #include "../pci.h"
 | |
| 
 | |
| #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
 | |
| 
 | |
| #define PEM_CFG_WR 0x28
 | |
| #define PEM_CFG_RD 0x30
 | |
| 
 | |
| /*
 | |
|  * Enhanced Configuration Access Mechanism (ECAM)
 | |
|  *
 | |
|  * N.B. This is a non-standard platform-specific ECAM bus shift value.  For
 | |
|  * standard values defined in the PCI Express Base Specification see
 | |
|  * include/linux/pci-ecam.h.
 | |
|  */
 | |
| #define THUNDER_PCIE_ECAM_BUS_SHIFT	24
 | |
| 
 | |
| struct thunder_pem_pci {
 | |
| 	u32		ea_entry[3];
 | |
| 	void __iomem	*pem_reg_base;
 | |
| };
 | |
| 
 | |
| static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn,
 | |
| 				   int where, int size, u32 *val)
 | |
| {
 | |
| 	u64 read_val, tmp_val;
 | |
| 	struct pci_config_window *cfg = bus->sysdata;
 | |
| 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
 | |
| 
 | |
| 	if (devfn != 0 || where >= 2048)
 | |
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit accesses only.  Write the address to the low order
 | |
| 	 * bits of PEM_CFG_RD, then trigger the read by reading back.
 | |
| 	 * The config data lands in the upper 32-bits of PEM_CFG_RD.
 | |
| 	 */
 | |
| 	read_val = where & ~3ull;
 | |
| 	writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 	read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 	read_val >>= 32;
 | |
| 
 | |
| 	/*
 | |
| 	 * The config space contains some garbage, fix it up.  Also
 | |
| 	 * synthesize an EA capability for the BAR used by MSI-X.
 | |
| 	 */
 | |
| 	switch (where & ~3) {
 | |
| 	case 0x40:
 | |
| 		read_val &= 0xffff00ff;
 | |
| 		read_val |= 0x00007000; /* Skip MSI CAP */
 | |
| 		break;
 | |
| 	case 0x70: /* Express Cap */
 | |
| 		/*
 | |
| 		 * Change PME interrupt to vector 2 on T88 where it
 | |
| 		 * reads as 0, else leave it alone.
 | |
| 		 */
 | |
| 		if (!(read_val & (0x1f << 25)))
 | |
| 			read_val |= (2u << 25);
 | |
| 		break;
 | |
| 	case 0xb0: /* MSI-X Cap */
 | |
| 		/* TableSize=2 or 4, Next Cap is EA */
 | |
| 		read_val &= 0xc00000ff;
 | |
| 		/*
 | |
| 		 * If Express Cap(0x70) raw PME vector reads as 0 we are on
 | |
| 		 * T88 and TableSize is reported as 4, else TableSize
 | |
| 		 * is 2.
 | |
| 		 */
 | |
| 		writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		tmp_val >>= 32;
 | |
| 		if (!(tmp_val & (0x1f << 25)))
 | |
| 			read_val |= 0x0003bc00;
 | |
| 		else
 | |
| 			read_val |= 0x0001bc00;
 | |
| 		break;
 | |
| 	case 0xb4:
 | |
| 		/* Table offset=0, BIR=0 */
 | |
| 		read_val = 0x00000000;
 | |
| 		break;
 | |
| 	case 0xb8:
 | |
| 		/* BPA offset=0xf0000, BIR=0 */
 | |
| 		read_val = 0x000f0000;
 | |
| 		break;
 | |
| 	case 0xbc:
 | |
| 		/* EA, 1 entry, no next Cap */
 | |
| 		read_val = 0x00010014;
 | |
| 		break;
 | |
| 	case 0xc0:
 | |
| 		/* DW2 for type-1 */
 | |
| 		read_val = 0x00000000;
 | |
| 		break;
 | |
| 	case 0xc4:
 | |
| 		/* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
 | |
| 		read_val = 0x80ff0003;
 | |
| 		break;
 | |
| 	case 0xc8:
 | |
| 		read_val = pem_pci->ea_entry[0];
 | |
| 		break;
 | |
| 	case 0xcc:
 | |
| 		read_val = pem_pci->ea_entry[1];
 | |
| 		break;
 | |
| 	case 0xd0:
 | |
| 		read_val = pem_pci->ea_entry[2];
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	read_val >>= (8 * (where & 3));
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		read_val &= 0xff;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		read_val &= 0xffff;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	*val = read_val;
 | |
| 	return PCIBIOS_SUCCESSFUL;
 | |
| }
 | |
| 
 | |
| static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn,
 | |
| 				   int where, int size, u32 *val)
 | |
| {
 | |
| 	struct pci_config_window *cfg = bus->sysdata;
 | |
| 
 | |
| 	if (bus->number < cfg->busr.start ||
 | |
| 	    bus->number > cfg->busr.end)
 | |
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | |
| 
 | |
| 	/*
 | |
| 	 * The first device on the bus is the PEM PCIe bridge.
 | |
| 	 * Special case its config access.
 | |
| 	 */
 | |
| 	if (bus->number == cfg->busr.start)
 | |
| 		return thunder_pem_bridge_read(bus, devfn, where, size, val);
 | |
| 
 | |
| 	return pci_generic_config_read(bus, devfn, where, size, val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some of the w1c_bits below also include read-only or non-writable
 | |
|  * reserved bits, this makes the code simpler and is OK as the bits
 | |
|  * are not affected by writing zeros to them.
 | |
|  */
 | |
| static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned)
 | |
| {
 | |
| 	u32 w1c_bits = 0;
 | |
| 
 | |
| 	switch (where_aligned) {
 | |
| 	case 0x04: /* Command/Status */
 | |
| 	case 0x1c: /* Base and I/O Limit/Secondary Status */
 | |
| 		w1c_bits = 0xff000000;
 | |
| 		break;
 | |
| 	case 0x44: /* Power Management Control and Status */
 | |
| 		w1c_bits = 0xfffffe00;
 | |
| 		break;
 | |
| 	case 0x78: /* Device Control/Device Status */
 | |
| 	case 0x80: /* Link Control/Link Status */
 | |
| 	case 0x88: /* Slot Control/Slot Status */
 | |
| 	case 0x90: /* Root Status */
 | |
| 	case 0xa0: /* Link Control 2 Registers/Link Status 2 */
 | |
| 		w1c_bits = 0xffff0000;
 | |
| 		break;
 | |
| 	case 0x104: /* Uncorrectable Error Status */
 | |
| 	case 0x110: /* Correctable Error Status */
 | |
| 	case 0x130: /* Error Status */
 | |
| 	case 0x160: /* Link Control 4 */
 | |
| 		w1c_bits = 0xffffffff;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return w1c_bits;
 | |
| }
 | |
| 
 | |
| /* Some bits must be written to one so they appear to be read-only. */
 | |
| static u32 thunder_pem_bridge_w1_bits(u64 where_aligned)
 | |
| {
 | |
| 	u32 w1_bits;
 | |
| 
 | |
| 	switch (where_aligned) {
 | |
| 	case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
 | |
| 		/* Force 32-bit I/O addressing. */
 | |
| 		w1_bits = 0x0101;
 | |
| 		break;
 | |
| 	case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
 | |
| 		/* Force 64-bit addressing */
 | |
| 		w1_bits = 0x00010001;
 | |
| 		break;
 | |
| 	default:
 | |
| 		w1_bits = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return w1_bits;
 | |
| }
 | |
| 
 | |
| static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn,
 | |
| 				    int where, int size, u32 val)
 | |
| {
 | |
| 	struct pci_config_window *cfg = bus->sysdata;
 | |
| 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
 | |
| 	u64 write_val, read_val;
 | |
| 	u64 where_aligned = where & ~3ull;
 | |
| 	u32 mask = 0;
 | |
| 
 | |
| 
 | |
| 	if (devfn != 0 || where >= 2048)
 | |
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit accesses only.  If the write is for a size smaller
 | |
| 	 * than 32-bits, we must first read the 32-bit value and merge
 | |
| 	 * in the desired bits and then write the whole 32-bits back
 | |
| 	 * out.
 | |
| 	 */
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		read_val >>= 32;
 | |
| 		mask = ~(0xff << (8 * (where & 3)));
 | |
| 		read_val &= mask;
 | |
| 		val = (val & 0xff) << (8 * (where & 3));
 | |
| 		val |= (u32)read_val;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
 | |
| 		read_val >>= 32;
 | |
| 		mask = ~(0xffff << (8 * (where & 3)));
 | |
| 		read_val &= mask;
 | |
| 		val = (val & 0xffff) << (8 * (where & 3));
 | |
| 		val |= (u32)read_val;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By expanding the write width to 32 bits, we may
 | |
| 	 * inadvertently hit some W1C bits that were not intended to
 | |
| 	 * be written.  Calculate the mask that must be applied to the
 | |
| 	 * data to be written to avoid these cases.
 | |
| 	 */
 | |
| 	if (mask) {
 | |
| 		u32 w1c_bits = thunder_pem_bridge_w1c_bits(where);
 | |
| 
 | |
| 		if (w1c_bits) {
 | |
| 			mask &= w1c_bits;
 | |
| 			val &= ~mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some bits must be read-only with value of one.  Since the
 | |
| 	 * access method allows these to be cleared if a zero is
 | |
| 	 * written, force them to one before writing.
 | |
| 	 */
 | |
| 	val |= thunder_pem_bridge_w1_bits(where_aligned);
 | |
| 
 | |
| 	/*
 | |
| 	 * Low order bits are the config address, the high order 32
 | |
| 	 * bits are the data to be written.
 | |
| 	 */
 | |
| 	write_val = (((u64)val) << 32) | where_aligned;
 | |
| 	writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR);
 | |
| 	return PCIBIOS_SUCCESSFUL;
 | |
| }
 | |
| 
 | |
| static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn,
 | |
| 				    int where, int size, u32 val)
 | |
| {
 | |
| 	struct pci_config_window *cfg = bus->sysdata;
 | |
| 
 | |
| 	if (bus->number < cfg->busr.start ||
 | |
| 	    bus->number > cfg->busr.end)
 | |
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | |
| 	/*
 | |
| 	 * The first device on the bus is the PEM PCIe bridge.
 | |
| 	 * Special case its config access.
 | |
| 	 */
 | |
| 	if (bus->number == cfg->busr.start)
 | |
| 		return thunder_pem_bridge_write(bus, devfn, where, size, val);
 | |
| 
 | |
| 
 | |
| 	return pci_generic_config_write(bus, devfn, where, size, val);
 | |
| }
 | |
| 
 | |
| static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg,
 | |
| 			    struct resource *res_pem)
 | |
| {
 | |
| 	struct thunder_pem_pci *pem_pci;
 | |
| 	resource_size_t bar4_start;
 | |
| 
 | |
| 	pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL);
 | |
| 	if (!pem_pci)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000);
 | |
| 	if (!pem_pci->pem_reg_base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * The MSI-X BAR for the PEM and AER interrupts is located at
 | |
| 	 * a fixed offset from the PEM register base.  Generate a
 | |
| 	 * fragment of the synthesized Enhanced Allocation capability
 | |
| 	 * structure here for the BAR.
 | |
| 	 */
 | |
| 	bar4_start = res_pem->start + 0xf00000;
 | |
| 	pem_pci->ea_entry[0] = lower_32_bits(bar4_start) | 2;
 | |
| 	pem_pci->ea_entry[1] = lower_32_bits(res_pem->end - bar4_start) & ~3u;
 | |
| 	pem_pci->ea_entry[2] = upper_32_bits(bar4_start);
 | |
| 
 | |
| 	cfg->priv = pem_pci;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
 | |
| 
 | |
| #define PEM_RES_BASE		0x87e0c0000000ULL
 | |
| #define PEM_NODE_MASK		GENMASK_ULL(45, 44)
 | |
| #define PEM_INDX_MASK		GENMASK_ULL(26, 24)
 | |
| #define PEM_MIN_DOM_IN_NODE	4
 | |
| #define PEM_MAX_DOM_IN_NODE	10
 | |
| 
 | |
| static void thunder_pem_reserve_range(struct device *dev, int seg,
 | |
| 				      struct resource *r)
 | |
| {
 | |
| 	resource_size_t start = r->start, end = r->end;
 | |
| 	struct resource *res;
 | |
| 	const char *regionid;
 | |
| 
 | |
| 	regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg);
 | |
| 	if (!regionid)
 | |
| 		return;
 | |
| 
 | |
| 	res = request_mem_region(start, end - start + 1, regionid);
 | |
| 	if (res)
 | |
| 		res->flags &= ~IORESOURCE_BUSY;
 | |
| 	else
 | |
| 		kfree(regionid);
 | |
| 
 | |
| 	dev_info(dev, "%pR %s reserved\n", r,
 | |
| 		 res ? "has been" : "could not be");
 | |
| }
 | |
| 
 | |
| static void thunder_pem_legacy_fw(struct acpi_pci_root *root,
 | |
| 				 struct resource *res_pem)
 | |
| {
 | |
| 	int node = acpi_get_node(root->device->handle);
 | |
| 	int index;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		node = 0;
 | |
| 
 | |
| 	index = root->segment - PEM_MIN_DOM_IN_NODE;
 | |
| 	index -= node * PEM_MAX_DOM_IN_NODE;
 | |
| 	res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) |
 | |
| 					FIELD_PREP(PEM_INDX_MASK, index);
 | |
| 	res_pem->flags = IORESOURCE_MEM;
 | |
| }
 | |
| 
 | |
| static int thunder_pem_acpi_init(struct pci_config_window *cfg)
 | |
| {
 | |
| 	struct device *dev = cfg->parent;
 | |
| 	struct acpi_device *adev = to_acpi_device(dev);
 | |
| 	struct acpi_pci_root *root = acpi_driver_data(adev);
 | |
| 	struct resource *res_pem;
 | |
| 	int ret;
 | |
| 
 | |
| 	res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL);
 | |
| 	if (!res_pem)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we fail to gather resources it means that we run with old
 | |
| 	 * FW where we need to calculate PEM-specific resources manually.
 | |
| 	 */
 | |
| 	if (ret) {
 | |
| 		thunder_pem_legacy_fw(root, res_pem);
 | |
| 		/*
 | |
| 		 * Reserve 64K size PEM specific resources. The full 16M range
 | |
| 		 * size is required for thunder_pem_init() call.
 | |
| 		 */
 | |
| 		res_pem->end = res_pem->start + SZ_64K - 1;
 | |
| 		thunder_pem_reserve_range(dev, root->segment, res_pem);
 | |
| 		res_pem->end = res_pem->start + SZ_16M - 1;
 | |
| 
 | |
| 		/* Reserve PCI configuration space as well. */
 | |
| 		thunder_pem_reserve_range(dev, root->segment, &cfg->res);
 | |
| 	}
 | |
| 
 | |
| 	return thunder_pem_init(dev, cfg, res_pem);
 | |
| }
 | |
| 
 | |
| const struct pci_ecam_ops thunder_pem_ecam_ops = {
 | |
| 	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
 | |
| 	.init		= thunder_pem_acpi_init,
 | |
| 	.pci_ops	= {
 | |
| 		.map_bus	= pci_ecam_map_bus,
 | |
| 		.read		= thunder_pem_config_read,
 | |
| 		.write		= thunder_pem_config_write,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PCI_HOST_THUNDER_PEM
 | |
| 
 | |
| static int thunder_pem_platform_init(struct pci_config_window *cfg)
 | |
| {
 | |
| 	struct device *dev = cfg->parent;
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct resource *res_pem;
 | |
| 
 | |
| 	if (!dev->of_node)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The second register range is the PEM bridge to the PCIe
 | |
| 	 * bus.  It has a different config access method than those
 | |
| 	 * devices behind the bridge.
 | |
| 	 */
 | |
| 	res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 | |
| 	if (!res_pem) {
 | |
| 		dev_err(dev, "missing \"reg[1]\"property\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return thunder_pem_init(dev, cfg, res_pem);
 | |
| }
 | |
| 
 | |
| static const struct pci_ecam_ops pci_thunder_pem_ops = {
 | |
| 	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
 | |
| 	.init		= thunder_pem_platform_init,
 | |
| 	.pci_ops	= {
 | |
| 		.map_bus	= pci_ecam_map_bus,
 | |
| 		.read		= thunder_pem_config_read,
 | |
| 		.write		= thunder_pem_config_write,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static const struct of_device_id thunder_pem_of_match[] = {
 | |
| 	{
 | |
| 		.compatible = "cavium,pci-host-thunder-pem",
 | |
| 		.data = &pci_thunder_pem_ops,
 | |
| 	},
 | |
| 	{ },
 | |
| };
 | |
| 
 | |
| static struct platform_driver thunder_pem_driver = {
 | |
| 	.driver = {
 | |
| 		.name = KBUILD_MODNAME,
 | |
| 		.of_match_table = thunder_pem_of_match,
 | |
| 		.suppress_bind_attrs = true,
 | |
| 	},
 | |
| 	.probe = pci_host_common_probe,
 | |
| };
 | |
| builtin_platform_driver(thunder_pem_driver);
 | |
| 
 | |
| #endif
 | |
| #endif
 |