1304 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1304 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
 | |
| 
 | |
| /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
 | |
| /* Copyright (c) 2008-2019, IBM Corporation */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/net.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <net/tcp.h>
 | |
| 
 | |
| #include <rdma/iw_cm.h>
 | |
| #include <rdma/ib_verbs.h>
 | |
| #include <rdma/ib_user_verbs.h>
 | |
| 
 | |
| #include "siw.h"
 | |
| #include "siw_verbs.h"
 | |
| #include "siw_mem.h"
 | |
| 
 | |
| #define MAX_HDR_INLINE					\
 | |
| 	(((uint32_t)(sizeof(struct siw_rreq_pkt) -	\
 | |
| 		     sizeof(struct iwarp_send))) & 0xF8)
 | |
| 
 | |
| static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx)
 | |
| {
 | |
| 	struct siw_pbl *pbl = mem->pbl;
 | |
| 	u64 offset = addr - mem->va;
 | |
| 	dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx);
 | |
| 
 | |
| 	if (paddr)
 | |
| 		return ib_virt_dma_to_page(paddr);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct page *siw_get_page(struct siw_mem *mem, struct siw_sge *sge,
 | |
| 				 unsigned long offset, int *pbl_idx)
 | |
| {
 | |
| 	if (!mem->is_pbl)
 | |
| 		return siw_get_upage(mem->umem, sge->laddr + offset);
 | |
| 	else
 | |
| 		return siw_get_pblpage(mem, sge->laddr + offset, pbl_idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy short payload at provided destination payload address
 | |
|  */
 | |
| static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr)
 | |
| {
 | |
| 	struct siw_wqe *wqe = &c_tx->wqe_active;
 | |
| 	struct siw_sge *sge = &wqe->sqe.sge[0];
 | |
| 	u32 bytes = sge->length;
 | |
| 
 | |
| 	if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1)
 | |
| 		return MAX_HDR_INLINE + 1;
 | |
| 
 | |
| 	if (!bytes)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (tx_flags(wqe) & SIW_WQE_INLINE) {
 | |
| 		memcpy(paddr, &wqe->sqe.sge[1], bytes);
 | |
| 	} else {
 | |
| 		struct siw_mem *mem = wqe->mem[0];
 | |
| 
 | |
| 		if (!mem->mem_obj) {
 | |
| 			/* Kernel client using kva */
 | |
| 			memcpy(paddr, ib_virt_dma_to_ptr(sge->laddr), bytes);
 | |
| 		} else if (c_tx->in_syscall) {
 | |
| 			if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr),
 | |
| 					   bytes))
 | |
| 				return -EFAULT;
 | |
| 		} else {
 | |
| 			unsigned int off = sge->laddr & ~PAGE_MASK;
 | |
| 			struct page *p;
 | |
| 			char *buffer;
 | |
| 			int pbl_idx = 0;
 | |
| 
 | |
| 			p = siw_get_page(mem, sge, 0, &pbl_idx);
 | |
| 			if (unlikely(!p))
 | |
| 				return -EFAULT;
 | |
| 
 | |
| 			buffer = kmap_local_page(p);
 | |
| 
 | |
| 			if (likely(PAGE_SIZE - off >= bytes)) {
 | |
| 				memcpy(paddr, buffer + off, bytes);
 | |
| 			} else {
 | |
| 				unsigned long part = bytes - (PAGE_SIZE - off);
 | |
| 
 | |
| 				memcpy(paddr, buffer + off, part);
 | |
| 				kunmap_local(buffer);
 | |
| 
 | |
| 				p = siw_get_page(mem, sge, part, &pbl_idx);
 | |
| 				if (unlikely(!p))
 | |
| 					return -EFAULT;
 | |
| 
 | |
| 				buffer = kmap_local_page(p);
 | |
| 				memcpy(paddr + part, buffer, bytes - part);
 | |
| 			}
 | |
| 			kunmap_local(buffer);
 | |
| 		}
 | |
| 	}
 | |
| 	return (int)bytes;
 | |
| }
 | |
| 
 | |
| #define PKT_FRAGMENTED 1
 | |
| #define PKT_COMPLETE 0
 | |
| 
 | |
| /*
 | |
|  * siw_qp_prepare_tx()
 | |
|  *
 | |
|  * Prepare tx state for sending out one fpdu. Builds complete pkt
 | |
|  * if no user data or only immediate data are present.
 | |
|  *
 | |
|  * returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise.
 | |
|  */
 | |
| static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx)
 | |
| {
 | |
| 	struct siw_wqe *wqe = &c_tx->wqe_active;
 | |
| 	char *crc = NULL;
 | |
| 	int data = 0;
 | |
| 
 | |
| 	switch (tx_type(wqe)) {
 | |
| 	case SIW_OP_READ:
 | |
| 	case SIW_OP_READ_LOCAL_INV:
 | |
| 		memcpy(&c_tx->pkt.ctrl,
 | |
| 		       &iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl,
 | |
| 		       sizeof(struct iwarp_ctrl));
 | |
| 
 | |
| 		c_tx->pkt.rreq.rsvd = 0;
 | |
| 		c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ);
 | |
| 		c_tx->pkt.rreq.ddp_msn =
 | |
| 			htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]);
 | |
| 		c_tx->pkt.rreq.ddp_mo = 0;
 | |
| 		c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey);
 | |
| 		c_tx->pkt.rreq.sink_to =
 | |
| 			cpu_to_be64(wqe->sqe.sge[0].laddr);
 | |
| 		c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey);
 | |
| 		c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr);
 | |
| 		c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length);
 | |
| 
 | |
| 		c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq);
 | |
| 		crc = (char *)&c_tx->pkt.rreq_pkt.crc;
 | |
| 		break;
 | |
| 
 | |
| 	case SIW_OP_SEND:
 | |
| 		if (tx_flags(wqe) & SIW_WQE_SOLICITED)
 | |
| 			memcpy(&c_tx->pkt.ctrl,
 | |
| 			       &iwarp_pktinfo[RDMAP_SEND_SE].ctrl,
 | |
| 			       sizeof(struct iwarp_ctrl));
 | |
| 		else
 | |
| 			memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl,
 | |
| 			       sizeof(struct iwarp_ctrl));
 | |
| 
 | |
| 		c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
 | |
| 		c_tx->pkt.send.ddp_msn =
 | |
| 			htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
 | |
| 		c_tx->pkt.send.ddp_mo = 0;
 | |
| 
 | |
| 		c_tx->pkt.send_inv.inval_stag = 0;
 | |
| 
 | |
| 		c_tx->ctrl_len = sizeof(struct iwarp_send);
 | |
| 
 | |
| 		crc = (char *)&c_tx->pkt.send_pkt.crc;
 | |
| 		data = siw_try_1seg(c_tx, crc);
 | |
| 		break;
 | |
| 
 | |
| 	case SIW_OP_SEND_REMOTE_INV:
 | |
| 		if (tx_flags(wqe) & SIW_WQE_SOLICITED)
 | |
| 			memcpy(&c_tx->pkt.ctrl,
 | |
| 			       &iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl,
 | |
| 			       sizeof(struct iwarp_ctrl));
 | |
| 		else
 | |
| 			memcpy(&c_tx->pkt.ctrl,
 | |
| 			       &iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl,
 | |
| 			       sizeof(struct iwarp_ctrl));
 | |
| 
 | |
| 		c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
 | |
| 		c_tx->pkt.send.ddp_msn =
 | |
| 			htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
 | |
| 		c_tx->pkt.send.ddp_mo = 0;
 | |
| 
 | |
| 		c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey);
 | |
| 
 | |
| 		c_tx->ctrl_len = sizeof(struct iwarp_send_inv);
 | |
| 
 | |
| 		crc = (char *)&c_tx->pkt.send_pkt.crc;
 | |
| 		data = siw_try_1seg(c_tx, crc);
 | |
| 		break;
 | |
| 
 | |
| 	case SIW_OP_WRITE:
 | |
| 		memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl,
 | |
| 		       sizeof(struct iwarp_ctrl));
 | |
| 
 | |
| 		c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey);
 | |
| 		c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr);
 | |
| 		c_tx->ctrl_len = sizeof(struct iwarp_rdma_write);
 | |
| 
 | |
| 		crc = (char *)&c_tx->pkt.write_pkt.crc;
 | |
| 		data = siw_try_1seg(c_tx, crc);
 | |
| 		break;
 | |
| 
 | |
| 	case SIW_OP_READ_RESPONSE:
 | |
| 		memcpy(&c_tx->pkt.ctrl,
 | |
| 		       &iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl,
 | |
| 		       sizeof(struct iwarp_ctrl));
 | |
| 
 | |
| 		/* NBO */
 | |
| 		c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey);
 | |
| 		c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr);
 | |
| 
 | |
| 		c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp);
 | |
| 
 | |
| 		crc = (char *)&c_tx->pkt.write_pkt.crc;
 | |
| 		data = siw_try_1seg(c_tx, crc);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe));
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	if (unlikely(data < 0))
 | |
| 		return data;
 | |
| 
 | |
| 	c_tx->ctrl_sent = 0;
 | |
| 
 | |
| 	if (data <= MAX_HDR_INLINE) {
 | |
| 		if (data) {
 | |
| 			wqe->processed = data;
 | |
| 
 | |
| 			c_tx->pkt.ctrl.mpa_len =
 | |
| 				htons(c_tx->ctrl_len + data - MPA_HDR_SIZE);
 | |
| 
 | |
| 			/* Add pad, if needed */
 | |
| 			data += -(int)data & 0x3;
 | |
| 			/* advance CRC location after payload */
 | |
| 			crc += data;
 | |
| 			c_tx->ctrl_len += data;
 | |
| 
 | |
| 			if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
 | |
| 				c_tx->pkt.c_untagged.ddp_mo = 0;
 | |
| 			else
 | |
| 				c_tx->pkt.c_tagged.ddp_to =
 | |
| 					cpu_to_be64(wqe->sqe.raddr);
 | |
| 		}
 | |
| 
 | |
| 		*(u32 *)crc = 0;
 | |
| 		/*
 | |
| 		 * Do complete CRC if enabled and short packet
 | |
| 		 */
 | |
| 		if (c_tx->mpa_crc_hd &&
 | |
| 		    crypto_shash_digest(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt,
 | |
| 					c_tx->ctrl_len, (u8 *)crc) != 0)
 | |
| 			return -EINVAL;
 | |
| 		c_tx->ctrl_len += MPA_CRC_SIZE;
 | |
| 
 | |
| 		return PKT_COMPLETE;
 | |
| 	}
 | |
| 	c_tx->ctrl_len += MPA_CRC_SIZE;
 | |
| 	c_tx->sge_idx = 0;
 | |
| 	c_tx->sge_off = 0;
 | |
| 	c_tx->pbl_idx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow direct sending out of user buffer if WR is non signalled
 | |
| 	 * and payload is over threshold.
 | |
| 	 * Per RDMA verbs, the application should not change the send buffer
 | |
| 	 * until the work completed. In iWarp, work completion is only
 | |
| 	 * local delivery to TCP. TCP may reuse the buffer for
 | |
| 	 * retransmission. Changing unsent data also breaks the CRC,
 | |
| 	 * if applied.
 | |
| 	 */
 | |
| 	if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH &&
 | |
| 	    !(tx_flags(wqe) & SIW_WQE_SIGNALLED))
 | |
| 		c_tx->use_sendpage = 1;
 | |
| 	else
 | |
| 		c_tx->use_sendpage = 0;
 | |
| 
 | |
| 	return PKT_FRAGMENTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send out one complete control type FPDU, or header of FPDU carrying
 | |
|  * data. Used for fixed sized packets like Read.Requests or zero length
 | |
|  * SENDs, WRITEs, READ.Responses, or header only.
 | |
|  */
 | |
| static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s,
 | |
| 			      int flags)
 | |
| {
 | |
| 	struct msghdr msg = { .msg_flags = flags };
 | |
| 	struct kvec iov = { .iov_base =
 | |
| 				    (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent,
 | |
| 			    .iov_len = c_tx->ctrl_len - c_tx->ctrl_sent };
 | |
| 
 | |
| 	int rv = kernel_sendmsg(s, &msg, &iov, 1, iov.iov_len);
 | |
| 
 | |
| 	if (rv >= 0) {
 | |
| 		c_tx->ctrl_sent += rv;
 | |
| 
 | |
| 		if (c_tx->ctrl_sent == c_tx->ctrl_len)
 | |
| 			rv = 0;
 | |
| 		else
 | |
| 			rv = -EAGAIN;
 | |
| 	}
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 0copy TCP transmit interface: Use MSG_SPLICE_PAGES.
 | |
|  *
 | |
|  * Using sendpage to push page by page appears to be less efficient
 | |
|  * than using sendmsg, even if data are copied.
 | |
|  *
 | |
|  * A general performance limitation might be the extra four bytes
 | |
|  * trailer checksum segment to be pushed after user data.
 | |
|  */
 | |
| static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset,
 | |
| 			     size_t size)
 | |
| {
 | |
| 	struct bio_vec bvec;
 | |
| 	struct msghdr msg = {
 | |
| 		.msg_flags = (MSG_MORE | MSG_DONTWAIT | MSG_SPLICE_PAGES),
 | |
| 	};
 | |
| 	struct sock *sk = s->sk;
 | |
| 	int i = 0, rv = 0, sent = 0;
 | |
| 
 | |
| 	while (size) {
 | |
| 		size_t bytes = min_t(size_t, PAGE_SIZE - offset, size);
 | |
| 
 | |
| 		if (size + offset <= PAGE_SIZE)
 | |
| 			msg.msg_flags &= ~MSG_MORE;
 | |
| 
 | |
| 		tcp_rate_check_app_limited(sk);
 | |
| 		if (!sendpage_ok(page[i]))
 | |
| 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
 | |
| 		bvec_set_page(&bvec, page[i], bytes, offset);
 | |
| 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
 | |
| 
 | |
| try_page_again:
 | |
| 		lock_sock(sk);
 | |
| 		rv = tcp_sendmsg_locked(sk, &msg, size);
 | |
| 		release_sock(sk);
 | |
| 
 | |
| 		if (rv > 0) {
 | |
| 			size -= rv;
 | |
| 			sent += rv;
 | |
| 			if (rv != bytes) {
 | |
| 				offset += rv;
 | |
| 				bytes -= rv;
 | |
| 				goto try_page_again;
 | |
| 			}
 | |
| 			offset = 0;
 | |
| 		} else {
 | |
| 			if (rv == -EAGAIN || rv == 0)
 | |
| 				break;
 | |
| 			return rv;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 	return sent;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_0copy_tx()
 | |
|  *
 | |
|  * Pushes list of pages to TCP socket. If pages from multiple
 | |
|  * SGE's, all referenced pages of each SGE are pushed in one
 | |
|  * shot.
 | |
|  */
 | |
| static int siw_0copy_tx(struct socket *s, struct page **page,
 | |
| 			struct siw_sge *sge, unsigned int offset,
 | |
| 			unsigned int size)
 | |
| {
 | |
| 	int i = 0, sent = 0, rv;
 | |
| 	int sge_bytes = min(sge->length - offset, size);
 | |
| 
 | |
| 	offset = (sge->laddr + offset) & ~PAGE_MASK;
 | |
| 
 | |
| 	while (sent != size) {
 | |
| 		rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes);
 | |
| 		if (rv >= 0) {
 | |
| 			sent += rv;
 | |
| 			if (size == sent || sge_bytes > rv)
 | |
| 				break;
 | |
| 
 | |
| 			i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT;
 | |
| 			sge++;
 | |
| 			sge_bytes = min(sge->length, size - sent);
 | |
| 			offset = sge->laddr & ~PAGE_MASK;
 | |
| 		} else {
 | |
| 			sent = rv;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return sent;
 | |
| }
 | |
| 
 | |
| #define MAX_TRAILER (MPA_CRC_SIZE + 4)
 | |
| 
 | |
| static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Work backwards through the array to honor the kmap_local_page()
 | |
| 	 * ordering requirements.
 | |
| 	 */
 | |
| 	for (i = (len-1); i >= 0; i--) {
 | |
| 		if (kmap_mask & BIT(i)) {
 | |
| 			unsigned long addr = (unsigned long)iov[i].iov_base;
 | |
| 
 | |
| 			kunmap_local((void *)(addr & PAGE_MASK));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_tx_hdt() tries to push a complete packet to TCP where all
 | |
|  * packet fragments are referenced by the elements of one iovec.
 | |
|  * For the data portion, each involved page must be referenced by
 | |
|  * one extra element. All sge's data can be non-aligned to page
 | |
|  * boundaries. Two more elements are referencing iWARP header
 | |
|  * and trailer:
 | |
|  * MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL
 | |
|  */
 | |
| #define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2))
 | |
| 
 | |
| /*
 | |
|  * Write out iov referencing hdr, data and trailer of current FPDU.
 | |
|  * Update transmit state dependent on write return status
 | |
|  */
 | |
| static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s)
 | |
| {
 | |
| 	struct siw_wqe *wqe = &c_tx->wqe_active;
 | |
| 	struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx];
 | |
| 	struct kvec iov[MAX_ARRAY];
 | |
| 	struct page *page_array[MAX_ARRAY];
 | |
| 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
 | |
| 
 | |
| 	int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv;
 | |
| 	unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0,
 | |
| 		     sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx,
 | |
| 		     pbl_idx = c_tx->pbl_idx;
 | |
| 	unsigned long kmap_mask = 0L;
 | |
| 
 | |
| 	if (c_tx->state == SIW_SEND_HDR) {
 | |
| 		if (c_tx->use_sendpage) {
 | |
| 			rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE);
 | |
| 			if (rv)
 | |
| 				goto done;
 | |
| 
 | |
| 			c_tx->state = SIW_SEND_DATA;
 | |
| 		} else {
 | |
| 			iov[0].iov_base =
 | |
| 				(char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent;
 | |
| 			iov[0].iov_len = hdr_len =
 | |
| 				c_tx->ctrl_len - c_tx->ctrl_sent;
 | |
| 			seg = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wqe->processed += data_len;
 | |
| 
 | |
| 	while (data_len) { /* walk the list of SGE's */
 | |
| 		unsigned int sge_len = min(sge->length - sge_off, data_len);
 | |
| 		unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK;
 | |
| 		struct siw_mem *mem;
 | |
| 
 | |
| 		if (!(tx_flags(wqe) & SIW_WQE_INLINE)) {
 | |
| 			mem = wqe->mem[sge_idx];
 | |
| 			is_kva = mem->mem_obj == NULL ? 1 : 0;
 | |
| 		} else {
 | |
| 			is_kva = 1;
 | |
| 		}
 | |
| 		if (is_kva && !c_tx->use_sendpage) {
 | |
| 			/*
 | |
| 			 * tx from kernel virtual address: either inline data
 | |
| 			 * or memory region with assigned kernel buffer
 | |
| 			 */
 | |
| 			iov[seg].iov_base =
 | |
| 				ib_virt_dma_to_ptr(sge->laddr + sge_off);
 | |
| 			iov[seg].iov_len = sge_len;
 | |
| 
 | |
| 			if (do_crc)
 | |
| 				crypto_shash_update(c_tx->mpa_crc_hd,
 | |
| 						    iov[seg].iov_base,
 | |
| 						    sge_len);
 | |
| 			sge_off += sge_len;
 | |
| 			data_len -= sge_len;
 | |
| 			seg++;
 | |
| 			goto sge_done;
 | |
| 		}
 | |
| 
 | |
| 		while (sge_len) {
 | |
| 			size_t plen = min((int)PAGE_SIZE - fp_off, sge_len);
 | |
| 			void *kaddr;
 | |
| 
 | |
| 			if (!is_kva) {
 | |
| 				struct page *p;
 | |
| 
 | |
| 				p = siw_get_page(mem, sge, sge_off, &pbl_idx);
 | |
| 				if (unlikely(!p)) {
 | |
| 					siw_unmap_pages(iov, kmap_mask, seg);
 | |
| 					wqe->processed -= c_tx->bytes_unsent;
 | |
| 					rv = -EFAULT;
 | |
| 					goto done_crc;
 | |
| 				}
 | |
| 				page_array[seg] = p;
 | |
| 
 | |
| 				if (!c_tx->use_sendpage) {
 | |
| 					void *kaddr = kmap_local_page(p);
 | |
| 
 | |
| 					/* Remember for later kunmap() */
 | |
| 					kmap_mask |= BIT(seg);
 | |
| 					iov[seg].iov_base = kaddr + fp_off;
 | |
| 					iov[seg].iov_len = plen;
 | |
| 
 | |
| 					if (do_crc)
 | |
| 						crypto_shash_update(
 | |
| 							c_tx->mpa_crc_hd,
 | |
| 							iov[seg].iov_base,
 | |
| 							plen);
 | |
| 				} else if (do_crc) {
 | |
| 					kaddr = kmap_local_page(p);
 | |
| 					crypto_shash_update(c_tx->mpa_crc_hd,
 | |
| 							    kaddr + fp_off,
 | |
| 							    plen);
 | |
| 					kunmap_local(kaddr);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Cast to an uintptr_t to preserve all 64 bits
 | |
| 				 * in sge->laddr.
 | |
| 				 */
 | |
| 				u64 va = sge->laddr + sge_off;
 | |
| 
 | |
| 				page_array[seg] = ib_virt_dma_to_page(va);
 | |
| 				if (do_crc)
 | |
| 					crypto_shash_update(
 | |
| 						c_tx->mpa_crc_hd,
 | |
| 						ib_virt_dma_to_ptr(va),
 | |
| 						plen);
 | |
| 			}
 | |
| 
 | |
| 			sge_len -= plen;
 | |
| 			sge_off += plen;
 | |
| 			data_len -= plen;
 | |
| 			fp_off = 0;
 | |
| 
 | |
| 			if (++seg >= (int)MAX_ARRAY) {
 | |
| 				siw_dbg_qp(tx_qp(c_tx), "to many fragments\n");
 | |
| 				siw_unmap_pages(iov, kmap_mask, seg-1);
 | |
| 				wqe->processed -= c_tx->bytes_unsent;
 | |
| 				rv = -EMSGSIZE;
 | |
| 				goto done_crc;
 | |
| 			}
 | |
| 		}
 | |
| sge_done:
 | |
| 		/* Update SGE variables at end of SGE */
 | |
| 		if (sge_off == sge->length &&
 | |
| 		    (data_len != 0 || wqe->processed < wqe->bytes)) {
 | |
| 			sge_idx++;
 | |
| 			sge++;
 | |
| 			sge_off = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	/* trailer */
 | |
| 	if (likely(c_tx->state != SIW_SEND_TRAILER)) {
 | |
| 		iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad];
 | |
| 		iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad);
 | |
| 	} else {
 | |
| 		iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent];
 | |
| 		iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent;
 | |
| 	}
 | |
| 
 | |
| 	if (c_tx->pad) {
 | |
| 		*(u32 *)c_tx->trailer.pad = 0;
 | |
| 		if (do_crc)
 | |
| 			crypto_shash_update(c_tx->mpa_crc_hd,
 | |
| 				(u8 *)&c_tx->trailer.crc - c_tx->pad,
 | |
| 				c_tx->pad);
 | |
| 	}
 | |
| 	if (!c_tx->mpa_crc_hd)
 | |
| 		c_tx->trailer.crc = 0;
 | |
| 	else if (do_crc)
 | |
| 		crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc);
 | |
| 
 | |
| 	data_len = c_tx->bytes_unsent;
 | |
| 
 | |
| 	if (c_tx->use_sendpage) {
 | |
| 		rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx],
 | |
| 				  c_tx->sge_off, data_len);
 | |
| 		if (rv == data_len) {
 | |
| 			rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len);
 | |
| 			if (rv > 0)
 | |
| 				rv += data_len;
 | |
| 			else
 | |
| 				rv = data_len;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rv = kernel_sendmsg(s, &msg, iov, seg + 1,
 | |
| 				    hdr_len + data_len + trl_len);
 | |
| 		siw_unmap_pages(iov, kmap_mask, seg);
 | |
| 	}
 | |
| 	if (rv < (int)hdr_len) {
 | |
| 		/* Not even complete hdr pushed or negative rv */
 | |
| 		wqe->processed -= data_len;
 | |
| 		if (rv >= 0) {
 | |
| 			c_tx->ctrl_sent += rv;
 | |
| 			rv = -EAGAIN;
 | |
| 		}
 | |
| 		goto done_crc;
 | |
| 	}
 | |
| 	rv -= hdr_len;
 | |
| 
 | |
| 	if (rv >= (int)data_len) {
 | |
| 		/* all user data pushed to TCP or no data to push */
 | |
| 		if (data_len > 0 && wqe->processed < wqe->bytes) {
 | |
| 			/* Save the current state for next tx */
 | |
| 			c_tx->sge_idx = sge_idx;
 | |
| 			c_tx->sge_off = sge_off;
 | |
| 			c_tx->pbl_idx = pbl_idx;
 | |
| 		}
 | |
| 		rv -= data_len;
 | |
| 
 | |
| 		if (rv == trl_len) /* all pushed */
 | |
| 			rv = 0;
 | |
| 		else {
 | |
| 			c_tx->state = SIW_SEND_TRAILER;
 | |
| 			c_tx->ctrl_len = MAX_TRAILER;
 | |
| 			c_tx->ctrl_sent = rv + 4 - c_tx->pad;
 | |
| 			c_tx->bytes_unsent = 0;
 | |
| 			rv = -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 	} else if (data_len > 0) {
 | |
| 		/* Maybe some user data pushed to TCP */
 | |
| 		c_tx->state = SIW_SEND_DATA;
 | |
| 		wqe->processed -= data_len - rv;
 | |
| 
 | |
| 		if (rv) {
 | |
| 			/*
 | |
| 			 * Some bytes out. Recompute tx state based
 | |
| 			 * on old state and bytes pushed
 | |
| 			 */
 | |
| 			unsigned int sge_unsent;
 | |
| 
 | |
| 			c_tx->bytes_unsent -= rv;
 | |
| 			sge = &wqe->sqe.sge[c_tx->sge_idx];
 | |
| 			sge_unsent = sge->length - c_tx->sge_off;
 | |
| 
 | |
| 			while (sge_unsent <= rv) {
 | |
| 				rv -= sge_unsent;
 | |
| 				c_tx->sge_idx++;
 | |
| 				c_tx->sge_off = 0;
 | |
| 				sge++;
 | |
| 				sge_unsent = sge->length;
 | |
| 			}
 | |
| 			c_tx->sge_off += rv;
 | |
| 		}
 | |
| 		rv = -EAGAIN;
 | |
| 	}
 | |
| done_crc:
 | |
| 	c_tx->do_crc = 0;
 | |
| done:
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx,
 | |
| 				     struct socket *s)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(s->sk);
 | |
| 
 | |
| 	if (tp->gso_segs) {
 | |
| 		if (c_tx->gso_seg_limit == 0)
 | |
| 			c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs;
 | |
| 		else
 | |
| 			c_tx->tcp_seglen =
 | |
| 				tp->mss_cache *
 | |
| 				min_t(u16, c_tx->gso_seg_limit, tp->gso_segs);
 | |
| 	} else {
 | |
| 		c_tx->tcp_seglen = tp->mss_cache;
 | |
| 	}
 | |
| 	/* Loopback may give odd numbers */
 | |
| 	c_tx->tcp_seglen &= 0xfffffff8;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_prepare_fpdu()
 | |
|  *
 | |
|  * Prepares transmit context to send out one FPDU if FPDU will contain
 | |
|  * user data and user data are not immediate data.
 | |
|  * Computes maximum FPDU length to fill up TCP MSS if possible.
 | |
|  *
 | |
|  * @qp:		QP from which to transmit
 | |
|  * @wqe:	Current WQE causing transmission
 | |
|  *
 | |
|  * TODO: Take into account real available sendspace on socket
 | |
|  *       to avoid header misalignment due to send pausing within
 | |
|  *       fpdu transmission
 | |
|  */
 | |
| static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe)
 | |
| {
 | |
| 	struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
 | |
| 	int data_len;
 | |
| 
 | |
| 	c_tx->ctrl_len =
 | |
| 		iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len;
 | |
| 	c_tx->ctrl_sent = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update target buffer offset if any
 | |
| 	 */
 | |
| 	if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
 | |
| 		/* Untagged message */
 | |
| 		c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed);
 | |
| 	else /* Tagged message */
 | |
| 		c_tx->pkt.c_tagged.ddp_to =
 | |
| 			cpu_to_be64(wqe->sqe.raddr + wqe->processed);
 | |
| 
 | |
| 	data_len = wqe->bytes - wqe->processed;
 | |
| 	if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) {
 | |
| 		/* Trim DDP payload to fit into current TCP segment */
 | |
| 		data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE);
 | |
| 		c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST;
 | |
| 		c_tx->pad = 0;
 | |
| 	} else {
 | |
| 		c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST;
 | |
| 		c_tx->pad = -data_len & 0x3;
 | |
| 	}
 | |
| 	c_tx->bytes_unsent = data_len;
 | |
| 
 | |
| 	c_tx->pkt.ctrl.mpa_len =
 | |
| 		htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Init MPA CRC computation
 | |
| 	 */
 | |
| 	if (c_tx->mpa_crc_hd) {
 | |
| 		crypto_shash_init(c_tx->mpa_crc_hd);
 | |
| 		crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt,
 | |
| 				    c_tx->ctrl_len);
 | |
| 		c_tx->do_crc = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_check_sgl_tx()
 | |
|  *
 | |
|  * Check permissions for a list of SGE's (SGL).
 | |
|  * A successful check will have all memory referenced
 | |
|  * for transmission resolved and assigned to the WQE.
 | |
|  *
 | |
|  * @pd:		Protection Domain SGL should belong to
 | |
|  * @wqe:	WQE to be checked
 | |
|  * @perms:	requested access permissions
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe,
 | |
| 			    enum ib_access_flags perms)
 | |
| {
 | |
| 	struct siw_sge *sge = &wqe->sqe.sge[0];
 | |
| 	int i, len, num_sge = wqe->sqe.num_sge;
 | |
| 
 | |
| 	if (unlikely(num_sge > SIW_MAX_SGE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) {
 | |
| 		/*
 | |
| 		 * rdma verbs: do not check stag for a zero length sge
 | |
| 		 */
 | |
| 		if (sge->length) {
 | |
| 			int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0,
 | |
| 					       sge->length);
 | |
| 
 | |
| 			if (unlikely(rv != E_ACCESS_OK))
 | |
| 				return rv;
 | |
| 		}
 | |
| 		len += sge->length;
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_qp_sq_proc_tx()
 | |
|  *
 | |
|  * Process one WQE which needs transmission on the wire.
 | |
|  */
 | |
| static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe)
 | |
| {
 | |
| 	struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
 | |
| 	struct socket *s = qp->attrs.sk;
 | |
| 	int rv = 0, burst_len = qp->tx_ctx.burst;
 | |
| 	enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM;
 | |
| 
 | |
| 	if (unlikely(wqe->wr_status == SIW_WR_IDLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!burst_len)
 | |
| 		burst_len = SQ_USER_MAXBURST;
 | |
| 
 | |
| 	if (wqe->wr_status == SIW_WR_QUEUED) {
 | |
| 		if (!(wqe->sqe.flags & SIW_WQE_INLINE)) {
 | |
| 			if (tx_type(wqe) == SIW_OP_READ_RESPONSE)
 | |
| 				wqe->sqe.num_sge = 1;
 | |
| 
 | |
| 			if (tx_type(wqe) != SIW_OP_READ &&
 | |
| 			    tx_type(wqe) != SIW_OP_READ_LOCAL_INV) {
 | |
| 				/*
 | |
| 				 * Reference memory to be tx'd w/o checking
 | |
| 				 * access for LOCAL_READ permission, since
 | |
| 				 * not defined in RDMA core.
 | |
| 				 */
 | |
| 				rv = siw_check_sgl_tx(qp->pd, wqe, 0);
 | |
| 				if (rv < 0) {
 | |
| 					if (tx_type(wqe) ==
 | |
| 					    SIW_OP_READ_RESPONSE)
 | |
| 						ecode = siw_rdmap_error(-rv);
 | |
| 					rv = -EINVAL;
 | |
| 					goto tx_error;
 | |
| 				}
 | |
| 				wqe->bytes = rv;
 | |
| 			} else {
 | |
| 				wqe->bytes = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			wqe->bytes = wqe->sqe.sge[0].length;
 | |
| 			if (!rdma_is_kernel_res(&qp->base_qp.res)) {
 | |
| 				if (wqe->bytes > SIW_MAX_INLINE) {
 | |
| 					rv = -EINVAL;
 | |
| 					goto tx_error;
 | |
| 				}
 | |
| 				wqe->sqe.sge[0].laddr =
 | |
| 					(u64)(uintptr_t)&wqe->sqe.sge[1];
 | |
| 			}
 | |
| 		}
 | |
| 		wqe->wr_status = SIW_WR_INPROGRESS;
 | |
| 		wqe->processed = 0;
 | |
| 
 | |
| 		siw_update_tcpseg(c_tx, s);
 | |
| 
 | |
| 		rv = siw_qp_prepare_tx(c_tx);
 | |
| 		if (rv == PKT_FRAGMENTED) {
 | |
| 			c_tx->state = SIW_SEND_HDR;
 | |
| 			siw_prepare_fpdu(qp, wqe);
 | |
| 		} else if (rv == PKT_COMPLETE) {
 | |
| 			c_tx->state = SIW_SEND_SHORT_FPDU;
 | |
| 		} else {
 | |
| 			goto tx_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| next_segment:
 | |
| 	siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n",
 | |
| 		   tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed,
 | |
| 		   wqe->sqe.id);
 | |
| 
 | |
| 	if (--burst_len == 0) {
 | |
| 		rv = -EINPROGRESS;
 | |
| 		goto tx_done;
 | |
| 	}
 | |
| 	if (c_tx->state == SIW_SEND_SHORT_FPDU) {
 | |
| 		enum siw_opcode tx_type = tx_type(wqe);
 | |
| 		unsigned int msg_flags;
 | |
| 
 | |
| 		if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1)
 | |
| 			/*
 | |
| 			 * End current TCP segment, if SQ runs empty,
 | |
| 			 * or siw_tcp_nagle is not set, or we bail out
 | |
| 			 * soon due to no burst credit left.
 | |
| 			 */
 | |
| 			msg_flags = MSG_DONTWAIT;
 | |
| 		else
 | |
| 			msg_flags = MSG_DONTWAIT | MSG_MORE;
 | |
| 
 | |
| 		rv = siw_tx_ctrl(c_tx, s, msg_flags);
 | |
| 
 | |
| 		if (!rv && tx_type != SIW_OP_READ &&
 | |
| 		    tx_type != SIW_OP_READ_LOCAL_INV)
 | |
| 			wqe->processed = wqe->bytes;
 | |
| 
 | |
| 		goto tx_done;
 | |
| 
 | |
| 	} else {
 | |
| 		rv = siw_tx_hdt(c_tx, s);
 | |
| 	}
 | |
| 	if (!rv) {
 | |
| 		/*
 | |
| 		 * One segment sent. Processing completed if last
 | |
| 		 * segment, Do next segment otherwise.
 | |
| 		 */
 | |
| 		if (unlikely(c_tx->tx_suspend)) {
 | |
| 			/*
 | |
| 			 * Verbs, 6.4.: Try stopping sending after a full
 | |
| 			 * DDP segment if the connection goes down
 | |
| 			 * (== peer halfclose)
 | |
| 			 */
 | |
| 			rv = -ECONNABORTED;
 | |
| 			goto tx_done;
 | |
| 		}
 | |
| 		if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) {
 | |
| 			siw_dbg_qp(qp, "WQE completed\n");
 | |
| 			goto tx_done;
 | |
| 		}
 | |
| 		c_tx->state = SIW_SEND_HDR;
 | |
| 
 | |
| 		siw_update_tcpseg(c_tx, s);
 | |
| 
 | |
| 		siw_prepare_fpdu(qp, wqe);
 | |
| 		goto next_segment;
 | |
| 	}
 | |
| tx_done:
 | |
| 	qp->tx_ctx.burst = burst_len;
 | |
| 	return rv;
 | |
| 
 | |
| tx_error:
 | |
| 	if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM)
 | |
| 		siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
 | |
| 				   RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1);
 | |
| 	else
 | |
| 		siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
 | |
| 				   RDMAP_ETYPE_CATASTROPHIC,
 | |
| 				   RDMAP_ECODE_UNSPECIFIED, 1);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe)
 | |
| {
 | |
| 	struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr;
 | |
| 	struct siw_device *sdev = to_siw_dev(pd->device);
 | |
| 	struct siw_mem *mem;
 | |
| 	int rv = 0;
 | |
| 
 | |
| 	siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey);
 | |
| 
 | |
| 	if (unlikely(!base_mr)) {
 | |
| 		pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(base_mr->rkey >> 8 != sqe->rkey  >> 8)) {
 | |
| 		pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mem = siw_mem_id2obj(sdev, sqe->rkey  >> 8);
 | |
| 	if (unlikely(!mem)) {
 | |
| 		pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem->pd != pd)) {
 | |
| 		pr_warn("siw: fastreg: PD mismatch\n");
 | |
| 		rv = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (unlikely(mem->stag_valid)) {
 | |
| 		pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey);
 | |
| 		rv = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Refresh STag since user may have changed key part */
 | |
| 	mem->stag = sqe->rkey;
 | |
| 	mem->perms = sqe->access;
 | |
| 
 | |
| 	siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey);
 | |
| 	mem->va = base_mr->iova;
 | |
| 	mem->stag_valid = 1;
 | |
| out:
 | |
| 	siw_mem_put(mem);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	switch (tx_type(wqe)) {
 | |
| 	case SIW_OP_REG_MR:
 | |
| 		rv = siw_fastreg_mr(qp->pd, &wqe->sqe);
 | |
| 		break;
 | |
| 
 | |
| 	case SIW_OP_INVAL_STAG:
 | |
| 		rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		rv = -EINVAL;
 | |
| 	}
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * siw_qp_sq_process()
 | |
|  *
 | |
|  * Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket.
 | |
|  * Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more
 | |
|  * MPA FPDUs, each containing a DDP segment.
 | |
|  *
 | |
|  * SQ processing may occur in user context as a result of posting
 | |
|  * new WQE's or from siw_tx_thread context. Processing in
 | |
|  * user context is limited to non-kernel verbs users.
 | |
|  *
 | |
|  * SQ processing may get paused anytime, possibly in the middle of a WR
 | |
|  * or FPDU, if insufficient send space is available. SQ processing
 | |
|  * gets resumed from siw_tx_thread, if send space becomes available again.
 | |
|  *
 | |
|  * Must be called with the QP state read-locked.
 | |
|  *
 | |
|  * Note:
 | |
|  * An outbound RREQ can be satisfied by the corresponding RRESP
 | |
|  * _before_ it gets assigned to the ORQ. This happens regularly
 | |
|  * in RDMA READ via loopback case. Since both outbound RREQ and
 | |
|  * inbound RRESP can be handled by the same CPU, locking the ORQ
 | |
|  * is dead-lock prone and thus not an option. With that, the
 | |
|  * RREQ gets assigned to the ORQ _before_ being sent - see
 | |
|  * siw_activate_tx() - and pulled back in case of send failure.
 | |
|  */
 | |
| int siw_qp_sq_process(struct siw_qp *qp)
 | |
| {
 | |
| 	struct siw_wqe *wqe = tx_wqe(qp);
 | |
| 	enum siw_opcode tx_type;
 | |
| 	unsigned long flags;
 | |
| 	int rv = 0;
 | |
| 
 | |
| 	siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe));
 | |
| 
 | |
| next_wqe:
 | |
| 	/*
 | |
| 	 * Stop QP processing if SQ state changed
 | |
| 	 */
 | |
| 	if (unlikely(qp->tx_ctx.tx_suspend)) {
 | |
| 		siw_dbg_qp(qp, "tx suspended\n");
 | |
| 		goto done;
 | |
| 	}
 | |
| 	tx_type = tx_type(wqe);
 | |
| 
 | |
| 	if (tx_type <= SIW_OP_READ_RESPONSE)
 | |
| 		rv = siw_qp_sq_proc_tx(qp, wqe);
 | |
| 	else
 | |
| 		rv = siw_qp_sq_proc_local(qp, wqe);
 | |
| 
 | |
| 	if (!rv) {
 | |
| 		/*
 | |
| 		 * WQE processing done
 | |
| 		 */
 | |
| 		switch (tx_type) {
 | |
| 		case SIW_OP_SEND:
 | |
| 		case SIW_OP_SEND_REMOTE_INV:
 | |
| 		case SIW_OP_WRITE:
 | |
| 			siw_wqe_put_mem(wqe, tx_type);
 | |
| 			fallthrough;
 | |
| 
 | |
| 		case SIW_OP_INVAL_STAG:
 | |
| 		case SIW_OP_REG_MR:
 | |
| 			if (tx_flags(wqe) & SIW_WQE_SIGNALLED)
 | |
| 				siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
 | |
| 						 SIW_WC_SUCCESS);
 | |
| 			break;
 | |
| 
 | |
| 		case SIW_OP_READ:
 | |
| 		case SIW_OP_READ_LOCAL_INV:
 | |
| 			/*
 | |
| 			 * already enqueued to ORQ queue
 | |
| 			 */
 | |
| 			break;
 | |
| 
 | |
| 		case SIW_OP_READ_RESPONSE:
 | |
| 			siw_wqe_put_mem(wqe, tx_type);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			WARN(1, "undefined WQE type %d\n", tx_type);
 | |
| 			rv = -EINVAL;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irqsave(&qp->sq_lock, flags);
 | |
| 		wqe->wr_status = SIW_WR_IDLE;
 | |
| 		rv = siw_activate_tx(qp);
 | |
| 		spin_unlock_irqrestore(&qp->sq_lock, flags);
 | |
| 
 | |
| 		if (rv <= 0)
 | |
| 			goto done;
 | |
| 
 | |
| 		goto next_wqe;
 | |
| 
 | |
| 	} else if (rv == -EAGAIN) {
 | |
| 		siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n",
 | |
| 			   qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len,
 | |
| 			   qp->tx_ctx.bytes_unsent);
 | |
| 		rv = 0;
 | |
| 		goto done;
 | |
| 	} else if (rv == -EINPROGRESS) {
 | |
| 		rv = siw_sq_start(qp);
 | |
| 		goto done;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * WQE processing failed.
 | |
| 		 * Verbs 8.3.2:
 | |
| 		 * o It turns any WQE into a signalled WQE.
 | |
| 		 * o Local catastrophic error must be surfaced
 | |
| 		 * o QP must be moved into Terminate state: done by code
 | |
| 		 *   doing socket state change processing
 | |
| 		 *
 | |
| 		 * o TODO: Termination message must be sent.
 | |
| 		 * o TODO: Implement more precise work completion errors,
 | |
| 		 *         see enum ib_wc_status in ib_verbs.h
 | |
| 		 */
 | |
| 		siw_dbg_qp(qp, "wqe type %d processing failed: %d\n",
 | |
| 			   tx_type(wqe), rv);
 | |
| 
 | |
| 		spin_lock_irqsave(&qp->sq_lock, flags);
 | |
| 		/*
 | |
| 		 * RREQ may have already been completed by inbound RRESP!
 | |
| 		 */
 | |
| 		if ((tx_type == SIW_OP_READ ||
 | |
| 		     tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) {
 | |
| 			/* Cleanup pending entry in ORQ */
 | |
| 			qp->orq_put--;
 | |
| 			qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&qp->sq_lock, flags);
 | |
| 		/*
 | |
| 		 * immediately suspends further TX processing
 | |
| 		 */
 | |
| 		if (!qp->tx_ctx.tx_suspend)
 | |
| 			siw_qp_cm_drop(qp, 0);
 | |
| 
 | |
| 		switch (tx_type) {
 | |
| 		case SIW_OP_SEND:
 | |
| 		case SIW_OP_SEND_REMOTE_INV:
 | |
| 		case SIW_OP_SEND_WITH_IMM:
 | |
| 		case SIW_OP_WRITE:
 | |
| 		case SIW_OP_READ:
 | |
| 		case SIW_OP_READ_LOCAL_INV:
 | |
| 			siw_wqe_put_mem(wqe, tx_type);
 | |
| 			fallthrough;
 | |
| 
 | |
| 		case SIW_OP_INVAL_STAG:
 | |
| 		case SIW_OP_REG_MR:
 | |
| 			siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
 | |
| 					 SIW_WC_LOC_QP_OP_ERR);
 | |
| 
 | |
| 			siw_qp_event(qp, IB_EVENT_QP_FATAL);
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case SIW_OP_READ_RESPONSE:
 | |
| 			siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv);
 | |
| 
 | |
| 			siw_qp_event(qp, IB_EVENT_QP_REQ_ERR);
 | |
| 
 | |
| 			siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE);
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			WARN(1, "undefined WQE type %d\n", tx_type);
 | |
| 			rv = -EINVAL;
 | |
| 		}
 | |
| 		wqe->wr_status = SIW_WR_IDLE;
 | |
| 	}
 | |
| done:
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static void siw_sq_resume(struct siw_qp *qp)
 | |
| {
 | |
| 	if (down_read_trylock(&qp->state_lock)) {
 | |
| 		if (likely(qp->attrs.state == SIW_QP_STATE_RTS &&
 | |
| 			   !qp->tx_ctx.tx_suspend)) {
 | |
| 			int rv = siw_qp_sq_process(qp);
 | |
| 
 | |
| 			up_read(&qp->state_lock);
 | |
| 
 | |
| 			if (unlikely(rv < 0)) {
 | |
| 				siw_dbg_qp(qp, "SQ task failed: err %d\n", rv);
 | |
| 
 | |
| 				if (!qp->tx_ctx.tx_suspend)
 | |
| 					siw_qp_cm_drop(qp, 0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			up_read(&qp->state_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		siw_dbg_qp(qp, "Resume SQ while QP locked\n");
 | |
| 	}
 | |
| 	siw_qp_put(qp);
 | |
| }
 | |
| 
 | |
| struct tx_task_t {
 | |
| 	struct llist_head active;
 | |
| 	wait_queue_head_t waiting;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g);
 | |
| 
 | |
| int siw_create_tx_threads(void)
 | |
| {
 | |
| 	int cpu, assigned = 0;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct tx_task_t *tx_task;
 | |
| 
 | |
| 		/* Skip HT cores */
 | |
| 		if (cpu % cpumask_weight(topology_sibling_cpumask(cpu)))
 | |
| 			continue;
 | |
| 
 | |
| 		tx_task = &per_cpu(siw_tx_task_g, cpu);
 | |
| 		init_llist_head(&tx_task->active);
 | |
| 		init_waitqueue_head(&tx_task->waiting);
 | |
| 
 | |
| 		siw_tx_thread[cpu] =
 | |
| 			kthread_run_on_cpu(siw_run_sq,
 | |
| 					   (unsigned long *)(long)cpu,
 | |
| 					   cpu, "siw_tx/%u");
 | |
| 		if (IS_ERR(siw_tx_thread[cpu])) {
 | |
| 			siw_tx_thread[cpu] = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 		assigned++;
 | |
| 	}
 | |
| 	return assigned;
 | |
| }
 | |
| 
 | |
| void siw_stop_tx_threads(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (siw_tx_thread[cpu]) {
 | |
| 			kthread_stop(siw_tx_thread[cpu]);
 | |
| 			wake_up(&per_cpu(siw_tx_task_g, cpu).waiting);
 | |
| 			siw_tx_thread[cpu] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int siw_run_sq(void *data)
 | |
| {
 | |
| 	const int nr_cpu = (unsigned int)(long)data;
 | |
| 	struct llist_node *active;
 | |
| 	struct siw_qp *qp;
 | |
| 	struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu);
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct llist_node *fifo_list = NULL;
 | |
| 
 | |
| 		wait_event_interruptible(tx_task->waiting,
 | |
| 					 !llist_empty(&tx_task->active) ||
 | |
| 						 kthread_should_stop());
 | |
| 
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		active = llist_del_all(&tx_task->active);
 | |
| 		/*
 | |
| 		 * llist_del_all returns a list with newest entry first.
 | |
| 		 * Re-order list for fairness among QP's.
 | |
| 		 */
 | |
| 		fifo_list = llist_reverse_order(active);
 | |
| 		while (fifo_list) {
 | |
| 			qp = container_of(fifo_list, struct siw_qp, tx_list);
 | |
| 			fifo_list = llist_next(fifo_list);
 | |
| 			qp->tx_list.next = NULL;
 | |
| 
 | |
| 			siw_sq_resume(qp);
 | |
| 		}
 | |
| 	}
 | |
| 	active = llist_del_all(&tx_task->active);
 | |
| 	if (active) {
 | |
| 		llist_for_each_entry(qp, active, tx_list) {
 | |
| 			qp->tx_list.next = NULL;
 | |
| 			siw_sq_resume(qp);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int siw_sq_start(struct siw_qp *qp)
 | |
| {
 | |
| 	if (tx_wqe(qp)->wr_status == SIW_WR_IDLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(!cpu_online(qp->tx_cpu))) {
 | |
| 		siw_put_tx_cpu(qp->tx_cpu);
 | |
| 		qp->tx_cpu = siw_get_tx_cpu(qp->sdev);
 | |
| 		if (qp->tx_cpu < 0) {
 | |
| 			pr_warn("siw: no tx cpu available\n");
 | |
| 
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	siw_qp_get(qp);
 | |
| 
 | |
| 	llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active);
 | |
| 
 | |
| 	wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |