1085 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1085 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2018 Red Hat Inc.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 | |
|  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 | |
|  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 | |
|  * OTHER DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| #include "nouveau_svm.h"
 | |
| #include "nouveau_drv.h"
 | |
| #include "nouveau_chan.h"
 | |
| #include "nouveau_dmem.h"
 | |
| 
 | |
| #include <nvif/event.h>
 | |
| #include <nvif/object.h>
 | |
| #include <nvif/vmm.h>
 | |
| 
 | |
| #include <nvif/class.h>
 | |
| #include <nvif/clb069.h>
 | |
| #include <nvif/ifc00d.h>
 | |
| 
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/hmm.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/rmap.h>
 | |
| 
 | |
| struct nouveau_svm {
 | |
| 	struct nouveau_drm *drm;
 | |
| 	struct mutex mutex;
 | |
| 	struct list_head inst;
 | |
| 
 | |
| 	struct nouveau_svm_fault_buffer {
 | |
| 		int id;
 | |
| 		struct nvif_object object;
 | |
| 		u32 entries;
 | |
| 		u32 getaddr;
 | |
| 		u32 putaddr;
 | |
| 		u32 get;
 | |
| 		u32 put;
 | |
| 		struct nvif_event notify;
 | |
| 		struct work_struct work;
 | |
| 
 | |
| 		struct nouveau_svm_fault {
 | |
| 			u64 inst;
 | |
| 			u64 addr;
 | |
| 			u64 time;
 | |
| 			u32 engine;
 | |
| 			u8  gpc;
 | |
| 			u8  hub;
 | |
| 			u8  access;
 | |
| 			u8  client;
 | |
| 			u8  fault;
 | |
| 			struct nouveau_svmm *svmm;
 | |
| 		} **fault;
 | |
| 		int fault_nr;
 | |
| 	} buffer[];
 | |
| };
 | |
| 
 | |
| #define FAULT_ACCESS_READ 0
 | |
| #define FAULT_ACCESS_WRITE 1
 | |
| #define FAULT_ACCESS_ATOMIC 2
 | |
| #define FAULT_ACCESS_PREFETCH 3
 | |
| 
 | |
| #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
 | |
| #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
 | |
| 
 | |
| struct nouveau_pfnmap_args {
 | |
| 	struct nvif_ioctl_v0 i;
 | |
| 	struct nvif_ioctl_mthd_v0 m;
 | |
| 	struct nvif_vmm_pfnmap_v0 p;
 | |
| };
 | |
| 
 | |
| struct nouveau_ivmm {
 | |
| 	struct nouveau_svmm *svmm;
 | |
| 	u64 inst;
 | |
| 	struct list_head head;
 | |
| };
 | |
| 
 | |
| static struct nouveau_ivmm *
 | |
| nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
 | |
| {
 | |
| 	struct nouveau_ivmm *ivmm;
 | |
| 	list_for_each_entry(ivmm, &svm->inst, head) {
 | |
| 		if (ivmm->inst == inst)
 | |
| 			return ivmm;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #define SVMM_DBG(s,f,a...)                                                     \
 | |
| 	NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
 | |
| #define SVMM_ERR(s,f,a...)                                                     \
 | |
| 	NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
 | |
| 
 | |
| int
 | |
| nouveau_svmm_bind(struct drm_device *dev, void *data,
 | |
| 		  struct drm_file *file_priv)
 | |
| {
 | |
| 	struct nouveau_cli *cli = nouveau_cli(file_priv);
 | |
| 	struct drm_nouveau_svm_bind *args = data;
 | |
| 	unsigned target, cmd;
 | |
| 	unsigned long addr, end;
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	args->va_start &= PAGE_MASK;
 | |
| 	args->va_end = ALIGN(args->va_end, PAGE_SIZE);
 | |
| 
 | |
| 	/* Sanity check arguments */
 | |
| 	if (args->reserved0 || args->reserved1)
 | |
| 		return -EINVAL;
 | |
| 	if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
 | |
| 		return -EINVAL;
 | |
| 	if (args->va_start >= args->va_end)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
 | |
| 	cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
 | |
| 	switch (cmd) {
 | |
| 	case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME support CPU target ie all target value < GPU_VRAM */
 | |
| 	target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
 | |
| 	target &= NOUVEAU_SVM_BIND_TARGET_MASK;
 | |
| 	switch (target) {
 | |
| 	case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: For now refuse non 0 stride, we need to change the migrate
 | |
| 	 * kernel function to handle stride to avoid to create a mess within
 | |
| 	 * each device driver.
 | |
| 	 */
 | |
| 	if (args->stride)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok we are ask to do something sane, for now we only support migrate
 | |
| 	 * commands but we will add things like memory policy (what to do on
 | |
| 	 * page fault) and maybe some other commands.
 | |
| 	 */
 | |
| 
 | |
| 	mm = get_task_mm(current);
 | |
| 	if (!mm) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	mmap_read_lock(mm);
 | |
| 
 | |
| 	if (!cli->svm.svmm) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		mmput(mm);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (addr = args->va_start, end = args->va_end; addr < end;) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		unsigned long next;
 | |
| 
 | |
| 		vma = find_vma_intersection(mm, addr, end);
 | |
| 		if (!vma)
 | |
| 			break;
 | |
| 
 | |
| 		addr = max(addr, vma->vm_start);
 | |
| 		next = min(vma->vm_end, end);
 | |
| 		/* This is a best effort so we ignore errors */
 | |
| 		nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
 | |
| 					 next);
 | |
| 		addr = next;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME Return the number of page we have migrated, again we need to
 | |
| 	 * update the migrate API to return that information so that we can
 | |
| 	 * report it to user space.
 | |
| 	 */
 | |
| 	args->result = 0;
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| 	mmput(mm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unlink channel instance from SVMM. */
 | |
| void
 | |
| nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
 | |
| {
 | |
| 	struct nouveau_ivmm *ivmm;
 | |
| 	if (svmm) {
 | |
| 		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
 | |
| 		ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
 | |
| 		if (ivmm) {
 | |
| 			list_del(&ivmm->head);
 | |
| 			kfree(ivmm);
 | |
| 		}
 | |
| 		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Link channel instance to SVMM. */
 | |
| int
 | |
| nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
 | |
| {
 | |
| 	struct nouveau_ivmm *ivmm;
 | |
| 	if (svmm) {
 | |
| 		if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
 | |
| 			return -ENOMEM;
 | |
| 		ivmm->svmm = svmm;
 | |
| 		ivmm->inst = inst;
 | |
| 
 | |
| 		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
 | |
| 		list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
 | |
| 		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Invalidate SVMM address-range on GPU. */
 | |
| void
 | |
| nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
 | |
| {
 | |
| 	if (limit > start) {
 | |
| 		nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
 | |
| 				 &(struct nvif_vmm_pfnclr_v0) {
 | |
| 					.addr = start,
 | |
| 					.size = limit - start,
 | |
| 				 }, sizeof(struct nvif_vmm_pfnclr_v0));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
 | |
| 				    const struct mmu_notifier_range *update)
 | |
| {
 | |
| 	struct nouveau_svmm *svmm =
 | |
| 		container_of(mn, struct nouveau_svmm, notifier);
 | |
| 	unsigned long start = update->start;
 | |
| 	unsigned long limit = update->end;
 | |
| 
 | |
| 	if (!mmu_notifier_range_blockable(update))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
 | |
| 
 | |
| 	mutex_lock(&svmm->mutex);
 | |
| 	if (unlikely(!svmm->vmm))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore invalidation callbacks for device private pages since
 | |
| 	 * the invalidation is handled as part of the migration process.
 | |
| 	 */
 | |
| 	if (update->event == MMU_NOTIFY_MIGRATE &&
 | |
| 	    update->owner == svmm->vmm->cli->drm->dev)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
 | |
| 		if (start < svmm->unmanaged.start) {
 | |
| 			nouveau_svmm_invalidate(svmm, start,
 | |
| 						svmm->unmanaged.limit);
 | |
| 		}
 | |
| 		start = svmm->unmanaged.limit;
 | |
| 	}
 | |
| 
 | |
| 	nouveau_svmm_invalidate(svmm, start, limit);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&svmm->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
 | |
| {
 | |
| 	kfree(container_of(mn, struct nouveau_svmm, notifier));
 | |
| }
 | |
| 
 | |
| static const struct mmu_notifier_ops nouveau_mn_ops = {
 | |
| 	.invalidate_range_start = nouveau_svmm_invalidate_range_start,
 | |
| 	.free_notifier = nouveau_svmm_free_notifier,
 | |
| };
 | |
| 
 | |
| void
 | |
| nouveau_svmm_fini(struct nouveau_svmm **psvmm)
 | |
| {
 | |
| 	struct nouveau_svmm *svmm = *psvmm;
 | |
| 	if (svmm) {
 | |
| 		mutex_lock(&svmm->mutex);
 | |
| 		svmm->vmm = NULL;
 | |
| 		mutex_unlock(&svmm->mutex);
 | |
| 		mmu_notifier_put(&svmm->notifier);
 | |
| 		*psvmm = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| nouveau_svmm_init(struct drm_device *dev, void *data,
 | |
| 		  struct drm_file *file_priv)
 | |
| {
 | |
| 	struct nouveau_cli *cli = nouveau_cli(file_priv);
 | |
| 	struct nouveau_svmm *svmm;
 | |
| 	struct drm_nouveau_svm_init *args = data;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* We need to fail if svm is disabled */
 | |
| 	if (!cli->drm->svm)
 | |
| 		return -ENOSYS;
 | |
| 
 | |
| 	/* Allocate tracking for SVM-enabled VMM. */
 | |
| 	if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
 | |
| 		return -ENOMEM;
 | |
| 	svmm->vmm = &cli->svm;
 | |
| 	svmm->unmanaged.start = args->unmanaged_addr;
 | |
| 	svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
 | |
| 	mutex_init(&svmm->mutex);
 | |
| 
 | |
| 	/* Check that SVM isn't already enabled for the client. */
 | |
| 	mutex_lock(&cli->mutex);
 | |
| 	if (cli->svm.cli) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a new GPU VMM that can support SVM (managed by the
 | |
| 	 * client, with replayable faults enabled).
 | |
| 	 *
 | |
| 	 * All future channel/memory allocations will make use of this
 | |
| 	 * VMM instead of the standard one.
 | |
| 	 */
 | |
| 	ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
 | |
| 			    cli->vmm.vmm.object.oclass, MANAGED,
 | |
| 			    args->unmanaged_addr, args->unmanaged_size,
 | |
| 			    &(struct gp100_vmm_v0) {
 | |
| 				.fault_replay = true,
 | |
| 			    }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	mmap_write_lock(current->mm);
 | |
| 	svmm->notifier.ops = &nouveau_mn_ops;
 | |
| 	ret = __mmu_notifier_register(&svmm->notifier, current->mm);
 | |
| 	if (ret)
 | |
| 		goto out_mm_unlock;
 | |
| 	/* Note, ownership of svmm transfers to mmu_notifier */
 | |
| 
 | |
| 	cli->svm.svmm = svmm;
 | |
| 	cli->svm.cli = cli;
 | |
| 	mmap_write_unlock(current->mm);
 | |
| 	mutex_unlock(&cli->mutex);
 | |
| 	return 0;
 | |
| 
 | |
| out_mm_unlock:
 | |
| 	mmap_write_unlock(current->mm);
 | |
| out_free:
 | |
| 	mutex_unlock(&cli->mutex);
 | |
| 	kfree(svmm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Issue fault replay for GPU to retry accesses that faulted previously. */
 | |
| static void
 | |
| nouveau_svm_fault_replay(struct nouveau_svm *svm)
 | |
| {
 | |
| 	SVM_DBG(svm, "replay");
 | |
| 	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
 | |
| 				 GP100_VMM_VN_FAULT_REPLAY,
 | |
| 				 &(struct gp100_vmm_fault_replay_vn) {},
 | |
| 				 sizeof(struct gp100_vmm_fault_replay_vn)));
 | |
| }
 | |
| 
 | |
| /* Cancel a replayable fault that could not be handled.
 | |
|  *
 | |
|  * Cancelling the fault will trigger recovery to reset the engine
 | |
|  * and kill the offending channel (ie. GPU SIGSEGV).
 | |
|  */
 | |
| static void
 | |
| nouveau_svm_fault_cancel(struct nouveau_svm *svm,
 | |
| 			 u64 inst, u8 hub, u8 gpc, u8 client)
 | |
| {
 | |
| 	SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
 | |
| 	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
 | |
| 				 GP100_VMM_VN_FAULT_CANCEL,
 | |
| 				 &(struct gp100_vmm_fault_cancel_v0) {
 | |
| 					.hub = hub,
 | |
| 					.gpc = gpc,
 | |
| 					.client = client,
 | |
| 					.inst = inst,
 | |
| 				 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
 | |
| }
 | |
| 
 | |
| static void
 | |
| nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
 | |
| 			       struct nouveau_svm_fault *fault)
 | |
| {
 | |
| 	nouveau_svm_fault_cancel(svm, fault->inst,
 | |
| 				      fault->hub,
 | |
| 				      fault->gpc,
 | |
| 				      fault->client);
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svm_fault_priority(u8 fault)
 | |
| {
 | |
| 	switch (fault) {
 | |
| 	case FAULT_ACCESS_PREFETCH:
 | |
| 		return 0;
 | |
| 	case FAULT_ACCESS_READ:
 | |
| 		return 1;
 | |
| 	case FAULT_ACCESS_WRITE:
 | |
| 		return 2;
 | |
| 	case FAULT_ACCESS_ATOMIC:
 | |
| 		return 3;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svm_fault_cmp(const void *a, const void *b)
 | |
| {
 | |
| 	const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
 | |
| 	const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
 | |
| 	int ret;
 | |
| 	if ((ret = (s64)fa->inst - fb->inst))
 | |
| 		return ret;
 | |
| 	if ((ret = (s64)fa->addr - fb->addr))
 | |
| 		return ret;
 | |
| 	return nouveau_svm_fault_priority(fa->access) -
 | |
| 		nouveau_svm_fault_priority(fb->access);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nouveau_svm_fault_cache(struct nouveau_svm *svm,
 | |
| 			struct nouveau_svm_fault_buffer *buffer, u32 offset)
 | |
| {
 | |
| 	struct nvif_object *memory = &buffer->object;
 | |
| 	const u32 instlo = nvif_rd32(memory, offset + 0x00);
 | |
| 	const u32 insthi = nvif_rd32(memory, offset + 0x04);
 | |
| 	const u32 addrlo = nvif_rd32(memory, offset + 0x08);
 | |
| 	const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
 | |
| 	const u32 timelo = nvif_rd32(memory, offset + 0x10);
 | |
| 	const u32 timehi = nvif_rd32(memory, offset + 0x14);
 | |
| 	const u32 engine = nvif_rd32(memory, offset + 0x18);
 | |
| 	const u32   info = nvif_rd32(memory, offset + 0x1c);
 | |
| 	const u64   inst = (u64)insthi << 32 | instlo;
 | |
| 	const u8     gpc = (info & 0x1f000000) >> 24;
 | |
| 	const u8     hub = (info & 0x00100000) >> 20;
 | |
| 	const u8  client = (info & 0x00007f00) >> 8;
 | |
| 	struct nouveau_svm_fault *fault;
 | |
| 
 | |
| 	//XXX: i think we're supposed to spin waiting */
 | |
| 	if (WARN_ON(!(info & 0x80000000)))
 | |
| 		return;
 | |
| 
 | |
| 	nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
 | |
| 
 | |
| 	if (!buffer->fault[buffer->fault_nr]) {
 | |
| 		fault = kmalloc(sizeof(*fault), GFP_KERNEL);
 | |
| 		if (WARN_ON(!fault)) {
 | |
| 			nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
 | |
| 			return;
 | |
| 		}
 | |
| 		buffer->fault[buffer->fault_nr] = fault;
 | |
| 	}
 | |
| 
 | |
| 	fault = buffer->fault[buffer->fault_nr++];
 | |
| 	fault->inst   = inst;
 | |
| 	fault->addr   = (u64)addrhi << 32 | addrlo;
 | |
| 	fault->time   = (u64)timehi << 32 | timelo;
 | |
| 	fault->engine = engine;
 | |
| 	fault->gpc    = gpc;
 | |
| 	fault->hub    = hub;
 | |
| 	fault->access = (info & 0x000f0000) >> 16;
 | |
| 	fault->client = client;
 | |
| 	fault->fault  = (info & 0x0000001f);
 | |
| 
 | |
| 	SVM_DBG(svm, "fault %016llx %016llx %02x",
 | |
| 		fault->inst, fault->addr, fault->access);
 | |
| }
 | |
| 
 | |
| struct svm_notifier {
 | |
| 	struct mmu_interval_notifier notifier;
 | |
| 	struct nouveau_svmm *svmm;
 | |
| };
 | |
| 
 | |
| static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
 | |
| 					 const struct mmu_notifier_range *range,
 | |
| 					 unsigned long cur_seq)
 | |
| {
 | |
| 	struct svm_notifier *sn =
 | |
| 		container_of(mni, struct svm_notifier, notifier);
 | |
| 
 | |
| 	if (range->event == MMU_NOTIFY_EXCLUSIVE &&
 | |
| 	    range->owner == sn->svmm->vmm->cli->drm->dev)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * serializes the update to mni->invalidate_seq done by caller and
 | |
| 	 * prevents invalidation of the PTE from progressing while HW is being
 | |
| 	 * programmed. This is very hacky and only works because the normal
 | |
| 	 * notifier that does invalidation is always called after the range
 | |
| 	 * notifier.
 | |
| 	 */
 | |
| 	if (mmu_notifier_range_blockable(range))
 | |
| 		mutex_lock(&sn->svmm->mutex);
 | |
| 	else if (!mutex_trylock(&sn->svmm->mutex))
 | |
| 		return false;
 | |
| 	mmu_interval_set_seq(mni, cur_seq);
 | |
| 	mutex_unlock(&sn->svmm->mutex);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
 | |
| 	.invalidate = nouveau_svm_range_invalidate,
 | |
| };
 | |
| 
 | |
| static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
 | |
| 				    struct hmm_range *range,
 | |
| 				    struct nouveau_pfnmap_args *args)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * The address prepared here is passed through nvif_object_ioctl()
 | |
| 	 * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
 | |
| 	 *
 | |
| 	 * This is all just encoding the internal hmm representation into a
 | |
| 	 * different nouveau internal representation.
 | |
| 	 */
 | |
| 	if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
 | |
| 		args->p.phys[0] = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	page = hmm_pfn_to_page(range->hmm_pfns[0]);
 | |
| 	/*
 | |
| 	 * Only map compound pages to the GPU if the CPU is also mapping the
 | |
| 	 * page as a compound page. Otherwise, the PTE protections might not be
 | |
| 	 * consistent (e.g., CPU only maps part of a compound page).
 | |
| 	 * Note that the underlying page might still be larger than the
 | |
| 	 * CPU mapping (e.g., a PUD sized compound page partially mapped with
 | |
| 	 * a PMD sized page table entry).
 | |
| 	 */
 | |
| 	if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
 | |
| 		unsigned long addr = args->p.addr;
 | |
| 
 | |
| 		args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
 | |
| 				PAGE_SHIFT;
 | |
| 		args->p.size = 1UL << args->p.page;
 | |
| 		args->p.addr &= ~(args->p.size - 1);
 | |
| 		page -= (addr - args->p.addr) >> PAGE_SHIFT;
 | |
| 	}
 | |
| 	if (is_device_private_page(page))
 | |
| 		args->p.phys[0] = nouveau_dmem_page_addr(page) |
 | |
| 				NVIF_VMM_PFNMAP_V0_V |
 | |
| 				NVIF_VMM_PFNMAP_V0_VRAM;
 | |
| 	else
 | |
| 		args->p.phys[0] = page_to_phys(page) |
 | |
| 				NVIF_VMM_PFNMAP_V0_V |
 | |
| 				NVIF_VMM_PFNMAP_V0_HOST;
 | |
| 	if (range->hmm_pfns[0] & HMM_PFN_WRITE)
 | |
| 		args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
 | |
| }
 | |
| 
 | |
| static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
 | |
| 			       struct nouveau_drm *drm,
 | |
| 			       struct nouveau_pfnmap_args *args, u32 size,
 | |
| 			       struct svm_notifier *notifier)
 | |
| {
 | |
| 	unsigned long timeout =
 | |
| 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 | |
| 	struct mm_struct *mm = svmm->notifier.mm;
 | |
| 	struct page *page;
 | |
| 	unsigned long start = args->p.addr;
 | |
| 	unsigned long notifier_seq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = mmu_interval_notifier_insert(¬ifier->notifier, mm,
 | |
| 					args->p.addr, args->p.size,
 | |
| 					&nouveau_svm_mni_ops);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	while (true) {
 | |
| 		if (time_after(jiffies, timeout)) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		notifier_seq = mmu_interval_read_begin(¬ifier->notifier);
 | |
| 		mmap_read_lock(mm);
 | |
| 		ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
 | |
| 					    &page, drm->dev);
 | |
| 		mmap_read_unlock(mm);
 | |
| 		if (ret <= 0 || !page) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&svmm->mutex);
 | |
| 		if (!mmu_interval_read_retry(¬ifier->notifier,
 | |
| 					     notifier_seq))
 | |
| 			break;
 | |
| 		mutex_unlock(&svmm->mutex);
 | |
| 	}
 | |
| 
 | |
| 	/* Map the page on the GPU. */
 | |
| 	args->p.page = 12;
 | |
| 	args->p.size = PAGE_SIZE;
 | |
| 	args->p.addr = start;
 | |
| 	args->p.phys[0] = page_to_phys(page) |
 | |
| 		NVIF_VMM_PFNMAP_V0_V |
 | |
| 		NVIF_VMM_PFNMAP_V0_W |
 | |
| 		NVIF_VMM_PFNMAP_V0_A |
 | |
| 		NVIF_VMM_PFNMAP_V0_HOST;
 | |
| 
 | |
| 	ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
 | |
| 	mutex_unlock(&svmm->mutex);
 | |
| 
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 
 | |
| out:
 | |
| 	mmu_interval_notifier_remove(¬ifier->notifier);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int nouveau_range_fault(struct nouveau_svmm *svmm,
 | |
| 			       struct nouveau_drm *drm,
 | |
| 			       struct nouveau_pfnmap_args *args, u32 size,
 | |
| 			       unsigned long hmm_flags,
 | |
| 			       struct svm_notifier *notifier)
 | |
| {
 | |
| 	unsigned long timeout =
 | |
| 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 | |
| 	/* Have HMM fault pages within the fault window to the GPU. */
 | |
| 	unsigned long hmm_pfns[1];
 | |
| 	struct hmm_range range = {
 | |
| 		.notifier = ¬ifier->notifier,
 | |
| 		.default_flags = hmm_flags,
 | |
| 		.hmm_pfns = hmm_pfns,
 | |
| 		.dev_private_owner = drm->dev,
 | |
| 	};
 | |
| 	struct mm_struct *mm = svmm->notifier.mm;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mmu_interval_notifier_insert(¬ifier->notifier, mm,
 | |
| 					args->p.addr, args->p.size,
 | |
| 					&nouveau_svm_mni_ops);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	range.start = notifier->notifier.interval_tree.start;
 | |
| 	range.end = notifier->notifier.interval_tree.last + 1;
 | |
| 
 | |
| 	while (true) {
 | |
| 		if (time_after(jiffies, timeout)) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		range.notifier_seq = mmu_interval_read_begin(range.notifier);
 | |
| 		mmap_read_lock(mm);
 | |
| 		ret = hmm_range_fault(&range);
 | |
| 		mmap_read_unlock(mm);
 | |
| 		if (ret) {
 | |
| 			if (ret == -EBUSY)
 | |
| 				continue;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&svmm->mutex);
 | |
| 		if (mmu_interval_read_retry(range.notifier,
 | |
| 					    range.notifier_seq)) {
 | |
| 			mutex_unlock(&svmm->mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	nouveau_hmm_convert_pfn(drm, &range, args);
 | |
| 
 | |
| 	ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
 | |
| 	mutex_unlock(&svmm->mutex);
 | |
| 
 | |
| out:
 | |
| 	mmu_interval_notifier_remove(¬ifier->notifier);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| nouveau_svm_fault(struct work_struct *work)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
 | |
| 	struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
 | |
| 	struct nvif_object *device = &svm->drm->client.device.object;
 | |
| 	struct nouveau_svmm *svmm;
 | |
| 	struct {
 | |
| 		struct nouveau_pfnmap_args i;
 | |
| 		u64 phys[1];
 | |
| 	} args;
 | |
| 	unsigned long hmm_flags;
 | |
| 	u64 inst, start, limit;
 | |
| 	int fi, fn;
 | |
| 	int replay = 0, atomic = 0, ret;
 | |
| 
 | |
| 	/* Parse available fault buffer entries into a cache, and update
 | |
| 	 * the GET pointer so HW can reuse the entries.
 | |
| 	 */
 | |
| 	SVM_DBG(svm, "fault handler");
 | |
| 	if (buffer->get == buffer->put) {
 | |
| 		buffer->put = nvif_rd32(device, buffer->putaddr);
 | |
| 		buffer->get = nvif_rd32(device, buffer->getaddr);
 | |
| 		if (buffer->get == buffer->put)
 | |
| 			return;
 | |
| 	}
 | |
| 	buffer->fault_nr = 0;
 | |
| 
 | |
| 	SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
 | |
| 	while (buffer->get != buffer->put) {
 | |
| 		nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
 | |
| 		if (++buffer->get == buffer->entries)
 | |
| 			buffer->get = 0;
 | |
| 	}
 | |
| 	nvif_wr32(device, buffer->getaddr, buffer->get);
 | |
| 	SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
 | |
| 
 | |
| 	/* Sort parsed faults by instance pointer to prevent unnecessary
 | |
| 	 * instance to SVMM translations, followed by address and access
 | |
| 	 * type to reduce the amount of work when handling the faults.
 | |
| 	 */
 | |
| 	sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
 | |
| 	     nouveau_svm_fault_cmp, NULL);
 | |
| 
 | |
| 	/* Lookup SVMM structure for each unique instance pointer. */
 | |
| 	mutex_lock(&svm->mutex);
 | |
| 	for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
 | |
| 		if (!svmm || buffer->fault[fi]->inst != inst) {
 | |
| 			struct nouveau_ivmm *ivmm =
 | |
| 				nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
 | |
| 			svmm = ivmm ? ivmm->svmm : NULL;
 | |
| 			inst = buffer->fault[fi]->inst;
 | |
| 			SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
 | |
| 		}
 | |
| 		buffer->fault[fi]->svmm = svmm;
 | |
| 	}
 | |
| 	mutex_unlock(&svm->mutex);
 | |
| 
 | |
| 	/* Process list of faults. */
 | |
| 	args.i.i.version = 0;
 | |
| 	args.i.i.type = NVIF_IOCTL_V0_MTHD;
 | |
| 	args.i.m.version = 0;
 | |
| 	args.i.m.method = NVIF_VMM_V0_PFNMAP;
 | |
| 	args.i.p.version = 0;
 | |
| 
 | |
| 	for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
 | |
| 		struct svm_notifier notifier;
 | |
| 		struct mm_struct *mm;
 | |
| 
 | |
| 		/* Cancel any faults from non-SVM channels. */
 | |
| 		if (!(svmm = buffer->fault[fi]->svmm)) {
 | |
| 			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
 | |
| 			continue;
 | |
| 		}
 | |
| 		SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
 | |
| 
 | |
| 		/* We try and group handling of faults within a small
 | |
| 		 * window into a single update.
 | |
| 		 */
 | |
| 		start = buffer->fault[fi]->addr;
 | |
| 		limit = start + PAGE_SIZE;
 | |
| 		if (start < svmm->unmanaged.limit)
 | |
| 			limit = min_t(u64, limit, svmm->unmanaged.start);
 | |
| 
 | |
| 		/*
 | |
| 		 * Prepare the GPU-side update of all pages within the
 | |
| 		 * fault window, determining required pages and access
 | |
| 		 * permissions based on pending faults.
 | |
| 		 */
 | |
| 		args.i.p.addr = start;
 | |
| 		args.i.p.page = PAGE_SHIFT;
 | |
| 		args.i.p.size = PAGE_SIZE;
 | |
| 		/*
 | |
| 		 * Determine required permissions based on GPU fault
 | |
| 		 * access flags.
 | |
| 		 */
 | |
| 		switch (buffer->fault[fi]->access) {
 | |
| 		case 0: /* READ. */
 | |
| 			hmm_flags = HMM_PFN_REQ_FAULT;
 | |
| 			break;
 | |
| 		case 2: /* ATOMIC. */
 | |
| 			atomic = true;
 | |
| 			break;
 | |
| 		case 3: /* PREFETCH. */
 | |
| 			hmm_flags = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mm = svmm->notifier.mm;
 | |
| 		if (!mmget_not_zero(mm)) {
 | |
| 			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		notifier.svmm = svmm;
 | |
| 		if (atomic)
 | |
| 			ret = nouveau_atomic_range_fault(svmm, svm->drm,
 | |
| 							 &args.i, sizeof(args),
 | |
| 							 ¬ifier);
 | |
| 		else
 | |
| 			ret = nouveau_range_fault(svmm, svm->drm, &args.i,
 | |
| 						  sizeof(args), hmm_flags,
 | |
| 						  ¬ifier);
 | |
| 		mmput(mm);
 | |
| 
 | |
| 		limit = args.i.p.addr + args.i.p.size;
 | |
| 		for (fn = fi; ++fn < buffer->fault_nr; ) {
 | |
| 			/* It's okay to skip over duplicate addresses from the
 | |
| 			 * same SVMM as faults are ordered by access type such
 | |
| 			 * that only the first one needs to be handled.
 | |
| 			 *
 | |
| 			 * ie. WRITE faults appear first, thus any handling of
 | |
| 			 * pending READ faults will already be satisfied.
 | |
| 			 * But if a large page is mapped, make sure subsequent
 | |
| 			 * fault addresses have sufficient access permission.
 | |
| 			 */
 | |
| 			if (buffer->fault[fn]->svmm != svmm ||
 | |
| 			    buffer->fault[fn]->addr >= limit ||
 | |
| 			    (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
 | |
| 			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
 | |
| 			    (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
 | |
| 			     buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
 | |
| 			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
 | |
| 			    (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
 | |
| 			     buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
 | |
| 			     buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
 | |
| 			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* If handling failed completely, cancel all faults. */
 | |
| 		if (ret) {
 | |
| 			while (fi < fn) {
 | |
| 				struct nouveau_svm_fault *fault =
 | |
| 					buffer->fault[fi++];
 | |
| 
 | |
| 				nouveau_svm_fault_cancel_fault(svm, fault);
 | |
| 			}
 | |
| 		} else
 | |
| 			replay++;
 | |
| 	}
 | |
| 
 | |
| 	/* Issue fault replay to the GPU. */
 | |
| 	if (replay)
 | |
| 		nouveau_svm_fault_replay(svm);
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
 | |
| 
 | |
| 	schedule_work(&buffer->work);
 | |
| 	return NVIF_EVENT_KEEP;
 | |
| }
 | |
| 
 | |
| static struct nouveau_pfnmap_args *
 | |
| nouveau_pfns_to_args(void *pfns)
 | |
| {
 | |
| 	return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
 | |
| }
 | |
| 
 | |
| u64 *
 | |
| nouveau_pfns_alloc(unsigned long npages)
 | |
| {
 | |
| 	struct nouveau_pfnmap_args *args;
 | |
| 
 | |
| 	args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
 | |
| 	if (!args)
 | |
| 		return NULL;
 | |
| 
 | |
| 	args->i.type = NVIF_IOCTL_V0_MTHD;
 | |
| 	args->m.method = NVIF_VMM_V0_PFNMAP;
 | |
| 	args->p.page = PAGE_SHIFT;
 | |
| 
 | |
| 	return args->p.phys;
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_pfns_free(u64 *pfns)
 | |
| {
 | |
| 	struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
 | |
| 
 | |
| 	kfree(args);
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
 | |
| 		 unsigned long addr, u64 *pfns, unsigned long npages)
 | |
| {
 | |
| 	struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
 | |
| 
 | |
| 	args->p.addr = addr;
 | |
| 	args->p.size = npages << PAGE_SHIFT;
 | |
| 
 | |
| 	mutex_lock(&svmm->mutex);
 | |
| 
 | |
| 	nvif_object_ioctl(&svmm->vmm->vmm.object, args,
 | |
| 			  struct_size(args, p.phys, npages), NULL);
 | |
| 
 | |
| 	mutex_unlock(&svmm->mutex);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
 | |
| 
 | |
| 	nvif_event_block(&buffer->notify);
 | |
| 	flush_work(&buffer->work);
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
 | |
| 	struct nvif_object *device = &svm->drm->client.device.object;
 | |
| 
 | |
| 	buffer->get = nvif_rd32(device, buffer->getaddr);
 | |
| 	buffer->put = nvif_rd32(device, buffer->putaddr);
 | |
| 	SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
 | |
| 
 | |
| 	return nvif_event_allow(&buffer->notify);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!nvif_object_constructed(&buffer->object))
 | |
| 		return;
 | |
| 
 | |
| 	nouveau_svm_fault_buffer_fini(svm, id);
 | |
| 
 | |
| 	if (buffer->fault) {
 | |
| 		for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
 | |
| 			kfree(buffer->fault[i]);
 | |
| 		kvfree(buffer->fault);
 | |
| 	}
 | |
| 
 | |
| 	nvif_event_dtor(&buffer->notify);
 | |
| 	nvif_object_dtor(&buffer->object);
 | |
| }
 | |
| 
 | |
| static int
 | |
| nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
 | |
| {
 | |
| 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
 | |
| 	struct nouveau_drm *drm = svm->drm;
 | |
| 	struct nvif_object *device = &drm->client.device.object;
 | |
| 	struct nvif_clb069_v0 args = {};
 | |
| 	int ret;
 | |
| 
 | |
| 	buffer->id = id;
 | |
| 
 | |
| 	ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
 | |
| 			       sizeof(args), &buffer->object);
 | |
| 	if (ret < 0) {
 | |
| 		SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	nvif_object_map(&buffer->object, NULL, 0);
 | |
| 	buffer->entries = args.entries;
 | |
| 	buffer->getaddr = args.get;
 | |
| 	buffer->putaddr = args.put;
 | |
| 	INIT_WORK(&buffer->work, nouveau_svm_fault);
 | |
| 
 | |
| 	ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
 | |
| 			      &buffer->notify);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	buffer->fault = kvcalloc(buffer->entries, sizeof(*buffer->fault), GFP_KERNEL);
 | |
| 	if (!buffer->fault)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return nouveau_svm_fault_buffer_init(svm, id);
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_svm_resume(struct nouveau_drm *drm)
 | |
| {
 | |
| 	struct nouveau_svm *svm = drm->svm;
 | |
| 	if (svm)
 | |
| 		nouveau_svm_fault_buffer_init(svm, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_svm_suspend(struct nouveau_drm *drm)
 | |
| {
 | |
| 	struct nouveau_svm *svm = drm->svm;
 | |
| 	if (svm)
 | |
| 		nouveau_svm_fault_buffer_fini(svm, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_svm_fini(struct nouveau_drm *drm)
 | |
| {
 | |
| 	struct nouveau_svm *svm = drm->svm;
 | |
| 	if (svm) {
 | |
| 		nouveau_svm_fault_buffer_dtor(svm, 0);
 | |
| 		kfree(drm->svm);
 | |
| 		drm->svm = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| nouveau_svm_init(struct nouveau_drm *drm)
 | |
| {
 | |
| 	static const struct nvif_mclass buffers[] = {
 | |
| 		{   VOLTA_FAULT_BUFFER_A, 0 },
 | |
| 		{ MAXWELL_FAULT_BUFFER_A, 0 },
 | |
| 		{}
 | |
| 	};
 | |
| 	struct nouveau_svm *svm;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Disable on Volta and newer until channel recovery is fixed,
 | |
| 	 * otherwise clients will have a trivial way to trash the GPU
 | |
| 	 * for everyone.
 | |
| 	 */
 | |
| 	if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
 | |
| 		return;
 | |
| 
 | |
| 	drm->svm = svm = kzalloc(struct_size(drm->svm, buffer, 1), GFP_KERNEL);
 | |
| 	if (!drm->svm)
 | |
| 		return;
 | |
| 
 | |
| 	drm->svm->drm = drm;
 | |
| 	mutex_init(&drm->svm->mutex);
 | |
| 	INIT_LIST_HEAD(&drm->svm->inst);
 | |
| 
 | |
| 	ret = nvif_mclass(&drm->client.device.object, buffers);
 | |
| 	if (ret < 0) {
 | |
| 		SVM_DBG(svm, "No supported fault buffer class");
 | |
| 		nouveau_svm_fini(drm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
 | |
| 	if (ret) {
 | |
| 		nouveau_svm_fini(drm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	SVM_DBG(svm, "Initialised");
 | |
| }
 |