1083 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Copyright(c) 2023 Intel Corporation. All rights reserved. */
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/xarray.h>
 | |
| #include <linux/fw_table.h>
 | |
| #include <linux/node.h>
 | |
| #include <linux/overflow.h>
 | |
| #include "cxlpci.h"
 | |
| #include "cxlmem.h"
 | |
| #include "core.h"
 | |
| #include "cxl.h"
 | |
| 
 | |
| struct dsmas_entry {
 | |
| 	struct range dpa_range;
 | |
| 	u8 handle;
 | |
| 	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
 | |
| 	int entries;
 | |
| 	int qos_class;
 | |
| };
 | |
| 
 | |
| static u32 cdat_normalize(u16 entry, u64 base, u8 type)
 | |
| {
 | |
| 	u32 value;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for invalid and overflow values
 | |
| 	 */
 | |
| 	if (entry == 0xffff || !entry)
 | |
| 		return 0;
 | |
| 	else if (base > (UINT_MAX / (entry)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * CDAT fields follow the format of HMAT fields. See table 5 Device
 | |
| 	 * Scoped Latency and Bandwidth Information Structure in Coherent Device
 | |
| 	 * Attribute Table (CDAT) Specification v1.01.
 | |
| 	 */
 | |
| 	value = entry * base;
 | |
| 	switch (type) {
 | |
| 	case ACPI_HMAT_ACCESS_LATENCY:
 | |
| 	case ACPI_HMAT_READ_LATENCY:
 | |
| 	case ACPI_HMAT_WRITE_LATENCY:
 | |
| 		value = DIV_ROUND_UP(value, 1000);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
 | |
| 			      const unsigned long end)
 | |
| {
 | |
| 	struct acpi_cdat_header *hdr = &header->cdat;
 | |
| 	struct acpi_cdat_dsmas *dsmas;
 | |
| 	int size = sizeof(*hdr) + sizeof(*dsmas);
 | |
| 	struct xarray *dsmas_xa = arg;
 | |
| 	struct dsmas_entry *dent;
 | |
| 	u16 len;
 | |
| 	int rc;
 | |
| 
 | |
| 	len = le16_to_cpu((__force __le16)hdr->length);
 | |
| 	if (len != size || (unsigned long)hdr + len > end) {
 | |
| 		pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip common header */
 | |
| 	dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
 | |
| 
 | |
| 	dent = kzalloc(sizeof(*dent), GFP_KERNEL);
 | |
| 	if (!dent)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dent->handle = dsmas->dsmad_handle;
 | |
| 	dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
 | |
| 	dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
 | |
| 			      le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
 | |
| 
 | |
| 	rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
 | |
| 	if (rc) {
 | |
| 		kfree(dent);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __cxl_access_coordinate_set(struct access_coordinate *coord,
 | |
| 					int access, unsigned int val)
 | |
| {
 | |
| 	switch (access) {
 | |
| 	case ACPI_HMAT_ACCESS_LATENCY:
 | |
| 		coord->read_latency = val;
 | |
| 		coord->write_latency = val;
 | |
| 		break;
 | |
| 	case ACPI_HMAT_READ_LATENCY:
 | |
| 		coord->read_latency = val;
 | |
| 		break;
 | |
| 	case ACPI_HMAT_WRITE_LATENCY:
 | |
| 		coord->write_latency = val;
 | |
| 		break;
 | |
| 	case ACPI_HMAT_ACCESS_BANDWIDTH:
 | |
| 		coord->read_bandwidth = val;
 | |
| 		coord->write_bandwidth = val;
 | |
| 		break;
 | |
| 	case ACPI_HMAT_READ_BANDWIDTH:
 | |
| 		coord->read_bandwidth = val;
 | |
| 		break;
 | |
| 	case ACPI_HMAT_WRITE_BANDWIDTH:
 | |
| 		coord->write_bandwidth = val;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cxl_access_coordinate_set(struct access_coordinate *coord,
 | |
| 				      int access, unsigned int val)
 | |
| {
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
 | |
| 		__cxl_access_coordinate_set(&coord[i], access, val);
 | |
| }
 | |
| 
 | |
| static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
 | |
| 			       const unsigned long end)
 | |
| {
 | |
| 	struct acpi_cdat_header *hdr = &header->cdat;
 | |
| 	struct acpi_cdat_dslbis *dslbis;
 | |
| 	int size = sizeof(*hdr) + sizeof(*dslbis);
 | |
| 	struct xarray *dsmas_xa = arg;
 | |
| 	struct dsmas_entry *dent;
 | |
| 	__le64 le_base;
 | |
| 	__le16 le_val;
 | |
| 	u64 val;
 | |
| 	u16 len;
 | |
| 
 | |
| 	len = le16_to_cpu((__force __le16)hdr->length);
 | |
| 	if (len != size || (unsigned long)hdr + len > end) {
 | |
| 		pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip common header */
 | |
| 	dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
 | |
| 
 | |
| 	/* Skip unrecognized data type */
 | |
| 	if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Not a memory type, skip */
 | |
| 	if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
 | |
| 		return 0;
 | |
| 
 | |
| 	dent = xa_load(dsmas_xa, dslbis->handle);
 | |
| 	if (!dent) {
 | |
| 		pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	le_base = (__force __le64)dslbis->entry_base_unit;
 | |
| 	le_val = (__force __le16)dslbis->entry[0];
 | |
| 	val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
 | |
| 			     dslbis->data_type);
 | |
| 
 | |
| 	cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cdat_table_parse_output(int rc)
 | |
| {
 | |
| 	if (rc < 0)
 | |
| 		return rc;
 | |
| 	if (rc == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cxl_cdat_endpoint_process(struct cxl_port *port,
 | |
| 				     struct xarray *dsmas_xa)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
 | |
| 			      dsmas_xa, port->cdat.table, port->cdat.length);
 | |
| 	rc = cdat_table_parse_output(rc);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
 | |
| 			      dsmas_xa, port->cdat.table, port->cdat.length);
 | |
| 	return cdat_table_parse_output(rc);
 | |
| }
 | |
| 
 | |
| static int cxl_port_perf_data_calculate(struct cxl_port *port,
 | |
| 					struct xarray *dsmas_xa)
 | |
| {
 | |
| 	struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
 | |
| 	struct dsmas_entry *dent;
 | |
| 	int valid_entries = 0;
 | |
| 	unsigned long index;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
 | |
| 	if (rc) {
 | |
| 		dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
 | |
| 
 | |
| 	if (!cxl_root)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!cxl_root->ops || !cxl_root->ops->qos_class)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	xa_for_each(dsmas_xa, index, dent) {
 | |
| 		int qos_class;
 | |
| 
 | |
| 		cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
 | |
| 		dent->entries = 1;
 | |
| 		rc = cxl_root->ops->qos_class(cxl_root,
 | |
| 					      &dent->coord[ACCESS_COORDINATE_CPU],
 | |
| 					      1, &qos_class);
 | |
| 		if (rc != 1)
 | |
| 			continue;
 | |
| 
 | |
| 		valid_entries++;
 | |
| 		dent->qos_class = qos_class;
 | |
| 	}
 | |
| 
 | |
| 	if (!valid_entries)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
 | |
| 			      struct cxl_dpa_perf *dpa_perf)
 | |
| {
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
 | |
| 		dpa_perf->coord[i] = dent->coord[i];
 | |
| 		dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
 | |
| 	}
 | |
| 	dpa_perf->dpa_range = dent->dpa_range;
 | |
| 	dpa_perf->qos_class = dent->qos_class;
 | |
| 	dev_dbg(dev,
 | |
| 		"DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
 | |
| 		dent->dpa_range.start, dpa_perf->qos_class,
 | |
| 		dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
 | |
| 		dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
 | |
| 		dent->coord[ACCESS_COORDINATE_CPU].read_latency,
 | |
| 		dent->coord[ACCESS_COORDINATE_CPU].write_latency);
 | |
| }
 | |
| 
 | |
| static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
 | |
| 				     struct xarray *dsmas_xa)
 | |
| {
 | |
| 	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
 | |
| 	struct device *dev = cxlds->dev;
 | |
| 	struct range pmem_range = {
 | |
| 		.start = cxlds->pmem_res.start,
 | |
| 		.end = cxlds->pmem_res.end,
 | |
| 	};
 | |
| 	struct range ram_range = {
 | |
| 		.start = cxlds->ram_res.start,
 | |
| 		.end = cxlds->ram_res.end,
 | |
| 	};
 | |
| 	struct dsmas_entry *dent;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	xa_for_each(dsmas_xa, index, dent) {
 | |
| 		if (resource_size(&cxlds->ram_res) &&
 | |
| 		    range_contains(&ram_range, &dent->dpa_range))
 | |
| 			update_perf_entry(dev, dent, &mds->ram_perf);
 | |
| 		else if (resource_size(&cxlds->pmem_res) &&
 | |
| 			 range_contains(&pmem_range, &dent->dpa_range))
 | |
| 			update_perf_entry(dev, dent, &mds->pmem_perf);
 | |
| 		else
 | |
| 			dev_dbg(dev, "no partition for dsmas dpa: %#llx\n",
 | |
| 				dent->dpa_range.start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int match_cxlrd_qos_class(struct device *dev, void *data)
 | |
| {
 | |
| 	int dev_qos_class = *(int *)data;
 | |
| 	struct cxl_root_decoder *cxlrd;
 | |
| 
 | |
| 	if (!is_root_decoder(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	cxlrd = to_cxl_root_decoder(dev);
 | |
| 	if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cxlrd->qos_class == dev_qos_class)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
 | |
| {
 | |
| 	*dpa_perf = (struct cxl_dpa_perf) {
 | |
| 		.qos_class = CXL_QOS_CLASS_INVALID,
 | |
| 	};
 | |
| }
 | |
| 
 | |
| static bool cxl_qos_match(struct cxl_port *root_port,
 | |
| 			  struct cxl_dpa_perf *dpa_perf)
 | |
| {
 | |
| 	if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
 | |
| 				   match_cxlrd_qos_class))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int match_cxlrd_hb(struct device *dev, void *data)
 | |
| {
 | |
| 	struct device *host_bridge = data;
 | |
| 	struct cxl_switch_decoder *cxlsd;
 | |
| 	struct cxl_root_decoder *cxlrd;
 | |
| 
 | |
| 	if (!is_root_decoder(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	cxlrd = to_cxl_root_decoder(dev);
 | |
| 	cxlsd = &cxlrd->cxlsd;
 | |
| 
 | |
| 	guard(rwsem_read)(&cxl_region_rwsem);
 | |
| 	for (int i = 0; i < cxlsd->nr_targets; i++) {
 | |
| 		if (host_bridge == cxlsd->target[i]->dport_dev)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
 | |
| {
 | |
| 	struct cxl_dev_state *cxlds = cxlmd->cxlds;
 | |
| 	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
 | |
| 	struct cxl_port *root_port;
 | |
| 	int rc;
 | |
| 
 | |
| 	struct cxl_root *cxl_root __free(put_cxl_root) =
 | |
| 		find_cxl_root(cxlmd->endpoint);
 | |
| 
 | |
| 	if (!cxl_root)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	root_port = &cxl_root->port;
 | |
| 
 | |
| 	/* Check that the QTG IDs are all sane between end device and root decoders */
 | |
| 	if (!cxl_qos_match(root_port, &mds->ram_perf))
 | |
| 		reset_dpa_perf(&mds->ram_perf);
 | |
| 	if (!cxl_qos_match(root_port, &mds->pmem_perf))
 | |
| 		reset_dpa_perf(&mds->pmem_perf);
 | |
| 
 | |
| 	/* Check to make sure that the device's host bridge is under a root decoder */
 | |
| 	rc = device_for_each_child(&root_port->dev,
 | |
| 				   cxlmd->endpoint->host_bridge, match_cxlrd_hb);
 | |
| 	if (!rc) {
 | |
| 		reset_dpa_perf(&mds->ram_perf);
 | |
| 		reset_dpa_perf(&mds->pmem_perf);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void discard_dsmas(struct xarray *xa)
 | |
| {
 | |
| 	unsigned long index;
 | |
| 	void *ent;
 | |
| 
 | |
| 	xa_for_each(xa, index, ent) {
 | |
| 		xa_erase(xa, index);
 | |
| 		kfree(ent);
 | |
| 	}
 | |
| 	xa_destroy(xa);
 | |
| }
 | |
| DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
 | |
| 
 | |
| void cxl_endpoint_parse_cdat(struct cxl_port *port)
 | |
| {
 | |
| 	struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
 | |
| 	struct cxl_dev_state *cxlds = cxlmd->cxlds;
 | |
| 	struct xarray __dsmas_xa;
 | |
| 	struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
 | |
| 	int rc;
 | |
| 
 | |
| 	xa_init(&__dsmas_xa);
 | |
| 	if (!port->cdat.table)
 | |
| 		return;
 | |
| 
 | |
| 	rc = cxl_cdat_endpoint_process(port, dsmas_xa);
 | |
| 	if (rc < 0) {
 | |
| 		dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rc = cxl_port_perf_data_calculate(port, dsmas_xa);
 | |
| 	if (rc) {
 | |
| 		dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cxl_memdev_set_qos_class(cxlds, dsmas_xa);
 | |
| 	cxl_qos_class_verify(cxlmd);
 | |
| 	cxl_memdev_update_perf(cxlmd);
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL);
 | |
| 
 | |
| static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
 | |
| 			       const unsigned long end)
 | |
| {
 | |
| 	struct acpi_cdat_sslbis_table {
 | |
| 		struct acpi_cdat_header header;
 | |
| 		struct acpi_cdat_sslbis sslbis_header;
 | |
| 		struct acpi_cdat_sslbe entries[];
 | |
| 	} *tbl = (struct acpi_cdat_sslbis_table *)header;
 | |
| 	int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
 | |
| 	struct acpi_cdat_sslbis *sslbis;
 | |
| 	struct cxl_port *port = arg;
 | |
| 	struct device *dev = &port->dev;
 | |
| 	int remain, entries, i;
 | |
| 	u16 len;
 | |
| 
 | |
| 	len = le16_to_cpu((__force __le16)header->cdat.length);
 | |
| 	remain = len - size;
 | |
| 	if (!remain || remain % sizeof(tbl->entries[0]) ||
 | |
| 	    (unsigned long)header + len > end) {
 | |
| 		dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sslbis = &tbl->sslbis_header;
 | |
| 	/* Unrecognized data type, we can skip */
 | |
| 	if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
 | |
| 		return 0;
 | |
| 
 | |
| 	entries = remain / sizeof(tbl->entries[0]);
 | |
| 	if (struct_size(tbl, entries, entries) != len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < entries; i++) {
 | |
| 		u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
 | |
| 		u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
 | |
| 		__le64 le_base;
 | |
| 		__le16 le_val;
 | |
| 		struct cxl_dport *dport;
 | |
| 		unsigned long index;
 | |
| 		u16 dsp_id;
 | |
| 		u64 val;
 | |
| 
 | |
| 		switch (x) {
 | |
| 		case ACPI_CDAT_SSLBIS_US_PORT:
 | |
| 			dsp_id = y;
 | |
| 			break;
 | |
| 		case ACPI_CDAT_SSLBIS_ANY_PORT:
 | |
| 			switch (y) {
 | |
| 			case ACPI_CDAT_SSLBIS_US_PORT:
 | |
| 				dsp_id = x;
 | |
| 				break;
 | |
| 			case ACPI_CDAT_SSLBIS_ANY_PORT:
 | |
| 				dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
 | |
| 				break;
 | |
| 			default:
 | |
| 				dsp_id = y;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			dsp_id = x;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
 | |
| 		le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
 | |
| 		val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
 | |
| 				     sslbis->data_type);
 | |
| 
 | |
| 		xa_for_each(&port->dports, index, dport) {
 | |
| 			if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
 | |
| 			    dsp_id == dport->port_id) {
 | |
| 				cxl_access_coordinate_set(dport->coord,
 | |
| 							  sslbis->data_type,
 | |
| 							  val);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void cxl_switch_parse_cdat(struct cxl_port *port)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!port->cdat.table)
 | |
| 		return;
 | |
| 
 | |
| 	rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
 | |
| 			      port, port->cdat.table, port->cdat.length);
 | |
| 	rc = cdat_table_parse_output(rc);
 | |
| 	if (rc)
 | |
| 		dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL);
 | |
| 
 | |
| static void __cxl_coordinates_combine(struct access_coordinate *out,
 | |
| 				      struct access_coordinate *c1,
 | |
| 				      struct access_coordinate *c2)
 | |
| {
 | |
| 		if (c1->write_bandwidth && c2->write_bandwidth)
 | |
| 			out->write_bandwidth = min(c1->write_bandwidth,
 | |
| 						   c2->write_bandwidth);
 | |
| 		out->write_latency = c1->write_latency + c2->write_latency;
 | |
| 
 | |
| 		if (c1->read_bandwidth && c2->read_bandwidth)
 | |
| 			out->read_bandwidth = min(c1->read_bandwidth,
 | |
| 						  c2->read_bandwidth);
 | |
| 		out->read_latency = c1->read_latency + c2->read_latency;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxl_coordinates_combine - Combine the two input coordinates
 | |
|  *
 | |
|  * @out: Output coordinate of c1 and c2 combined
 | |
|  * @c1: input coordinates
 | |
|  * @c2: input coordinates
 | |
|  */
 | |
| void cxl_coordinates_combine(struct access_coordinate *out,
 | |
| 			     struct access_coordinate *c1,
 | |
| 			     struct access_coordinate *c2)
 | |
| {
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
 | |
| 		__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
 | |
| }
 | |
| 
 | |
| MODULE_IMPORT_NS(CXL);
 | |
| 
 | |
| static void cxl_bandwidth_add(struct access_coordinate *coord,
 | |
| 			      struct access_coordinate *c1,
 | |
| 			      struct access_coordinate *c2)
 | |
| {
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
 | |
| 		coord[i].read_bandwidth = c1[i].read_bandwidth +
 | |
| 					  c2[i].read_bandwidth;
 | |
| 		coord[i].write_bandwidth = c1[i].write_bandwidth +
 | |
| 					   c2[i].write_bandwidth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
 | |
| 			      struct resource *dpa_res)
 | |
| {
 | |
| 	struct range dpa = {
 | |
| 		.start = dpa_res->start,
 | |
| 		.end = dpa_res->end,
 | |
| 	};
 | |
| 
 | |
| 	return range_contains(&perf->dpa_range, &dpa);
 | |
| }
 | |
| 
 | |
| static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled,
 | |
| 					       enum cxl_decoder_mode mode)
 | |
| {
 | |
| 	struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
 | |
| 	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds);
 | |
| 	struct cxl_dpa_perf *perf;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case CXL_DECODER_RAM:
 | |
| 		perf = &mds->ram_perf;
 | |
| 		break;
 | |
| 	case CXL_DECODER_PMEM:
 | |
| 		perf = &mds->pmem_perf;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (!dpa_perf_contains(perf, cxled->dpa_res))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return perf;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transient context for containing the current calculation of bandwidth when
 | |
|  * doing walking the port hierarchy to deal with shared upstream link.
 | |
|  */
 | |
| struct cxl_perf_ctx {
 | |
| 	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct cxl_port *port;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
 | |
|  * @cxlr: CXL region for the bandwidth calculation
 | |
|  * @cxled: endpoint decoder to start on
 | |
|  * @usp_xa: (output) the xarray that collects all the bandwidth coordinates
 | |
|  *          indexed by the upstream device with data of 'struct cxl_perf_ctx'.
 | |
|  * @gp_is_root: (output) bool of whether the grandparent is cxl root.
 | |
|  *
 | |
|  * Return: 0 for success or -errno
 | |
|  *
 | |
|  * Collects aggregated endpoint bandwidth and store the bandwidth in
 | |
|  * an xarray indexed by the upstream device of the switch or the RP
 | |
|  * device. Each endpoint consists the minimum of the bandwidth from DSLBIS
 | |
|  * from the endpoint CDAT, the endpoint upstream link bandwidth, and the
 | |
|  * bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
 | |
|  * the downstream port that's associated with the endpoint. If the
 | |
|  * device is directly connected to a RP, then no SSLBIS is involved.
 | |
|  */
 | |
| static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
 | |
| 					 struct cxl_endpoint_decoder *cxled,
 | |
| 					 struct xarray *usp_xa,
 | |
| 					 bool *gp_is_root)
 | |
| {
 | |
| 	struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
 | |
| 	struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
 | |
| 	struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
 | |
| 	struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
 | |
| 	struct cxl_dev_state *cxlds = cxlmd->cxlds;
 | |
| 	struct pci_dev *pdev = to_pci_dev(cxlds->dev);
 | |
| 	struct cxl_perf_ctx *perf_ctx;
 | |
| 	struct cxl_dpa_perf *perf;
 | |
| 	unsigned long index;
 | |
| 	void *ptr;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!dev_is_pci(cxlds->dev))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (cxlds->rcd)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	perf = cxled_get_dpa_perf(cxled, cxlr->mode);
 | |
| 	if (IS_ERR(perf))
 | |
| 		return PTR_ERR(perf);
 | |
| 
 | |
| 	gp_port = to_cxl_port(parent_port->dev.parent);
 | |
| 	*gp_is_root = is_cxl_root(gp_port);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the grandparent is cxl root, then index is the root port,
 | |
| 	 * otherwise it's the parent switch upstream device.
 | |
| 	 */
 | |
| 	if (*gp_is_root)
 | |
| 		index = (unsigned long)endpoint->parent_dport->dport_dev;
 | |
| 	else
 | |
| 		index = (unsigned long)parent_port->uport_dev;
 | |
| 
 | |
| 	perf_ctx = xa_load(usp_xa, index);
 | |
| 	if (!perf_ctx) {
 | |
| 		struct cxl_perf_ctx *c __free(kfree) =
 | |
| 			kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
 | |
| 
 | |
| 		if (!c)
 | |
| 			return -ENOMEM;
 | |
| 		ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
 | |
| 		if (xa_is_err(ptr))
 | |
| 			return xa_err(ptr);
 | |
| 		perf_ctx = no_free_ptr(c);
 | |
| 		perf_ctx->port = parent_port;
 | |
| 	}
 | |
| 
 | |
| 	/* Direct upstream link from EP bandwidth */
 | |
| 	rc = cxl_pci_get_bandwidth(pdev, pci_coord);
 | |
| 	if (rc < 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Min of upstream link bandwidth and Endpoint CDAT bandwidth from
 | |
| 	 * DSLBIS.
 | |
| 	 */
 | |
| 	cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
 | |
| 
 | |
| 	/*
 | |
| 	 * If grandparent port is root, then there's no switch involved and
 | |
| 	 * the endpoint is connected to a root port.
 | |
| 	 */
 | |
| 	if (!*gp_is_root) {
 | |
| 		/*
 | |
| 		 * Retrieve the switch SSLBIS for switch downstream port
 | |
| 		 * associated with the endpoint bandwidth.
 | |
| 		 */
 | |
| 		rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/*
 | |
| 		 * Min of the earlier coordinates with the switch SSLBIS
 | |
| 		 * bandwidth
 | |
| 		 */
 | |
| 		cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggregate the computed bandwidth with the current aggregated bandwidth
 | |
| 	 * of the endpoints with the same switch upstream device or RP.
 | |
| 	 */
 | |
| 	cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_perf_xa(struct xarray *xa)
 | |
| {
 | |
| 	struct cxl_perf_ctx *ctx;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	if (!xa)
 | |
| 		return;
 | |
| 
 | |
| 	xa_for_each(xa, index, ctx)
 | |
| 		kfree(ctx);
 | |
| 	xa_destroy(xa);
 | |
| 	kfree(xa);
 | |
| }
 | |
| DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
 | |
| 
 | |
| /**
 | |
|  * cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
 | |
|  * @cxlr: The region being operated on
 | |
|  * @input_xa: xarray indexed by upstream device of a switch with data of 'struct
 | |
|  *	      cxl_perf_ctx'
 | |
|  * @gp_is_root: (output) bool of whether the grandparent is cxl root.
 | |
|  *
 | |
|  * Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
 | |
|  *         or ERR_PTR(-errno)
 | |
|  *
 | |
|  * Iterate through the xarray. Take the minimum of the downstream calculated
 | |
|  * bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
 | |
|  * switch if exists. Sum the resulting bandwidth under the switch upstream
 | |
|  * device or a RP device. The function can be iterated over multiple switches
 | |
|  * if the switches are present.
 | |
|  */
 | |
| static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
 | |
| 						  struct xarray *input_xa,
 | |
| 						  bool *gp_is_root)
 | |
| {
 | |
| 	struct xarray *res_xa __free(free_perf_xa) =
 | |
| 		kzalloc(sizeof(*res_xa), GFP_KERNEL);
 | |
| 	struct access_coordinate coords[ACCESS_COORDINATE_MAX];
 | |
| 	struct cxl_perf_ctx *ctx, *us_ctx;
 | |
| 	unsigned long index, us_index;
 | |
| 	int dev_count = 0;
 | |
| 	int gp_count = 0;
 | |
| 	void *ptr;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!res_xa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	xa_init(res_xa);
 | |
| 
 | |
| 	xa_for_each(input_xa, index, ctx) {
 | |
| 		struct device *dev = (struct device *)index;
 | |
| 		struct cxl_port *port = ctx->port;
 | |
| 		struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
 | |
| 		struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
 | |
| 		struct cxl_dport *dport = port->parent_dport;
 | |
| 		bool is_root = false;
 | |
| 
 | |
| 		dev_count++;
 | |
| 		if (is_cxl_root(gp_port)) {
 | |
| 			is_root = true;
 | |
| 			gp_count++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the grandparent is cxl root, then index is the root port,
 | |
| 		 * otherwise it's the parent switch upstream device.
 | |
| 		 */
 | |
| 		if (is_root)
 | |
| 			us_index = (unsigned long)port->parent_dport->dport_dev;
 | |
| 		else
 | |
| 			us_index = (unsigned long)parent_port->uport_dev;
 | |
| 
 | |
| 		us_ctx = xa_load(res_xa, us_index);
 | |
| 		if (!us_ctx) {
 | |
| 			struct cxl_perf_ctx *n __free(kfree) =
 | |
| 				kzalloc(sizeof(*n), GFP_KERNEL);
 | |
| 
 | |
| 			if (!n)
 | |
| 				return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 			ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
 | |
| 			if (xa_is_err(ptr))
 | |
| 				return ERR_PTR(xa_err(ptr));
 | |
| 			us_ctx = no_free_ptr(n);
 | |
| 			us_ctx->port = parent_port;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the device isn't an upstream PCIe port, there's something
 | |
| 		 * wrong with the topology.
 | |
| 		 */
 | |
| 		if (!dev_is_pci(dev))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		/* Retrieve the upstream link bandwidth */
 | |
| 		rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
 | |
| 		if (rc)
 | |
| 			return ERR_PTR(-ENXIO);
 | |
| 
 | |
| 		/*
 | |
| 		 * Take the min of downstream bandwidth and the upstream link
 | |
| 		 * bandwidth.
 | |
| 		 */
 | |
| 		cxl_coordinates_combine(coords, coords, ctx->coord);
 | |
| 
 | |
| 		/*
 | |
| 		 * Take the min of the calculated bandwdith and the upstream
 | |
| 		 * switch SSLBIS bandwidth if there's a parent switch
 | |
| 		 */
 | |
| 		if (!is_root)
 | |
| 			cxl_coordinates_combine(coords, coords, dport->coord);
 | |
| 
 | |
| 		/*
 | |
| 		 * Aggregate the calculated bandwidth common to an upstream
 | |
| 		 * switch.
 | |
| 		 */
 | |
| 		cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
 | |
| 	}
 | |
| 
 | |
| 	/* Asymmetric topology detected. */
 | |
| 	if (gp_count) {
 | |
| 		if (gp_count != dev_count) {
 | |
| 			dev_dbg(&cxlr->dev,
 | |
| 				"Asymmetric hierarchy detected, bandwidth not updated\n");
 | |
| 			return ERR_PTR(-EOPNOTSUPP);
 | |
| 		}
 | |
| 		*gp_is_root = true;
 | |
| 	}
 | |
| 
 | |
| 	return no_free_ptr(res_xa);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
 | |
|  * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
 | |
|  *      below each root port device.
 | |
|  *
 | |
|  * Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
 | |
|  */
 | |
| static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
 | |
| {
 | |
| 	struct xarray *hb_xa __free(free_perf_xa) =
 | |
| 		kzalloc(sizeof(*hb_xa), GFP_KERNEL);
 | |
| 	struct cxl_perf_ctx *ctx;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	if (!hb_xa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	xa_init(hb_xa);
 | |
| 
 | |
| 	xa_for_each(xa, index, ctx) {
 | |
| 		struct cxl_port *port = ctx->port;
 | |
| 		unsigned long hb_index = (unsigned long)port->uport_dev;
 | |
| 		struct cxl_perf_ctx *hb_ctx;
 | |
| 		void *ptr;
 | |
| 
 | |
| 		hb_ctx = xa_load(hb_xa, hb_index);
 | |
| 		if (!hb_ctx) {
 | |
| 			struct cxl_perf_ctx *n __free(kfree) =
 | |
| 				kzalloc(sizeof(*n), GFP_KERNEL);
 | |
| 
 | |
| 			if (!n)
 | |
| 				return ERR_PTR(-ENOMEM);
 | |
| 			ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
 | |
| 			if (xa_is_err(ptr))
 | |
| 				return ERR_PTR(xa_err(ptr));
 | |
| 			hb_ctx = no_free_ptr(n);
 | |
| 			hb_ctx->port = port;
 | |
| 		}
 | |
| 
 | |
| 		cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
 | |
| 	}
 | |
| 
 | |
| 	return no_free_ptr(hb_xa);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
 | |
|  * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
 | |
|  *      below each host bridge.
 | |
|  *
 | |
|  * Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
 | |
|  */
 | |
| static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
 | |
| {
 | |
| 	struct xarray *mw_xa __free(free_perf_xa) =
 | |
| 		kzalloc(sizeof(*mw_xa), GFP_KERNEL);
 | |
| 	struct cxl_perf_ctx *ctx;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	if (!mw_xa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	xa_init(mw_xa);
 | |
| 
 | |
| 	xa_for_each(xa, index, ctx) {
 | |
| 		struct cxl_port *port = ctx->port;
 | |
| 		struct cxl_port *parent_port;
 | |
| 		struct cxl_perf_ctx *mw_ctx;
 | |
| 		struct cxl_dport *dport;
 | |
| 		unsigned long mw_index;
 | |
| 		void *ptr;
 | |
| 
 | |
| 		parent_port = to_cxl_port(port->dev.parent);
 | |
| 		mw_index = (unsigned long)parent_port->uport_dev;
 | |
| 
 | |
| 		mw_ctx = xa_load(mw_xa, mw_index);
 | |
| 		if (!mw_ctx) {
 | |
| 			struct cxl_perf_ctx *n __free(kfree) =
 | |
| 				kzalloc(sizeof(*n), GFP_KERNEL);
 | |
| 
 | |
| 			if (!n)
 | |
| 				return ERR_PTR(-ENOMEM);
 | |
| 			ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
 | |
| 			if (xa_is_err(ptr))
 | |
| 				return ERR_PTR(xa_err(ptr));
 | |
| 			mw_ctx = no_free_ptr(n);
 | |
| 		}
 | |
| 
 | |
| 		dport = port->parent_dport;
 | |
| 		cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
 | |
| 		cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
 | |
| 	}
 | |
| 
 | |
| 	return no_free_ptr(mw_xa);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
 | |
|  * @cxlr: The region being operated on
 | |
|  * @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
 | |
|  */
 | |
| static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
 | |
| 					struct xarray *input_xa)
 | |
| {
 | |
| 	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
 | |
| 	struct cxl_perf_ctx *ctx;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	memset(coord, 0, sizeof(coord));
 | |
| 	xa_for_each(input_xa, index, ctx)
 | |
| 		cxl_bandwidth_add(coord, coord, ctx->coord);
 | |
| 
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
 | |
| 		cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
 | |
| 		cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
 | |
|  *						 the region
 | |
|  * @cxlr: the cxl region to recalculate
 | |
|  *
 | |
|  * The function walks the topology from bottom up and calculates the bandwidth. It
 | |
|  * starts at the endpoints, processes at the switches if any, processes at the rootport
 | |
|  * level, at the host bridge level, and finally aggregates at the region.
 | |
|  */
 | |
| void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
 | |
| {
 | |
| 	struct xarray *working_xa;
 | |
| 	int root_count = 0;
 | |
| 	bool is_root;
 | |
| 	int rc;
 | |
| 
 | |
| 	lockdep_assert_held(&cxl_dpa_rwsem);
 | |
| 
 | |
| 	struct xarray *usp_xa __free(free_perf_xa) =
 | |
| 		kzalloc(sizeof(*usp_xa), GFP_KERNEL);
 | |
| 
 | |
| 	if (!usp_xa)
 | |
| 		return;
 | |
| 
 | |
| 	xa_init(usp_xa);
 | |
| 
 | |
| 	/* Collect bandwidth data from all the endpoints. */
 | |
| 	for (int i = 0; i < cxlr->params.nr_targets; i++) {
 | |
| 		struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
 | |
| 
 | |
| 		is_root = false;
 | |
| 		rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
 | |
| 		if (rc)
 | |
| 			return;
 | |
| 		root_count += is_root;
 | |
| 	}
 | |
| 
 | |
| 	/* Detect asymmetric hierarchy with some direct attached endpoints. */
 | |
| 	if (root_count && root_count != cxlr->params.nr_targets) {
 | |
| 		dev_dbg(&cxlr->dev,
 | |
| 			"Asymmetric hierarchy detected, bandwidth not updated\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk up one or more switches to deal with the bandwidth of the
 | |
| 	 * switches if they exist. Endpoints directly attached to RPs skip
 | |
| 	 * over this part.
 | |
| 	 */
 | |
| 	if (!root_count) {
 | |
| 		do {
 | |
| 			working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
 | |
| 								 &is_root);
 | |
| 			if (IS_ERR(working_xa))
 | |
| 				return;
 | |
| 			free_perf_xa(usp_xa);
 | |
| 			usp_xa = working_xa;
 | |
| 		} while (!is_root);
 | |
| 	}
 | |
| 
 | |
| 	/* Handle the bandwidth at the root port of the hierarchy */
 | |
| 	working_xa = cxl_rp_gather_bandwidth(usp_xa);
 | |
| 	if (IS_ERR(working_xa))
 | |
| 		return;
 | |
| 	free_perf_xa(usp_xa);
 | |
| 	usp_xa = working_xa;
 | |
| 
 | |
| 	/* Handle the bandwidth at the host bridge of the hierarchy */
 | |
| 	working_xa = cxl_hb_gather_bandwidth(usp_xa);
 | |
| 	if (IS_ERR(working_xa))
 | |
| 		return;
 | |
| 	free_perf_xa(usp_xa);
 | |
| 	usp_xa = working_xa;
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
 | |
| 	 * update the region bandwidth with the final calculated values.
 | |
| 	 */
 | |
| 	cxl_region_update_bandwidth(cxlr, usp_xa);
 | |
| }
 | |
| 
 | |
| void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
 | |
| 				    struct cxl_endpoint_decoder *cxled)
 | |
| {
 | |
| 	struct cxl_dpa_perf *perf;
 | |
| 
 | |
| 	lockdep_assert_held(&cxl_dpa_rwsem);
 | |
| 
 | |
| 	perf = cxled_get_dpa_perf(cxled, cxlr->mode);
 | |
| 	if (IS_ERR(perf))
 | |
| 		return;
 | |
| 
 | |
| 	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
 | |
| 		/* Get total bandwidth and the worst latency for the cxl region */
 | |
| 		cxlr->coord[i].read_latency = max_t(unsigned int,
 | |
| 						    cxlr->coord[i].read_latency,
 | |
| 						    perf->coord[i].read_latency);
 | |
| 		cxlr->coord[i].write_latency = max_t(unsigned int,
 | |
| 						     cxlr->coord[i].write_latency,
 | |
| 						     perf->coord[i].write_latency);
 | |
| 		cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
 | |
| 		cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
 | |
| 				       enum access_coordinate_class access)
 | |
| {
 | |
| 	return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
 | |
| }
 | |
| 
 | |
| bool cxl_need_node_perf_attrs_update(int nid)
 | |
| {
 | |
| 	return !acpi_node_backed_by_real_pxm(nid);
 | |
| }
 |