883 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			883 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/irq_work.h>
 | |
| 
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #include "pseries.h"
 | |
| 
 | |
| static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
 | |
| static DEFINE_SPINLOCK(ras_log_buf_lock);
 | |
| 
 | |
| static int ras_check_exception_token;
 | |
| 
 | |
| #define EPOW_SENSOR_TOKEN	9
 | |
| #define EPOW_SENSOR_INDEX	0
 | |
| 
 | |
| /* EPOW events counter variable */
 | |
| static int num_epow_events;
 | |
| 
 | |
| static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
 | |
| static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
 | |
| static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
 | |
| 
 | |
| /* RTAS pseries MCE errorlog section. */
 | |
| struct pseries_mc_errorlog {
 | |
| 	__be32	fru_id;
 | |
| 	__be32	proc_id;
 | |
| 	u8	error_type;
 | |
| 	/*
 | |
| 	 * sub_err_type (1 byte). Bit fields depends on error_type
 | |
| 	 *
 | |
| 	 *   MSB0
 | |
| 	 *   |
 | |
| 	 *   V
 | |
| 	 *   01234567
 | |
| 	 *   XXXXXXXX
 | |
| 	 *
 | |
| 	 * For error_type == MC_ERROR_TYPE_UE
 | |
| 	 *   XXXXXXXX
 | |
| 	 *   X		1: Permanent or Transient UE.
 | |
| 	 *    X		1: Effective address provided.
 | |
| 	 *     X	1: Logical address provided.
 | |
| 	 *      XX	2: Reserved.
 | |
| 	 *        XXX	3: Type of UE error.
 | |
| 	 *
 | |
| 	 * For error_type == MC_ERROR_TYPE_SLB/ERAT/TLB
 | |
| 	 *   XXXXXXXX
 | |
| 	 *   X		1: Effective address provided.
 | |
| 	 *    XXXXX	5: Reserved.
 | |
| 	 *         XX	2: Type of SLB/ERAT/TLB error.
 | |
| 	 *
 | |
| 	 * For error_type == MC_ERROR_TYPE_CTRL_MEM_ACCESS
 | |
| 	 *   XXXXXXXX
 | |
| 	 *   X		1: Error causing address provided.
 | |
| 	 *    XXX	3: Type of error.
 | |
| 	 *       XXXX	4: Reserved.
 | |
| 	 */
 | |
| 	u8	sub_err_type;
 | |
| 	u8	reserved_1[6];
 | |
| 	__be64	effective_address;
 | |
| 	__be64	logical_address;
 | |
| } __packed;
 | |
| 
 | |
| /* RTAS pseries MCE error types */
 | |
| #define MC_ERROR_TYPE_UE		0x00
 | |
| #define MC_ERROR_TYPE_SLB		0x01
 | |
| #define MC_ERROR_TYPE_ERAT		0x02
 | |
| #define MC_ERROR_TYPE_UNKNOWN		0x03
 | |
| #define MC_ERROR_TYPE_TLB		0x04
 | |
| #define MC_ERROR_TYPE_D_CACHE		0x05
 | |
| #define MC_ERROR_TYPE_I_CACHE		0x07
 | |
| #define MC_ERROR_TYPE_CTRL_MEM_ACCESS	0x08
 | |
| 
 | |
| /* RTAS pseries MCE error sub types */
 | |
| #define MC_ERROR_UE_INDETERMINATE		0
 | |
| #define MC_ERROR_UE_IFETCH			1
 | |
| #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH	2
 | |
| #define MC_ERROR_UE_LOAD_STORE			3
 | |
| #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE	4
 | |
| 
 | |
| #define UE_EFFECTIVE_ADDR_PROVIDED		0x40
 | |
| #define UE_LOGICAL_ADDR_PROVIDED		0x20
 | |
| #define MC_EFFECTIVE_ADDR_PROVIDED		0x80
 | |
| 
 | |
| #define MC_ERROR_SLB_PARITY		0
 | |
| #define MC_ERROR_SLB_MULTIHIT		1
 | |
| #define MC_ERROR_SLB_INDETERMINATE	2
 | |
| 
 | |
| #define MC_ERROR_ERAT_PARITY		1
 | |
| #define MC_ERROR_ERAT_MULTIHIT		2
 | |
| #define MC_ERROR_ERAT_INDETERMINATE	3
 | |
| 
 | |
| #define MC_ERROR_TLB_PARITY		1
 | |
| #define MC_ERROR_TLB_MULTIHIT		2
 | |
| #define MC_ERROR_TLB_INDETERMINATE	3
 | |
| 
 | |
| #define MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK	0
 | |
| #define MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS	1
 | |
| 
 | |
| static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
 | |
| {
 | |
| 	switch (mlog->error_type) {
 | |
| 	case	MC_ERROR_TYPE_UE:
 | |
| 		return (mlog->sub_err_type & 0x07);
 | |
| 	case	MC_ERROR_TYPE_SLB:
 | |
| 	case	MC_ERROR_TYPE_ERAT:
 | |
| 	case	MC_ERROR_TYPE_TLB:
 | |
| 		return (mlog->sub_err_type & 0x03);
 | |
| 	case	MC_ERROR_TYPE_CTRL_MEM_ACCESS:
 | |
| 		return (mlog->sub_err_type & 0x70) >> 4;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable the hotplug interrupt late because processing them may touch other
 | |
|  * devices or systems (e.g. hugepages) that have not been initialized at the
 | |
|  * subsys stage.
 | |
|  */
 | |
| static int __init init_ras_hotplug_IRQ(void)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	/* Hotplug Events */
 | |
| 	np = of_find_node_by_path("/event-sources/hot-plug-events");
 | |
| 	if (np != NULL) {
 | |
| 		if (dlpar_workqueue_init() == 0)
 | |
| 			request_event_sources_irqs(np, ras_hotplug_interrupt,
 | |
| 						   "RAS_HOTPLUG");
 | |
| 		of_node_put(np);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| machine_late_initcall(pseries, init_ras_hotplug_IRQ);
 | |
| 
 | |
| /*
 | |
|  * Initialize handlers for the set of interrupts caused by hardware errors
 | |
|  * and power system events.
 | |
|  */
 | |
| static int __init init_ras_IRQ(void)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	ras_check_exception_token = rtas_function_token(RTAS_FN_CHECK_EXCEPTION);
 | |
| 
 | |
| 	/* Internal Errors */
 | |
| 	np = of_find_node_by_path("/event-sources/internal-errors");
 | |
| 	if (np != NULL) {
 | |
| 		request_event_sources_irqs(np, ras_error_interrupt,
 | |
| 					   "RAS_ERROR");
 | |
| 		of_node_put(np);
 | |
| 	}
 | |
| 
 | |
| 	/* EPOW Events */
 | |
| 	np = of_find_node_by_path("/event-sources/epow-events");
 | |
| 	if (np != NULL) {
 | |
| 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
 | |
| 		of_node_put(np);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| machine_subsys_initcall(pseries, init_ras_IRQ);
 | |
| 
 | |
| #define EPOW_SHUTDOWN_NORMAL				1
 | |
| #define EPOW_SHUTDOWN_ON_UPS				2
 | |
| #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
 | |
| #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
 | |
| 
 | |
| static void handle_system_shutdown(char event_modifier)
 | |
| {
 | |
| 	switch (event_modifier) {
 | |
| 	case EPOW_SHUTDOWN_NORMAL:
 | |
| 		pr_emerg("Power off requested\n");
 | |
| 		orderly_poweroff(true);
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_SHUTDOWN_ON_UPS:
 | |
| 		pr_emerg("Loss of system power detected. System is running on"
 | |
| 			 " UPS/battery. Check RTAS error log for details\n");
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
 | |
| 		pr_emerg("Loss of system critical functions detected. Check"
 | |
| 			 " RTAS error log for details\n");
 | |
| 		orderly_poweroff(true);
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
 | |
| 		pr_emerg("High ambient temperature detected. Check RTAS"
 | |
| 			 " error log for details\n");
 | |
| 		orderly_poweroff(true);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
 | |
| 			event_modifier);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct epow_errorlog {
 | |
| 	unsigned char sensor_value;
 | |
| 	unsigned char event_modifier;
 | |
| 	unsigned char extended_modifier;
 | |
| 	unsigned char reserved;
 | |
| 	unsigned char platform_reason;
 | |
| };
 | |
| 
 | |
| #define EPOW_RESET			0
 | |
| #define EPOW_WARN_COOLING		1
 | |
| #define EPOW_WARN_POWER			2
 | |
| #define EPOW_SYSTEM_SHUTDOWN		3
 | |
| #define EPOW_SYSTEM_HALT		4
 | |
| #define EPOW_MAIN_ENCLOSURE		5
 | |
| #define EPOW_POWER_OFF			7
 | |
| 
 | |
| static void rtas_parse_epow_errlog(struct rtas_error_log *log)
 | |
| {
 | |
| 	struct pseries_errorlog *pseries_log;
 | |
| 	struct epow_errorlog *epow_log;
 | |
| 	char action_code;
 | |
| 	char modifier;
 | |
| 
 | |
| 	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
 | |
| 	if (pseries_log == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	epow_log = (struct epow_errorlog *)pseries_log->data;
 | |
| 	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
 | |
| 	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
 | |
| 
 | |
| 	switch (action_code) {
 | |
| 	case EPOW_RESET:
 | |
| 		if (num_epow_events) {
 | |
| 			pr_info("Non critical power/cooling issue cleared\n");
 | |
| 			num_epow_events--;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_WARN_COOLING:
 | |
| 		pr_info("Non-critical cooling issue detected. Check RTAS error"
 | |
| 			" log for details\n");
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_WARN_POWER:
 | |
| 		pr_info("Non-critical power issue detected. Check RTAS error"
 | |
| 			" log for details\n");
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_SYSTEM_SHUTDOWN:
 | |
| 		handle_system_shutdown(modifier);
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_SYSTEM_HALT:
 | |
| 		pr_emerg("Critical power/cooling issue detected. Check RTAS"
 | |
| 			 " error log for details. Powering off.\n");
 | |
| 		orderly_poweroff(true);
 | |
| 		break;
 | |
| 
 | |
| 	case EPOW_MAIN_ENCLOSURE:
 | |
| 	case EPOW_POWER_OFF:
 | |
| 		pr_emerg("System about to lose power. Check RTAS error log "
 | |
| 			 " for details. Powering off immediately.\n");
 | |
| 		emergency_sync();
 | |
| 		kernel_power_off();
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pr_err("Unknown power/cooling event (action code  = %d)\n",
 | |
| 			action_code);
 | |
| 	}
 | |
| 
 | |
| 	/* Increment epow events counter variable */
 | |
| 	if (action_code != EPOW_RESET)
 | |
| 		num_epow_events++;
 | |
| }
 | |
| 
 | |
| static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct pseries_errorlog *pseries_log;
 | |
| 	struct pseries_hp_errorlog *hp_elog;
 | |
| 
 | |
| 	spin_lock(&ras_log_buf_lock);
 | |
| 
 | |
| 	rtas_call(ras_check_exception_token, 6, 1, NULL,
 | |
| 		  RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
 | |
| 		  RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
 | |
| 		  rtas_get_error_log_max());
 | |
| 
 | |
| 	pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
 | |
| 					   PSERIES_ELOG_SECT_ID_HOTPLUG);
 | |
| 	hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since PCI hotplug is not currently supported on pseries, put PCI
 | |
| 	 * hotplug events on the ras_log_buf to be handled by rtas_errd.
 | |
| 	 */
 | |
| 	if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
 | |
| 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
 | |
| 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
 | |
| 		queue_hotplug_event(hp_elog);
 | |
| 	else
 | |
| 		log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
 | |
| 
 | |
| 	spin_unlock(&ras_log_buf_lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Handle environmental and power warning (EPOW) interrupts. */
 | |
| static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	int state;
 | |
| 	int critical;
 | |
| 
 | |
| 	rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
 | |
| 
 | |
| 	if (state > 3)
 | |
| 		critical = 1;		/* Time Critical */
 | |
| 	else
 | |
| 		critical = 0;
 | |
| 
 | |
| 	spin_lock(&ras_log_buf_lock);
 | |
| 
 | |
| 	rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
 | |
| 		  virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
 | |
| 		  rtas_get_error_log_max());
 | |
| 
 | |
| 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
 | |
| 
 | |
| 	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
 | |
| 
 | |
| 	spin_unlock(&ras_log_buf_lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle hardware error interrupts.
 | |
|  *
 | |
|  * RTAS check-exception is called to collect data on the exception.  If
 | |
|  * the error is deemed recoverable, we log a warning and return.
 | |
|  * For nonrecoverable errors, an error is logged and we stop all processing
 | |
|  * as quickly as possible in order to prevent propagation of the failure.
 | |
|  */
 | |
| static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct rtas_error_log *rtas_elog;
 | |
| 	int status;
 | |
| 	int fatal;
 | |
| 
 | |
| 	spin_lock(&ras_log_buf_lock);
 | |
| 
 | |
| 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 | |
| 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
 | |
| 			   virq_to_hw(irq),
 | |
| 			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
 | |
| 			   __pa(&ras_log_buf),
 | |
| 				rtas_get_error_log_max());
 | |
| 
 | |
| 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
 | |
| 
 | |
| 	if (status == 0 &&
 | |
| 	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
 | |
| 		fatal = 1;
 | |
| 	else
 | |
| 		fatal = 0;
 | |
| 
 | |
| 	/* format and print the extended information */
 | |
| 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
 | |
| 
 | |
| 	if (fatal) {
 | |
| 		pr_emerg("Fatal hardware error detected. Check RTAS error"
 | |
| 			 " log for details. Powering off immediately\n");
 | |
| 		emergency_sync();
 | |
| 		kernel_power_off();
 | |
| 	} else {
 | |
| 		pr_err("Recoverable hardware error detected\n");
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ras_log_buf_lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some versions of FWNMI place the buffer inside the 4kB page starting at
 | |
|  * 0x7000. Other versions place it inside the rtas buffer. We check both.
 | |
|  * Minimum size of the buffer is 16 bytes.
 | |
|  */
 | |
| #define VALID_FWNMI_BUFFER(A) \
 | |
| 	((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
 | |
| 	(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
 | |
| 
 | |
| static inline struct rtas_error_log *fwnmi_get_errlog(void)
 | |
| {
 | |
| 	return (struct rtas_error_log *)local_paca->mce_data_buf;
 | |
| }
 | |
| 
 | |
| static __be64 *fwnmi_get_savep(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long savep_ra;
 | |
| 
 | |
| 	/* Mask top two bits */
 | |
| 	savep_ra = regs->gpr[3] & ~(0x3UL << 62);
 | |
| 	if (!VALID_FWNMI_BUFFER(savep_ra)) {
 | |
| 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return __va(savep_ra);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the error information for errors coming through the
 | |
|  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
 | |
|  * the actual r3 if possible, and a ptr to the error log entry
 | |
|  * will be returned if found.
 | |
|  *
 | |
|  * Use one buffer mce_data_buf per cpu to store RTAS error.
 | |
|  *
 | |
|  * The mce_data_buf does not have any locks or protection around it,
 | |
|  * if a second machine check comes in, or a system reset is done
 | |
|  * before we have logged the error, then we will get corruption in the
 | |
|  * error log.  This is preferable over holding off on calling
 | |
|  * ibm,nmi-interlock which would result in us checkstopping if a
 | |
|  * second machine check did come in.
 | |
|  */
 | |
| static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
 | |
| {
 | |
| 	struct rtas_error_log *h;
 | |
| 	__be64 *savep;
 | |
| 
 | |
| 	savep = fwnmi_get_savep(regs);
 | |
| 	if (!savep)
 | |
| 		return NULL;
 | |
| 
 | |
| 	regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
 | |
| 
 | |
| 	h = (struct rtas_error_log *)&savep[1];
 | |
| 	/* Use the per cpu buffer from paca to store rtas error log */
 | |
| 	memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
 | |
| 	if (!rtas_error_extended(h)) {
 | |
| 		memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
 | |
| 	} else {
 | |
| 		int len, error_log_length;
 | |
| 
 | |
| 		error_log_length = 8 + rtas_error_extended_log_length(h);
 | |
| 		len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
 | |
| 		memcpy(local_paca->mce_data_buf, h, len);
 | |
| 	}
 | |
| 
 | |
| 	return (struct rtas_error_log *)local_paca->mce_data_buf;
 | |
| }
 | |
| 
 | |
| /* Call this when done with the data returned by FWNMI_get_errinfo.
 | |
|  * It will release the saved data area for other CPUs in the
 | |
|  * partition to receive FWNMI errors.
 | |
|  */
 | |
| static void fwnmi_release_errinfo(void)
 | |
| {
 | |
| 	struct rtas_args rtas_args;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * On pseries, the machine check stack is limited to under 4GB, so
 | |
| 	 * args can be on-stack.
 | |
| 	 */
 | |
| 	rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
 | |
| 	ret = be32_to_cpu(rtas_args.rets[0]);
 | |
| 	if (ret != 0)
 | |
| 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
 | |
| }
 | |
| 
 | |
| int pSeries_system_reset_exception(struct pt_regs *regs)
 | |
| {
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 	/*
 | |
| 	 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
 | |
| 	 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
 | |
| 	 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
 | |
| 	 * so clear it. It will be missing MSR_RI so we won't try to recover.
 | |
| 	 */
 | |
| 	if ((be64_to_cpu(regs->msr) &
 | |
| 			(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
 | |
| 			 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
 | |
| 		regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
 | |
| 		regs_set_return_msr(regs, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (fwnmi_active) {
 | |
| 		__be64 *savep;
 | |
| 
 | |
| 		/*
 | |
| 		 * Firmware (PowerVM and KVM) saves r3 to a save area like
 | |
| 		 * machine check, which is not exactly what PAPR (2.9)
 | |
| 		 * suggests but there is no way to detect otherwise, so this
 | |
| 		 * is the interface now.
 | |
| 		 *
 | |
| 		 * System resets do not save any error log or require an
 | |
| 		 * "ibm,nmi-interlock" rtas call to release.
 | |
| 		 */
 | |
| 
 | |
| 		savep = fwnmi_get_savep(regs);
 | |
| 		if (savep)
 | |
| 			regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
 | |
| 	}
 | |
| 
 | |
| 	if (smp_handle_nmi_ipi(regs))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0; /* need to perform reset */
 | |
| }
 | |
| 
 | |
| static int mce_handle_err_realmode(int disposition, u8 error_type)
 | |
| {
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 	if (disposition == RTAS_DISP_NOT_RECOVERED) {
 | |
| 		switch (error_type) {
 | |
| 		case	MC_ERROR_TYPE_ERAT:
 | |
| 			flush_erat();
 | |
| 			disposition = RTAS_DISP_FULLY_RECOVERED;
 | |
| 			break;
 | |
| 		case	MC_ERROR_TYPE_SLB:
 | |
| #ifdef CONFIG_PPC_64S_HASH_MMU
 | |
| 			/*
 | |
| 			 * Store the old slb content in paca before flushing.
 | |
| 			 * Print this when we go to virtual mode.
 | |
| 			 * There are chances that we may hit MCE again if there
 | |
| 			 * is a parity error on the SLB entry we trying to read
 | |
| 			 * for saving. Hence limit the slb saving to single
 | |
| 			 * level of recursion.
 | |
| 			 */
 | |
| 			if (local_paca->in_mce == 1)
 | |
| 				slb_save_contents(local_paca->mce_faulty_slbs);
 | |
| 			flush_and_reload_slb();
 | |
| 			disposition = RTAS_DISP_FULLY_RECOVERED;
 | |
| #endif
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
 | |
| 		/* Platform corrected itself but could be degraded */
 | |
| 		pr_err("MCE: limited recovery, system may be degraded\n");
 | |
| 		disposition = RTAS_DISP_FULLY_RECOVERED;
 | |
| 	}
 | |
| #endif
 | |
| 	return disposition;
 | |
| }
 | |
| 
 | |
| static int mce_handle_err_virtmode(struct pt_regs *regs,
 | |
| 				   struct rtas_error_log *errp,
 | |
| 				   struct pseries_mc_errorlog *mce_log,
 | |
| 				   int disposition)
 | |
| {
 | |
| 	struct mce_error_info mce_err = { 0 };
 | |
| 	int initiator = rtas_error_initiator(errp);
 | |
| 	int severity = rtas_error_severity(errp);
 | |
| 	unsigned long eaddr = 0, paddr = 0;
 | |
| 	u8 error_type, err_sub_type;
 | |
| 
 | |
| 	if (!mce_log)
 | |
| 		goto out;
 | |
| 
 | |
| 	error_type = mce_log->error_type;
 | |
| 	err_sub_type = rtas_mc_error_sub_type(mce_log);
 | |
| 
 | |
| 	if (initiator == RTAS_INITIATOR_UNKNOWN)
 | |
| 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
 | |
| 	else if (initiator == RTAS_INITIATOR_CPU)
 | |
| 		mce_err.initiator = MCE_INITIATOR_CPU;
 | |
| 	else if (initiator == RTAS_INITIATOR_PCI)
 | |
| 		mce_err.initiator = MCE_INITIATOR_PCI;
 | |
| 	else if (initiator == RTAS_INITIATOR_ISA)
 | |
| 		mce_err.initiator = MCE_INITIATOR_ISA;
 | |
| 	else if (initiator == RTAS_INITIATOR_MEMORY)
 | |
| 		mce_err.initiator = MCE_INITIATOR_MEMORY;
 | |
| 	else if (initiator == RTAS_INITIATOR_POWERMGM)
 | |
| 		mce_err.initiator = MCE_INITIATOR_POWERMGM;
 | |
| 	else
 | |
| 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
 | |
| 
 | |
| 	if (severity == RTAS_SEVERITY_NO_ERROR)
 | |
| 		mce_err.severity = MCE_SEV_NO_ERROR;
 | |
| 	else if (severity == RTAS_SEVERITY_EVENT)
 | |
| 		mce_err.severity = MCE_SEV_WARNING;
 | |
| 	else if (severity == RTAS_SEVERITY_WARNING)
 | |
| 		mce_err.severity = MCE_SEV_WARNING;
 | |
| 	else if (severity == RTAS_SEVERITY_ERROR_SYNC)
 | |
| 		mce_err.severity = MCE_SEV_SEVERE;
 | |
| 	else if (severity == RTAS_SEVERITY_ERROR)
 | |
| 		mce_err.severity = MCE_SEV_SEVERE;
 | |
| 	else
 | |
| 		mce_err.severity = MCE_SEV_FATAL;
 | |
| 
 | |
| 	if (severity <= RTAS_SEVERITY_ERROR_SYNC)
 | |
| 		mce_err.sync_error = true;
 | |
| 	else
 | |
| 		mce_err.sync_error = false;
 | |
| 
 | |
| 	mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
 | |
| 	mce_err.error_class = MCE_ECLASS_UNKNOWN;
 | |
| 
 | |
| 	switch (error_type) {
 | |
| 	case MC_ERROR_TYPE_UE:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_UE;
 | |
| 		mce_common_process_ue(regs, &mce_err);
 | |
| 		if (mce_err.ignore_event)
 | |
| 			disposition = RTAS_DISP_FULLY_RECOVERED;
 | |
| 		switch (err_sub_type) {
 | |
| 		case MC_ERROR_UE_IFETCH:
 | |
| 			mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
 | |
| 			break;
 | |
| 		case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
 | |
| 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
 | |
| 			break;
 | |
| 		case MC_ERROR_UE_LOAD_STORE:
 | |
| 			mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
 | |
| 			break;
 | |
| 		case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
 | |
| 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
 | |
| 			break;
 | |
| 		case MC_ERROR_UE_INDETERMINATE:
 | |
| 		default:
 | |
| 			mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
 | |
| 			eaddr = be64_to_cpu(mce_log->effective_address);
 | |
| 
 | |
| 		if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
 | |
| 			paddr = be64_to_cpu(mce_log->logical_address);
 | |
| 		} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
 | |
| 			unsigned long pfn;
 | |
| 
 | |
| 			pfn = addr_to_pfn(regs, eaddr);
 | |
| 			if (pfn != ULONG_MAX)
 | |
| 				paddr = pfn << PAGE_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_SLB:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_SLB;
 | |
| 		switch (err_sub_type) {
 | |
| 		case MC_ERROR_SLB_PARITY:
 | |
| 			mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
 | |
| 			break;
 | |
| 		case MC_ERROR_SLB_MULTIHIT:
 | |
| 			mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
 | |
| 			break;
 | |
| 		case MC_ERROR_SLB_INDETERMINATE:
 | |
| 		default:
 | |
| 			mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
 | |
| 			eaddr = be64_to_cpu(mce_log->effective_address);
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_ERAT:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_ERAT;
 | |
| 		switch (err_sub_type) {
 | |
| 		case MC_ERROR_ERAT_PARITY:
 | |
| 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
 | |
| 			break;
 | |
| 		case MC_ERROR_ERAT_MULTIHIT:
 | |
| 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
 | |
| 			break;
 | |
| 		case MC_ERROR_ERAT_INDETERMINATE:
 | |
| 		default:
 | |
| 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
 | |
| 			eaddr = be64_to_cpu(mce_log->effective_address);
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_TLB:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_TLB;
 | |
| 		switch (err_sub_type) {
 | |
| 		case MC_ERROR_TLB_PARITY:
 | |
| 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
 | |
| 			break;
 | |
| 		case MC_ERROR_TLB_MULTIHIT:
 | |
| 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
 | |
| 			break;
 | |
| 		case MC_ERROR_TLB_INDETERMINATE:
 | |
| 		default:
 | |
| 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
 | |
| 			eaddr = be64_to_cpu(mce_log->effective_address);
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_D_CACHE:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_I_CACHE:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_RA;
 | |
| 		switch (err_sub_type) {
 | |
| 		case MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK:
 | |
| 			mce_err.u.ra_error_type =
 | |
| 				MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN;
 | |
| 			break;
 | |
| 		case MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS:
 | |
| 			mce_err.u.ra_error_type =
 | |
| 				MCE_RA_ERROR_LOAD_STORE_FOREIGN;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
 | |
| 			eaddr = be64_to_cpu(mce_log->effective_address);
 | |
| 		break;
 | |
| 	case MC_ERROR_TYPE_UNKNOWN:
 | |
| 	default:
 | |
| 		mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
 | |
| 		       &mce_err, regs->nip, eaddr, paddr);
 | |
| 	return disposition;
 | |
| }
 | |
| 
 | |
| static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
 | |
| {
 | |
| 	struct pseries_errorlog *pseries_log;
 | |
| 	struct pseries_mc_errorlog *mce_log = NULL;
 | |
| 	int disposition = rtas_error_disposition(errp);
 | |
| 	u8 error_type;
 | |
| 
 | |
| 	if (!rtas_error_extended(errp))
 | |
| 		goto out;
 | |
| 
 | |
| 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
 | |
| 	if (!pseries_log)
 | |
| 		goto out;
 | |
| 
 | |
| 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
 | |
| 	error_type = mce_log->error_type;
 | |
| 
 | |
| 	disposition = mce_handle_err_realmode(disposition, error_type);
 | |
| out:
 | |
| 	disposition = mce_handle_err_virtmode(regs, errp, mce_log,
 | |
| 					      disposition);
 | |
| 	return disposition;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process MCE rtas errlog event.
 | |
|  */
 | |
| void pSeries_machine_check_log_err(void)
 | |
| {
 | |
| 	struct rtas_error_log *err;
 | |
| 
 | |
| 	err = fwnmi_get_errlog();
 | |
| 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if we can recover from a machine check exception.
 | |
|  * This is only called on power4 (or above) and only via
 | |
|  * the Firmware Non-Maskable Interrupts (fwnmi) handler
 | |
|  * which provides the error analysis for us.
 | |
|  *
 | |
|  * Return 1 if corrected (or delivered a signal).
 | |
|  * Return 0 if there is nothing we can do.
 | |
|  */
 | |
| static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
 | |
| {
 | |
| 	int recovered = 0;
 | |
| 
 | |
| 	if (regs_is_unrecoverable(regs)) {
 | |
| 		/* If MSR_RI isn't set, we cannot recover */
 | |
| 		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
 | |
| 		recovered = 0;
 | |
| 	} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
 | |
| 		/* Platform corrected itself */
 | |
| 		recovered = 1;
 | |
| 	} else if (evt->severity == MCE_SEV_FATAL) {
 | |
| 		/* Fatal machine check */
 | |
| 		pr_err("Machine check interrupt is fatal\n");
 | |
| 		recovered = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!recovered && evt->sync_error) {
 | |
| 		/*
 | |
| 		 * Try to kill processes if we get a synchronous machine check
 | |
| 		 * (e.g., one caused by execution of this instruction). This
 | |
| 		 * will devolve into a panic if we try to kill init or are in
 | |
| 		 * an interrupt etc.
 | |
| 		 *
 | |
| 		 * TODO: Queue up this address for hwpoisioning later.
 | |
| 		 * TODO: This is not quite right for d-side machine
 | |
| 		 *       checks ->nip is not necessarily the important
 | |
| 		 *       address.
 | |
| 		 */
 | |
| 		if ((user_mode(regs))) {
 | |
| 			_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
 | |
| 			recovered = 1;
 | |
| 		} else if (die_will_crash()) {
 | |
| 			/*
 | |
| 			 * die() would kill the kernel, so better to go via
 | |
| 			 * the platform reboot code that will log the
 | |
| 			 * machine check.
 | |
| 			 */
 | |
| 			recovered = 0;
 | |
| 		} else {
 | |
| 			die_mce("Machine check", regs, SIGBUS);
 | |
| 			recovered = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return recovered;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a machine check.
 | |
|  *
 | |
|  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
 | |
|  * should be present.  If so the handler which called us tells us if the
 | |
|  * error was recovered (never true if RI=0).
 | |
|  *
 | |
|  * On hardware prior to Power 4 these exceptions were asynchronous which
 | |
|  * means we can't tell exactly where it occurred and so we can't recover.
 | |
|  */
 | |
| int pSeries_machine_check_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	struct machine_check_event evt;
 | |
| 
 | |
| 	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Print things out */
 | |
| 	if (evt.version != MCE_V1) {
 | |
| 		pr_err("Machine Check Exception, Unknown event version %d !\n",
 | |
| 		       evt.version);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	machine_check_print_event_info(&evt, user_mode(regs), false);
 | |
| 
 | |
| 	if (recover_mce(regs, &evt))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long pseries_machine_check_realmode(struct pt_regs *regs)
 | |
| {
 | |
| 	struct rtas_error_log *errp;
 | |
| 	int disposition;
 | |
| 
 | |
| 	if (fwnmi_active) {
 | |
| 		errp = fwnmi_get_errinfo(regs);
 | |
| 		/*
 | |
| 		 * Call to fwnmi_release_errinfo() in real mode causes kernel
 | |
| 		 * to panic. Hence we will call it as soon as we go into
 | |
| 		 * virtual mode.
 | |
| 		 */
 | |
| 		disposition = mce_handle_error(regs, errp);
 | |
| 
 | |
| 		fwnmi_release_errinfo();
 | |
| 
 | |
| 		if (disposition == RTAS_DISP_FULLY_RECOVERED)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |