697 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			697 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *  PowerPC version
 | |
|  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | |
|  *
 | |
|  *  Derived from "arch/i386/mm/fault.c"
 | |
|  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *
 | |
|  *  Modified by Cort Dougan and Paul Mackerras.
 | |
|  *
 | |
|  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 | |
|  */
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/extable.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/pkeys.h>
 | |
| 
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/interrupt.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/siginfo.h>
 | |
| #include <asm/debug.h>
 | |
| #include <asm/kup.h>
 | |
| #include <asm/inst.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * do_page_fault error handling helpers
 | |
|  */
 | |
| 
 | |
| static int
 | |
| __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are in kernel mode, bail out with a SEGV, this will
 | |
| 	 * be caught by the assembly which will restore the non-volatile
 | |
| 	 * registers before calling bad_page_fault()
 | |
| 	 */
 | |
| 	if (!user_mode(regs))
 | |
| 		return SIGSEGV;
 | |
| 
 | |
| 	_exception(SIGSEGV, regs, si_code, address);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
 | |
| 		      struct mm_struct *mm, struct vm_area_struct *vma)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * Something tried to access memory that isn't in our memory map..
 | |
| 	 * Fix it, but check if it's kernel or user first..
 | |
| 	 */
 | |
| 	if (mm)
 | |
| 		mmap_read_unlock(mm);
 | |
| 	else
 | |
| 		vma_end_read(vma);
 | |
| 
 | |
| 	return __bad_area_nosemaphore(regs, address, si_code);
 | |
| }
 | |
| 
 | |
| static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 | |
| 				    struct mm_struct *mm,
 | |
| 				    struct vm_area_struct *vma)
 | |
| {
 | |
| 	int pkey;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't try to fetch the pkey from page table because reading
 | |
| 	 * page table without locking doesn't guarantee stable pte value.
 | |
| 	 * Hence the pkey value that we return to userspace can be different
 | |
| 	 * from the pkey that actually caused access error.
 | |
| 	 *
 | |
| 	 * It does *not* guarantee that the VMA we find here
 | |
| 	 * was the one that we faulted on.
 | |
| 	 *
 | |
| 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 | |
| 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
 | |
| 	 * 3. T1   : faults...
 | |
| 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 | |
| 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 | |
| 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 | |
| 	 *	     faulted on a pte with its pkey=4.
 | |
| 	 */
 | |
| 	pkey = vma_pkey(vma);
 | |
| 
 | |
| 	if (mm)
 | |
| 		mmap_read_unlock(mm);
 | |
| 	else
 | |
| 		vma_end_read(vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in kernel mode, bail out with a SEGV, this will
 | |
| 	 * be caught by the assembly which will restore the non-volatile
 | |
| 	 * registers before calling bad_page_fault()
 | |
| 	 */
 | |
| 	if (!user_mode(regs))
 | |
| 		return SIGSEGV;
 | |
| 
 | |
| 	_exception_pkey(regs, address, pkey);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int bad_access(struct pt_regs *regs, unsigned long address,
 | |
| 			       struct mm_struct *mm, struct vm_area_struct *vma)
 | |
| {
 | |
| 	return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
 | |
| }
 | |
| 
 | |
| static int do_sigbus(struct pt_regs *regs, unsigned long address,
 | |
| 		     vm_fault_t fault)
 | |
| {
 | |
| 	if (!user_mode(regs))
 | |
| 		return SIGBUS;
 | |
| 
 | |
| 	current->thread.trap_nr = BUS_ADRERR;
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 | |
| 		unsigned int lsb = 0; /* shutup gcc */
 | |
| 
 | |
| 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 | |
| 			current->comm, current->pid, address);
 | |
| 
 | |
| 		if (fault & VM_FAULT_HWPOISON_LARGE)
 | |
| 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 | |
| 		if (fault & VM_FAULT_HWPOISON)
 | |
| 			lsb = PAGE_SHIFT;
 | |
| 
 | |
| 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
 | |
| 				vm_fault_t fault)
 | |
| {
 | |
| 	/*
 | |
| 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
 | |
| 	 * continue processing.
 | |
| 	 */
 | |
| 	if (fatal_signal_pending(current) && !user_mode(regs))
 | |
| 		return SIGKILL;
 | |
| 
 | |
| 	/* Out of memory */
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		/*
 | |
| 		 * We ran out of memory, or some other thing happened to us that
 | |
| 		 * made us unable to handle the page fault gracefully.
 | |
| 		 */
 | |
| 		if (!user_mode(regs))
 | |
| 			return SIGSEGV;
 | |
| 		pagefault_out_of_memory();
 | |
| 	} else {
 | |
| 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 | |
| 			     VM_FAULT_HWPOISON_LARGE))
 | |
| 			return do_sigbus(regs, addr, fault);
 | |
| 		else if (fault & VM_FAULT_SIGSEGV)
 | |
| 			return bad_area_nosemaphore(regs, addr);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Is this a bad kernel fault ? */
 | |
| static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
 | |
| 			     unsigned long address, bool is_write)
 | |
| {
 | |
| 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
 | |
| 
 | |
| 	if (is_exec) {
 | |
| 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
 | |
| 				    address >= TASK_SIZE ? "exec-protected" : "user",
 | |
| 				    address,
 | |
| 				    from_kuid(&init_user_ns, current_uid()));
 | |
| 
 | |
| 		// Kernel exec fault is always bad
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	// Kernel fault on kernel address is bad
 | |
| 	if (address >= TASK_SIZE)
 | |
| 		return true;
 | |
| 
 | |
| 	// Read/write fault blocked by KUAP is bad, it can never succeed.
 | |
| 	if (bad_kuap_fault(regs, address, is_write)) {
 | |
| 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
 | |
| 				    is_write ? "write" : "read", address,
 | |
| 				    from_kuid(&init_user_ns, current_uid()));
 | |
| 
 | |
| 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
 | |
| 		if (!search_exception_tables(regs->nip))
 | |
| 			return true;
 | |
| 
 | |
| 		// Read/write fault in a valid region (the exception table search passed
 | |
| 		// above), but blocked by KUAP is bad, it can never succeed.
 | |
| 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
 | |
| 	}
 | |
| 
 | |
| 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
 | |
| 			      struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure to check the VMA so that we do not perform
 | |
| 	 * faults just to hit a pkey fault as soon as we fill in a
 | |
| 	 * page. Only called for current mm, hence foreign == 0
 | |
| 	 */
 | |
| 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * Allow execution from readable areas if the MMU does not
 | |
| 	 * provide separate controls over reading and executing.
 | |
| 	 *
 | |
| 	 * Note: That code used to not be enabled for 4xx/BookE.
 | |
| 	 * It is now as I/D cache coherency for these is done at
 | |
| 	 * set_pte_at() time and I see no reason why the test
 | |
| 	 * below wouldn't be valid on those processors. This -may-
 | |
| 	 * break programs compiled with a really old ABI though.
 | |
| 	 */
 | |
| 	if (is_exec) {
 | |
| 		return !(vma->vm_flags & VM_EXEC) &&
 | |
| 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 | |
| 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
 | |
| 	}
 | |
| 
 | |
| 	if (is_write) {
 | |
| 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 | |
| 			return true;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
 | |
| 	 * defined in protection_map[].  In that case Read faults can only be
 | |
| 	 * caused by a PROT_NONE mapping. However a non exec access on a
 | |
| 	 * VM_EXEC only mapping is invalid anyway, so report it as such.
 | |
| 	 */
 | |
| 	if (unlikely(!vma_is_accessible(vma)))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should ideally do the vma pkey access check here. But in the
 | |
| 	 * fault path, handle_mm_fault() also does the same check. To avoid
 | |
| 	 * these multiple checks, we skip it here and handle access error due
 | |
| 	 * to pkeys later.
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_SMLPAR
 | |
| static inline void cmo_account_page_fault(void)
 | |
| {
 | |
| 	if (firmware_has_feature(FW_FEATURE_CMO)) {
 | |
| 		u32 page_ins;
 | |
| 
 | |
| 		preempt_disable();
 | |
| 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
 | |
| 		page_ins += 1 << PAGE_FACTOR;
 | |
| 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void cmo_account_page_fault(void) { }
 | |
| #endif /* CONFIG_PPC_SMLPAR */
 | |
| 
 | |
| static void sanity_check_fault(bool is_write, bool is_user,
 | |
| 			       unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
 | |
| 	 */
 | |
| 	if (is_user && address >= TASK_SIZE) {
 | |
| 		if ((long)address == -1)
 | |
| 			return;
 | |
| 
 | |
| 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
 | |
| 				   current->comm, current->pid, address,
 | |
| 				   from_kuid(&init_user_ns, current_uid()));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * For hash translation mode, we should never get a
 | |
| 	 * PROTFAULT. Any update to pte to reduce access will result in us
 | |
| 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
 | |
| 	 * fault instead of DSISR_PROTFAULT.
 | |
| 	 *
 | |
| 	 * A pte update to relax the access will not result in a hash page table
 | |
| 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
 | |
| 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
 | |
| 	 * the special !is_write in the below conditional.
 | |
| 	 *
 | |
| 	 * For platforms that doesn't supports coherent icache and do support
 | |
| 	 * per page noexec bit, we do setup things such that we do the
 | |
| 	 * sync between D/I cache via fault. But that is handled via low level
 | |
| 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
 | |
| 	 * here in such case.
 | |
| 	 *
 | |
| 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
 | |
| 	 * check should handle those and hence we should fall to the bad_area
 | |
| 	 * handling correctly.
 | |
| 	 *
 | |
| 	 * For embedded with per page exec support that doesn't support coherent
 | |
| 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
 | |
| 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
 | |
| 	 * is conditional for server MMU.
 | |
| 	 *
 | |
| 	 * For radix, we can get prot fault for autonuma case, because radix
 | |
| 	 * page table will have them marked noaccess for user.
 | |
| 	 */
 | |
| 	if (radix_enabled() || is_write)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Define the correct "is_write" bit in error_code based
 | |
|  * on the processor family
 | |
|  */
 | |
| #ifdef CONFIG_BOOKE
 | |
| #define page_fault_is_write(__err)	((__err) & ESR_DST)
 | |
| #else
 | |
| #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_BOOKE
 | |
| #define page_fault_is_bad(__err)	(0)
 | |
| #elif defined(CONFIG_PPC_8xx)
 | |
| #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
 | |
| #elif defined(CONFIG_PPC64)
 | |
| static int page_fault_is_bad(unsigned long err)
 | |
| {
 | |
| 	unsigned long flag = DSISR_BAD_FAULT_64S;
 | |
| 
 | |
| 	/*
 | |
| 	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
 | |
| 	 * If byte 0, bit 3 of pi-attribute-specifier-type in
 | |
| 	 * ibm,pi-features property is defined, ignore the DSI error
 | |
| 	 * which is caused by the paste instruction on the
 | |
| 	 * suspended NX window.
 | |
| 	 */
 | |
| 	if (mmu_has_feature(MMU_FTR_NX_DSI))
 | |
| 		flag &= ~DSISR_BAD_COPYPASTE;
 | |
| 
 | |
| 	return err & flag;
 | |
| }
 | |
| #else
 | |
| #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * For 600- and 800-family processors, the error_code parameter is DSISR
 | |
|  * for a data fault, SRR1 for an instruction fault.
 | |
|  * For 400-family processors the error_code parameter is ESR for a data fault,
 | |
|  * 0 for an instruction fault.
 | |
|  * For 64-bit processors, the error_code parameter is DSISR for a data access
 | |
|  * fault, SRR1 & 0x08000000 for an instruction access fault.
 | |
|  *
 | |
|  * The return value is 0 if the fault was handled, or the signal
 | |
|  * number if this is a kernel fault that can't be handled here.
 | |
|  */
 | |
| static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
 | |
| 			   unsigned long error_code)
 | |
| {
 | |
| 	struct vm_area_struct * vma;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned int flags = FAULT_FLAG_DEFAULT;
 | |
| 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
 | |
| 	int is_user = user_mode(regs);
 | |
| 	int is_write = page_fault_is_write(error_code);
 | |
| 	vm_fault_t fault, major = 0;
 | |
| 	bool kprobe_fault = kprobe_page_fault(regs, 11);
 | |
| 
 | |
| 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(page_fault_is_bad(error_code))) {
 | |
| 		if (is_user) {
 | |
| 			_exception(SIGBUS, regs, BUS_OBJERR, address);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	/* Additional sanity check(s) */
 | |
| 	sanity_check_fault(is_write, is_user, error_code, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * The kernel should never take an execute fault nor should it
 | |
| 	 * take a page fault to a kernel address or a page fault to a user
 | |
| 	 * address outside of dedicated places.
 | |
| 	 *
 | |
| 	 * Rather than kfence directly reporting false negatives, search whether
 | |
| 	 * the NIP belongs to the fixup table for cases where fault could come
 | |
| 	 * from functions like copy_from_kernel_nofault().
 | |
| 	 */
 | |
| 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
 | |
| 		if (is_kfence_address((void *)address) &&
 | |
| 		    !search_exception_tables(instruction_pointer(regs)) &&
 | |
| 		    kfence_handle_page_fault(address, is_write, regs))
 | |
| 			return 0;
 | |
| 
 | |
| 		return SIGSEGV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt, have no user context or are running
 | |
| 	 * in a region with pagefaults disabled then we must not take the fault
 | |
| 	 */
 | |
| 	if (unlikely(faulthandler_disabled() || !mm)) {
 | |
| 		if (is_user)
 | |
| 			printk_ratelimited(KERN_ERR "Page fault in user mode"
 | |
| 					   " with faulthandler_disabled()=%d"
 | |
| 					   " mm=%p\n",
 | |
| 					   faulthandler_disabled(), mm);
 | |
| 		return bad_area_nosemaphore(regs, address);
 | |
| 	}
 | |
| 
 | |
| 	interrupt_cond_local_irq_enable(regs);
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to do this outside mmap_lock, because reading code around nip
 | |
| 	 * can result in fault, which will cause a deadlock when called with
 | |
| 	 * mmap_lock held
 | |
| 	 */
 | |
| 	if (is_user)
 | |
| 		flags |= FAULT_FLAG_USER;
 | |
| 	if (is_write)
 | |
| 		flags |= FAULT_FLAG_WRITE;
 | |
| 	if (is_exec)
 | |
| 		flags |= FAULT_FLAG_INSTRUCTION;
 | |
| 
 | |
| 	if (!(flags & FAULT_FLAG_USER))
 | |
| 		goto lock_mmap;
 | |
| 
 | |
| 	vma = lock_vma_under_rcu(mm, address);
 | |
| 	if (!vma)
 | |
| 		goto lock_mmap;
 | |
| 
 | |
| 	if (unlikely(access_pkey_error(is_write, is_exec,
 | |
| 				       (error_code & DSISR_KEYFAULT), vma))) {
 | |
| 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
 | |
| 		return bad_access_pkey(regs, address, NULL, vma);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(access_error(is_write, is_exec, vma))) {
 | |
| 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
 | |
| 		return bad_access(regs, address, NULL, vma);
 | |
| 	}
 | |
| 
 | |
| 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
 | |
| 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
 | |
| 		vma_end_read(vma);
 | |
| 
 | |
| 	if (!(fault & VM_FAULT_RETRY)) {
 | |
| 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
 | |
| 	if (fault & VM_FAULT_MAJOR)
 | |
| 		flags |= FAULT_FLAG_TRIED;
 | |
| 
 | |
| 	if (fault_signal_pending(fault, regs))
 | |
| 		return user_mode(regs) ? 0 : SIGBUS;
 | |
| 
 | |
| lock_mmap:
 | |
| 
 | |
| 	/* When running in the kernel we expect faults to occur only to
 | |
| 	 * addresses in user space.  All other faults represent errors in the
 | |
| 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
 | |
| 	 * erroneous fault occurring in a code path which already holds mmap_lock
 | |
| 	 * we will deadlock attempting to validate the fault against the
 | |
| 	 * address space.  Luckily the kernel only validly references user
 | |
| 	 * space from well defined areas of code, which are listed in the
 | |
| 	 * exceptions table. lock_mm_and_find_vma() handles that logic.
 | |
| 	 */
 | |
| retry:
 | |
| 	vma = lock_mm_and_find_vma(mm, address, regs);
 | |
| 	if (unlikely(!vma))
 | |
| 		return bad_area_nosemaphore(regs, address);
 | |
| 
 | |
| 	if (unlikely(access_pkey_error(is_write, is_exec,
 | |
| 				       (error_code & DSISR_KEYFAULT), vma)))
 | |
| 		return bad_access_pkey(regs, address, mm, vma);
 | |
| 
 | |
| 	if (unlikely(access_error(is_write, is_exec, vma)))
 | |
| 		return bad_access(regs, address, mm, vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault,
 | |
| 	 * make sure we exit gracefully rather than endlessly redo
 | |
| 	 * the fault.
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(vma, address, flags, regs);
 | |
| 
 | |
| 	major |= fault & VM_FAULT_MAJOR;
 | |
| 
 | |
| 	if (fault_signal_pending(fault, regs))
 | |
| 		return user_mode(regs) ? 0 : SIGBUS;
 | |
| 
 | |
| 	/* The fault is fully completed (including releasing mmap lock) */
 | |
| 	if (fault & VM_FAULT_COMPLETED)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the retry right now, the mmap_lock has been released in that
 | |
| 	 * case.
 | |
| 	 */
 | |
| 	if (unlikely(fault & VM_FAULT_RETRY)) {
 | |
| 		flags |= FAULT_FLAG_TRIED;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(current->mm);
 | |
| 
 | |
| done:
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR))
 | |
| 		return mm_fault_error(regs, address, fault);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * Major/minor page fault accounting.
 | |
| 	 */
 | |
| 	if (major)
 | |
| 		cmo_account_page_fault();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| NOKPROBE_SYMBOL(___do_page_fault);
 | |
| 
 | |
| static __always_inline void __do_page_fault(struct pt_regs *regs)
 | |
| {
 | |
| 	long err;
 | |
| 
 | |
| 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
 | |
| 	if (unlikely(err))
 | |
| 		bad_page_fault(regs, err);
 | |
| }
 | |
| 
 | |
| DEFINE_INTERRUPT_HANDLER(do_page_fault)
 | |
| {
 | |
| 	__do_page_fault(regs);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
 | |
| void hash__do_page_fault(struct pt_regs *regs)
 | |
| {
 | |
| 	__do_page_fault(regs);
 | |
| }
 | |
| NOKPROBE_SYMBOL(hash__do_page_fault);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * bad_page_fault is called when we have a bad access from the kernel.
 | |
|  * It is called from the DSI and ISI handlers in head.S and from some
 | |
|  * of the procedures in traps.c.
 | |
|  */
 | |
| static void __bad_page_fault(struct pt_regs *regs, int sig)
 | |
| {
 | |
| 	int is_write = page_fault_is_write(regs->dsisr);
 | |
| 	const char *msg;
 | |
| 
 | |
| 	/* kernel has accessed a bad area */
 | |
| 
 | |
| 	if (regs->dar < PAGE_SIZE)
 | |
| 		msg = "Kernel NULL pointer dereference";
 | |
| 	else
 | |
| 		msg = "Unable to handle kernel data access";
 | |
| 
 | |
| 	switch (TRAP(regs)) {
 | |
| 	case INTERRUPT_DATA_STORAGE:
 | |
| 	case INTERRUPT_H_DATA_STORAGE:
 | |
| 		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
 | |
| 			 is_write ? "write" : "read", regs->dar);
 | |
| 		break;
 | |
| 	case INTERRUPT_DATA_SEGMENT:
 | |
| 		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
 | |
| 		break;
 | |
| 	case INTERRUPT_INST_STORAGE:
 | |
| 	case INTERRUPT_INST_SEGMENT:
 | |
| 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
 | |
| 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
 | |
| 		break;
 | |
| 	case INTERRUPT_ALIGNMENT:
 | |
| 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
 | |
| 			 regs->dar);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
 | |
| 			 regs->dar);
 | |
| 		break;
 | |
| 	}
 | |
| 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 | |
| 		regs->nip);
 | |
| 
 | |
| 	if (task_stack_end_corrupted(current))
 | |
| 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 | |
| 
 | |
| 	die("Kernel access of bad area", regs, sig);
 | |
| }
 | |
| 
 | |
| void bad_page_fault(struct pt_regs *regs, int sig)
 | |
| {
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	/* Are we prepared to handle this fault?  */
 | |
| 	entry = search_exception_tables(instruction_pointer(regs));
 | |
| 	if (entry)
 | |
| 		instruction_pointer_set(regs, extable_fixup(entry));
 | |
| 	else
 | |
| 		__bad_page_fault(regs, sig);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
 | |
| {
 | |
| 	bad_page_fault(regs, SIGSEGV);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In radix, segment interrupts indicate the EA is not addressable by the
 | |
|  * page table geometry, so they are always sent here.
 | |
|  *
 | |
|  * In hash, this is called if do_slb_fault returns error. Typically it is
 | |
|  * because the EA was outside the region allowed by software.
 | |
|  */
 | |
| DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
 | |
| {
 | |
| 	int err = regs->result;
 | |
| 
 | |
| 	if (err == -EFAULT) {
 | |
| 		if (user_mode(regs))
 | |
| 			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
 | |
| 		else
 | |
| 			bad_page_fault(regs, SIGSEGV);
 | |
| 	} else if (err == -EINVAL) {
 | |
| 		unrecoverable_exception(regs);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| #endif
 |