871 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			871 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * PowerPC64 SLB support.
 | |
|  *
 | |
|  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
 | |
|  * Based on earlier code written by:
 | |
|  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
 | |
|  *    Copyright (c) 2001 Dave Engebretsen
 | |
|  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  */
 | |
| 
 | |
| #include <asm/interrupt.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/paca.h>
 | |
| #include <asm/lppaca.h>
 | |
| #include <asm/ppc-opcode.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/smp.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/pgtable.h>
 | |
| 
 | |
| #include <asm/udbg.h>
 | |
| #include <asm/code-patching.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| 
 | |
| static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
 | |
| 
 | |
| bool stress_slb_enabled __initdata;
 | |
| 
 | |
| static int __init parse_stress_slb(char *p)
 | |
| {
 | |
| 	stress_slb_enabled = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("stress_slb", parse_stress_slb);
 | |
| 
 | |
| __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
 | |
| 
 | |
| static void assert_slb_presence(bool present, unsigned long ea)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	WARN_ON_ONCE(mfmsr() & MSR_EE);
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
 | |
| 	 * ignores all other bits from 0-27, so just clear them all.
 | |
| 	 */
 | |
| 	ea &= ~((1UL << SID_SHIFT) - 1);
 | |
| 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
 | |
| 
 | |
| 	WARN_ON(present == (tmp == 0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void slb_shadow_update(unsigned long ea, int ssize,
 | |
| 				     unsigned long flags,
 | |
| 				     enum slb_index index)
 | |
| {
 | |
| 	struct slb_shadow *p = get_slb_shadow();
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the ESID first so the entry is not valid while we are
 | |
| 	 * updating it.  No write barriers are needed here, provided
 | |
| 	 * we only update the current CPU's SLB shadow buffer.
 | |
| 	 */
 | |
| 	WRITE_ONCE(p->save_area[index].esid, 0);
 | |
| 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
 | |
| 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
 | |
| }
 | |
| 
 | |
| static inline void slb_shadow_clear(enum slb_index index)
 | |
| {
 | |
| 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
 | |
| }
 | |
| 
 | |
| static inline void create_shadowed_slbe(unsigned long ea, int ssize,
 | |
| 					unsigned long flags,
 | |
| 					enum slb_index index)
 | |
| {
 | |
| 	/*
 | |
| 	 * Updating the shadow buffer before writing the SLB ensures
 | |
| 	 * we don't get a stale entry here if we get preempted by PHYP
 | |
| 	 * between these two statements.
 | |
| 	 */
 | |
| 	slb_shadow_update(ea, ssize, flags, index);
 | |
| 
 | |
| 	assert_slb_presence(false, ea);
 | |
| 	asm volatile("slbmte  %0,%1" :
 | |
| 		     : "r" (mk_vsid_data(ea, ssize, flags)),
 | |
| 		       "r" (mk_esid_data(ea, ssize, index))
 | |
| 		     : "memory" );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert bolted entries into SLB (which may not be empty, so don't clear
 | |
|  * slb_cache_ptr).
 | |
|  */
 | |
| void __slb_restore_bolted_realmode(void)
 | |
| {
 | |
| 	struct slb_shadow *p = get_slb_shadow();
 | |
| 	enum slb_index index;
 | |
| 
 | |
| 	 /* No isync needed because realmode. */
 | |
| 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
 | |
| 		asm volatile("slbmte  %0,%1" :
 | |
| 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
 | |
| 		       "r" (be64_to_cpu(p->save_area[index].esid)));
 | |
| 	}
 | |
| 
 | |
| 	assert_slb_presence(true, local_paca->kstack);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert the bolted entries into an empty SLB.
 | |
|  */
 | |
| void slb_restore_bolted_realmode(void)
 | |
| {
 | |
| 	__slb_restore_bolted_realmode();
 | |
| 	get_paca()->slb_cache_ptr = 0;
 | |
| 
 | |
| 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 | |
| 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flushes all SLB entries including 0, so it must be realmode.
 | |
|  */
 | |
| void slb_flush_all_realmode(void)
 | |
| {
 | |
| 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
 | |
| }
 | |
| 
 | |
| static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
 | |
| {
 | |
| 	struct slb_shadow *p = get_slb_shadow();
 | |
| 	unsigned long ksp_esid_data, ksp_vsid_data;
 | |
| 	u32 ih;
 | |
| 
 | |
| 	/*
 | |
| 	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
 | |
| 	 * information created with Class=0 entries, which we use for kernel
 | |
| 	 * SLB entries (the SLB entries themselves are still invalidated).
 | |
| 	 *
 | |
| 	 * Older processors will ignore this optimisation. Over-invalidation
 | |
| 	 * is fine because we never rely on lookaside information existing.
 | |
| 	 */
 | |
| 	if (preserve_kernel_lookaside)
 | |
| 		ih = 1;
 | |
| 	else
 | |
| 		ih = 0;
 | |
| 
 | |
| 	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
 | |
| 	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
 | |
| 
 | |
| 	asm volatile(PPC_SLBIA(%0)"	\n"
 | |
| 		     "slbmte	%1, %2	\n"
 | |
| 		     :: "i" (ih),
 | |
| 			"r" (ksp_vsid_data),
 | |
| 			"r" (ksp_esid_data)
 | |
| 		     : "memory");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flushes non-bolted entries, it can be run in virtual mode. Must
 | |
|  * be called with interrupts disabled.
 | |
|  */
 | |
| void slb_flush_and_restore_bolted(void)
 | |
| {
 | |
| 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't take a PMU exception in the following code, so hard
 | |
| 	 * disable interrupts.
 | |
| 	 */
 | |
| 	hard_irq_disable();
 | |
| 
 | |
| 	isync();
 | |
| 	__slb_flush_and_restore_bolted(false);
 | |
| 	isync();
 | |
| 
 | |
| 	assert_slb_presence(true, get_paca()->kstack);
 | |
| 
 | |
| 	get_paca()->slb_cache_ptr = 0;
 | |
| 
 | |
| 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 | |
| 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 | |
| }
 | |
| 
 | |
| void slb_save_contents(struct slb_entry *slb_ptr)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long e, v;
 | |
| 
 | |
| 	/* Save slb_cache_ptr value. */
 | |
| 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
 | |
| 
 | |
| 	if (!slb_ptr)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < mmu_slb_size; i++) {
 | |
| 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
 | |
| 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
 | |
| 		slb_ptr->esid = e;
 | |
| 		slb_ptr->vsid = v;
 | |
| 		slb_ptr++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void slb_dump_contents(struct slb_entry *slb_ptr)
 | |
| {
 | |
| 	int i, n;
 | |
| 	unsigned long e, v;
 | |
| 	unsigned long llp;
 | |
| 
 | |
| 	if (!slb_ptr)
 | |
| 		return;
 | |
| 
 | |
| 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
 | |
| 
 | |
| 	for (i = 0; i < mmu_slb_size; i++) {
 | |
| 		e = slb_ptr->esid;
 | |
| 		v = slb_ptr->vsid;
 | |
| 		slb_ptr++;
 | |
| 
 | |
| 		if (!e && !v)
 | |
| 			continue;
 | |
| 
 | |
| 		pr_err("%02d %016lx %016lx %s\n", i, e, v,
 | |
| 				(e & SLB_ESID_V) ? "VALID" : "NOT VALID");
 | |
| 
 | |
| 		if (!(e & SLB_ESID_V))
 | |
| 			continue;
 | |
| 
 | |
| 		llp = v & SLB_VSID_LLP;
 | |
| 		if (v & SLB_VSID_B_1T) {
 | |
| 			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
 | |
| 			       GET_ESID_1T(e),
 | |
| 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
 | |
| 		} else {
 | |
| 			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
 | |
| 			       GET_ESID(e),
 | |
| 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
 | |
| 		/* RR is not so useful as it's often not used for allocation */
 | |
| 		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
 | |
| 
 | |
| 		/* Dump slb cache entires as well. */
 | |
| 		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
 | |
| 		pr_err("Valid SLB cache entries:\n");
 | |
| 		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 | |
| 		pr_err("Rest of SLB cache entries:\n");
 | |
| 		for (i = n; i < SLB_CACHE_ENTRIES; i++)
 | |
| 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void slb_vmalloc_update(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * vmalloc is not bolted, so just have to flush non-bolted.
 | |
| 	 */
 | |
| 	slb_flush_and_restore_bolted();
 | |
| }
 | |
| 
 | |
| static bool preload_hit(struct thread_info *ti, unsigned long esid)
 | |
| {
 | |
| 	unsigned char i;
 | |
| 
 | |
| 	for (i = 0; i < ti->slb_preload_nr; i++) {
 | |
| 		unsigned char idx;
 | |
| 
 | |
| 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 | |
| 		if (esid == ti->slb_preload_esid[idx])
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool preload_add(struct thread_info *ti, unsigned long ea)
 | |
| {
 | |
| 	unsigned char idx;
 | |
| 	unsigned long esid;
 | |
| 
 | |
| 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 | |
| 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
 | |
| 		if (ea & ESID_MASK_1T)
 | |
| 			ea &= ESID_MASK_1T;
 | |
| 	}
 | |
| 
 | |
| 	esid = ea >> SID_SHIFT;
 | |
| 
 | |
| 	if (preload_hit(ti, esid))
 | |
| 		return false;
 | |
| 
 | |
| 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
 | |
| 	ti->slb_preload_esid[idx] = esid;
 | |
| 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
 | |
| 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 | |
| 	else
 | |
| 		ti->slb_preload_nr++;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void preload_age(struct thread_info *ti)
 | |
| {
 | |
| 	if (!ti->slb_preload_nr)
 | |
| 		return;
 | |
| 	ti->slb_preload_nr--;
 | |
| 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 | |
| }
 | |
| 
 | |
| void slb_setup_new_exec(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long exec = 0x10000000;
 | |
| 
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 
 | |
| 	/*
 | |
| 	 * preload cache can only be used to determine whether a SLB
 | |
| 	 * entry exists if it does not start to overflow.
 | |
| 	 */
 | |
| 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
 | |
| 		return;
 | |
| 
 | |
| 	hard_irq_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * We have no good place to clear the slb preload cache on exec,
 | |
| 	 * flush_thread is about the earliest arch hook but that happens
 | |
| 	 * after we switch to the mm and have already preloaded the SLBEs.
 | |
| 	 *
 | |
| 	 * For the most part that's probably okay to use entries from the
 | |
| 	 * previous exec, they will age out if unused. It may turn out to
 | |
| 	 * be an advantage to clear the cache before switching to it,
 | |
| 	 * however.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * preload some userspace segments into the SLB.
 | |
| 	 * Almost all 32 and 64bit PowerPC executables are linked at
 | |
| 	 * 0x10000000 so it makes sense to preload this segment.
 | |
| 	 */
 | |
| 	if (!is_kernel_addr(exec)) {
 | |
| 		if (preload_add(ti, exec))
 | |
| 			slb_allocate_user(mm, exec);
 | |
| 	}
 | |
| 
 | |
| 	/* Libraries and mmaps. */
 | |
| 	if (!is_kernel_addr(mm->mmap_base)) {
 | |
| 		if (preload_add(ti, mm->mmap_base))
 | |
| 			slb_allocate_user(mm, mm->mmap_base);
 | |
| 	}
 | |
| 
 | |
| 	/* see switch_slb */
 | |
| 	asm volatile("isync" : : : "memory");
 | |
| 
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| void preload_new_slb_context(unsigned long start, unsigned long sp)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long heap = mm->start_brk;
 | |
| 
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 
 | |
| 	/* see above */
 | |
| 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
 | |
| 		return;
 | |
| 
 | |
| 	hard_irq_disable();
 | |
| 
 | |
| 	/* Userspace entry address. */
 | |
| 	if (!is_kernel_addr(start)) {
 | |
| 		if (preload_add(ti, start))
 | |
| 			slb_allocate_user(mm, start);
 | |
| 	}
 | |
| 
 | |
| 	/* Top of stack, grows down. */
 | |
| 	if (!is_kernel_addr(sp)) {
 | |
| 		if (preload_add(ti, sp))
 | |
| 			slb_allocate_user(mm, sp);
 | |
| 	}
 | |
| 
 | |
| 	/* Bottom of heap, grows up. */
 | |
| 	if (heap && !is_kernel_addr(heap)) {
 | |
| 		if (preload_add(ti, heap))
 | |
| 			slb_allocate_user(mm, heap);
 | |
| 	}
 | |
| 
 | |
| 	/* see switch_slb */
 | |
| 	asm volatile("isync" : : : "memory");
 | |
| 
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static void slb_cache_slbie_kernel(unsigned int index)
 | |
| {
 | |
| 	unsigned long slbie_data = get_paca()->slb_cache[index];
 | |
| 	unsigned long ksp = get_paca()->kstack;
 | |
| 
 | |
| 	slbie_data <<= SID_SHIFT;
 | |
| 	slbie_data |= 0xc000000000000000ULL;
 | |
| 	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
 | |
| 		return;
 | |
| 	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
 | |
| 
 | |
| 	asm volatile("slbie %0" : : "r" (slbie_data));
 | |
| }
 | |
| 
 | |
| static void slb_cache_slbie_user(unsigned int index)
 | |
| {
 | |
| 	unsigned long slbie_data = get_paca()->slb_cache[index];
 | |
| 
 | |
| 	slbie_data <<= SID_SHIFT;
 | |
| 	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
 | |
| 	slbie_data |= SLBIE_C; /* user slbs have C=1 */
 | |
| 
 | |
| 	asm volatile("slbie %0" : : "r" (slbie_data));
 | |
| }
 | |
| 
 | |
| /* Flush all user entries from the segment table of the current processor. */
 | |
| void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	struct thread_info *ti = task_thread_info(tsk);
 | |
| 	unsigned char i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need interrupts hard-disabled here, not just soft-disabled,
 | |
| 	 * so that a PMU interrupt can't occur, which might try to access
 | |
| 	 * user memory (to get a stack trace) and possible cause an SLB miss
 | |
| 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
 | |
| 	 */
 | |
| 	hard_irq_disable();
 | |
| 	isync();
 | |
| 	if (stress_slb()) {
 | |
| 		__slb_flush_and_restore_bolted(false);
 | |
| 		isync();
 | |
| 		get_paca()->slb_cache_ptr = 0;
 | |
| 		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 | |
| 
 | |
| 	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | |
| 		/*
 | |
| 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
 | |
| 		 * associated lookaside structures, which matches what
 | |
| 		 * switch_slb wants. So ARCH_300 does not use the slb
 | |
| 		 * cache.
 | |
| 		 */
 | |
| 		asm volatile(PPC_SLBIA(3));
 | |
| 
 | |
| 	} else {
 | |
| 		unsigned long offset = get_paca()->slb_cache_ptr;
 | |
| 
 | |
| 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
 | |
| 		    offset <= SLB_CACHE_ENTRIES) {
 | |
| 			/*
 | |
| 			 * Could assert_slb_presence(true) here, but
 | |
| 			 * hypervisor or machine check could have come
 | |
| 			 * in and removed the entry at this point.
 | |
| 			 */
 | |
| 
 | |
| 			for (i = 0; i < offset; i++)
 | |
| 				slb_cache_slbie_user(i);
 | |
| 
 | |
| 			/* Workaround POWER5 < DD2.1 issue */
 | |
| 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
 | |
| 				slb_cache_slbie_user(0);
 | |
| 
 | |
| 		} else {
 | |
| 			/* Flush but retain kernel lookaside information */
 | |
| 			__slb_flush_and_restore_bolted(true);
 | |
| 			isync();
 | |
| 
 | |
| 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 | |
| 		}
 | |
| 
 | |
| 		get_paca()->slb_cache_ptr = 0;
 | |
| 	}
 | |
| 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 | |
| 
 | |
| 	copy_mm_to_paca(mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * We gradually age out SLBs after a number of context switches to
 | |
| 	 * reduce reload overhead of unused entries (like we do with FP/VEC
 | |
| 	 * reload). Each time we wrap 256 switches, take an entry out of the
 | |
| 	 * SLB preload cache.
 | |
| 	 */
 | |
| 	tsk->thread.load_slb++;
 | |
| 	if (!tsk->thread.load_slb) {
 | |
| 		unsigned long pc = KSTK_EIP(tsk);
 | |
| 
 | |
| 		preload_age(ti);
 | |
| 		preload_add(ti, pc);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ti->slb_preload_nr; i++) {
 | |
| 		unsigned char idx;
 | |
| 		unsigned long ea;
 | |
| 
 | |
| 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 | |
| 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
 | |
| 
 | |
| 		slb_allocate_user(mm, ea);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize slbmte preloads with possible subsequent user memory
 | |
| 	 * address accesses by the kernel (user mode won't happen until
 | |
| 	 * rfid, which is safe).
 | |
| 	 */
 | |
| 	isync();
 | |
| }
 | |
| 
 | |
| void slb_set_size(u16 size)
 | |
| {
 | |
| 	mmu_slb_size = size;
 | |
| }
 | |
| 
 | |
| void slb_initialize(void)
 | |
| {
 | |
| 	unsigned long linear_llp, vmalloc_llp, io_llp;
 | |
| 	unsigned long lflags;
 | |
| 	static int slb_encoding_inited;
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	unsigned long vmemmap_llp;
 | |
| #endif
 | |
| 
 | |
| 	/* Prepare our SLB miss handler based on our page size */
 | |
| 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
 | |
| 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
 | |
| 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
 | |
| 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
 | |
| #endif
 | |
| 	if (!slb_encoding_inited) {
 | |
| 		slb_encoding_inited = 1;
 | |
| 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
 | |
| 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
 | |
| 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 | |
| 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 | |
| 
 | |
| 	lflags = SLB_VSID_KERNEL | linear_llp;
 | |
| 
 | |
| 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
 | |
| 	asm volatile("isync":::"memory");
 | |
| 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
 | |
| 	asm volatile("isync; slbia; isync":::"memory");
 | |
| 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
 | |
| 
 | |
| 	/*
 | |
| 	 * For the boot cpu, we're running on the stack in init_thread_union,
 | |
| 	 * which is in the first segment of the linear mapping, and also
 | |
| 	 * get_paca()->kstack hasn't been initialized yet.
 | |
| 	 * For secondary cpus, we need to bolt the kernel stack entry now.
 | |
| 	 */
 | |
| 	slb_shadow_clear(KSTACK_INDEX);
 | |
| 	if (raw_smp_processor_id() != boot_cpuid &&
 | |
| 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
 | |
| 		create_shadowed_slbe(get_paca()->kstack,
 | |
| 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
 | |
| 
 | |
| 	asm volatile("isync":::"memory");
 | |
| }
 | |
| 
 | |
| static void slb_cache_update(unsigned long esid_data)
 | |
| {
 | |
| 	int slb_cache_index;
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | |
| 		return; /* ISAv3.0B and later does not use slb_cache */
 | |
| 
 | |
| 	if (stress_slb())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now update slb cache entries
 | |
| 	 */
 | |
| 	slb_cache_index = local_paca->slb_cache_ptr;
 | |
| 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
 | |
| 		/*
 | |
| 		 * We have space in slb cache for optimized switch_slb().
 | |
| 		 * Top 36 bits from esid_data as per ISA
 | |
| 		 */
 | |
| 		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 | |
| 		local_paca->slb_cache_ptr++;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Our cache is full and the current cache content strictly
 | |
| 		 * doesn't indicate the active SLB contents. Bump the ptr
 | |
| 		 * so that switch_slb() will ignore the cache.
 | |
| 		 */
 | |
| 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum slb_index alloc_slb_index(bool kernel)
 | |
| {
 | |
| 	enum slb_index index;
 | |
| 
 | |
| 	/*
 | |
| 	 * The allocation bitmaps can become out of synch with the SLB
 | |
| 	 * when the _switch code does slbie when bolting a new stack
 | |
| 	 * segment and it must not be anywhere else in the SLB. This leaves
 | |
| 	 * a kernel allocated entry that is unused in the SLB. With very
 | |
| 	 * large systems or small segment sizes, the bitmaps could slowly
 | |
| 	 * fill with these entries. They will eventually be cleared out
 | |
| 	 * by the round robin allocator in that case, so it's probably not
 | |
| 	 * worth accounting for.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * SLBs beyond 32 entries are allocated with stab_rr only
 | |
| 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
 | |
| 	 * future CPU has more.
 | |
| 	 */
 | |
| 	if (local_paca->slb_used_bitmap != U32_MAX) {
 | |
| 		index = ffz(local_paca->slb_used_bitmap);
 | |
| 		local_paca->slb_used_bitmap |= 1U << index;
 | |
| 		if (kernel)
 | |
| 			local_paca->slb_kern_bitmap |= 1U << index;
 | |
| 	} else {
 | |
| 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
 | |
| 		index = local_paca->stab_rr;
 | |
| 		if (index < (mmu_slb_size - 1))
 | |
| 			index++;
 | |
| 		else
 | |
| 			index = SLB_NUM_BOLTED;
 | |
| 		local_paca->stab_rr = index;
 | |
| 		if (index < 32) {
 | |
| 			if (kernel)
 | |
| 				local_paca->slb_kern_bitmap |= 1U << index;
 | |
| 			else
 | |
| 				local_paca->slb_kern_bitmap &= ~(1U << index);
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(index < SLB_NUM_BOLTED);
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static long slb_insert_entry(unsigned long ea, unsigned long context,
 | |
| 				unsigned long flags, int ssize, bool kernel)
 | |
| {
 | |
| 	unsigned long vsid;
 | |
| 	unsigned long vsid_data, esid_data;
 | |
| 	enum slb_index index;
 | |
| 
 | |
| 	vsid = get_vsid(context, ea, ssize);
 | |
| 	if (!vsid)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * There must not be a kernel SLB fault in alloc_slb_index or before
 | |
| 	 * slbmte here or the allocation bitmaps could get out of whack with
 | |
| 	 * the SLB.
 | |
| 	 *
 | |
| 	 * User SLB faults or preloads take this path which might get inlined
 | |
| 	 * into the caller, so add compiler barriers here to ensure unsafe
 | |
| 	 * memory accesses do not come between.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	index = alloc_slb_index(kernel);
 | |
| 
 | |
| 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
 | |
| 	esid_data = mk_esid_data(ea, ssize, index);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for an isync before or after this slbmte. The exception
 | |
| 	 * we enter with and the rfid we exit with are context synchronizing.
 | |
| 	 * User preloads should add isync afterwards in case the kernel
 | |
| 	 * accesses user memory before it returns to userspace with rfid.
 | |
| 	 */
 | |
| 	assert_slb_presence(false, ea);
 | |
| 	if (stress_slb()) {
 | |
| 		int slb_cache_index = local_paca->slb_cache_ptr;
 | |
| 
 | |
| 		/*
 | |
| 		 * stress_slb() does not use slb cache, repurpose as a
 | |
| 		 * cache of inserted (non-bolted) kernel SLB entries. All
 | |
| 		 * non-bolted kernel entries are flushed on any user fault,
 | |
| 		 * or if there are already 3 non-boled kernel entries.
 | |
| 		 */
 | |
| 		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
 | |
| 		if (!kernel || slb_cache_index == 3) {
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < slb_cache_index; i++)
 | |
| 				slb_cache_slbie_kernel(i);
 | |
| 			slb_cache_index = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (kernel)
 | |
| 			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 | |
| 		local_paca->slb_cache_ptr = slb_cache_index;
 | |
| 	}
 | |
| 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
 | |
| 
 | |
| 	barrier();
 | |
| 
 | |
| 	if (!kernel)
 | |
| 		slb_cache_update(esid_data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long slb_allocate_kernel(unsigned long ea, unsigned long id)
 | |
| {
 | |
| 	unsigned long context;
 | |
| 	unsigned long flags;
 | |
| 	int ssize;
 | |
| 
 | |
| 	if (id == LINEAR_MAP_REGION_ID) {
 | |
| 
 | |
| 		/* We only support upto H_MAX_PHYSMEM_BITS */
 | |
| 		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	} else if (id == VMEMMAP_REGION_ID) {
 | |
| 
 | |
| 		if (ea >= H_VMEMMAP_END)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
 | |
| #endif
 | |
| 	} else if (id == VMALLOC_REGION_ID) {
 | |
| 
 | |
| 		if (ea >= H_VMALLOC_END)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		flags = local_paca->vmalloc_sllp;
 | |
| 
 | |
| 	} else if (id == IO_REGION_ID) {
 | |
| 
 | |
| 		if (ea >= H_KERN_IO_END)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
 | |
| 
 | |
| 	} else {
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ssize = MMU_SEGSIZE_1T;
 | |
| 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
 | |
| 		ssize = MMU_SEGSIZE_256M;
 | |
| 
 | |
| 	context = get_kernel_context(ea);
 | |
| 
 | |
| 	return slb_insert_entry(ea, context, flags, ssize, true);
 | |
| }
 | |
| 
 | |
| static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	unsigned long context;
 | |
| 	unsigned long flags;
 | |
| 	int bpsize;
 | |
| 	int ssize;
 | |
| 
 | |
| 	/*
 | |
| 	 * consider this as bad access if we take a SLB miss
 | |
| 	 * on an address above addr limit.
 | |
| 	 */
 | |
| 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	context = get_user_context(&mm->context, ea);
 | |
| 	if (!context)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
 | |
| 		WARN_ON(1);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ssize = user_segment_size(ea);
 | |
| 
 | |
| 	bpsize = get_slice_psize(mm, ea);
 | |
| 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
 | |
| 
 | |
| 	return slb_insert_entry(ea, context, flags, ssize, false);
 | |
| }
 | |
| 
 | |
| DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
 | |
| {
 | |
| 	unsigned long ea = regs->dar;
 | |
| 	unsigned long id = get_region_id(ea);
 | |
| 
 | |
| 	/* IRQs are not reconciled here, so can't check irqs_disabled */
 | |
| 	VM_WARN_ON(mfmsr() & MSR_EE);
 | |
| 
 | |
| 	if (regs_is_unrecoverable(regs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * SLB kernel faults must be very careful not to touch anything that is
 | |
| 	 * not bolted. E.g., PACA and global variables are okay, mm->context
 | |
| 	 * stuff is not. SLB user faults may access all of memory (and induce
 | |
| 	 * one recursive SLB kernel fault), so the kernel fault must not
 | |
| 	 * trample on the user fault state at those points.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a raw interrupt handler, for performance, so that
 | |
| 	 * fast_interrupt_return can be used. The handler must not touch local
 | |
| 	 * irq state, or schedule. We could test for usermode and upgrade to a
 | |
| 	 * normal process context (synchronous) interrupt for those, which
 | |
| 	 * would make them first-class kernel code and able to be traced and
 | |
| 	 * instrumented, although performance would suffer a bit, it would
 | |
| 	 * probably be a good tradeoff.
 | |
| 	 */
 | |
| 	if (id >= LINEAR_MAP_REGION_ID) {
 | |
| 		long err;
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		/* Catch recursive kernel SLB faults. */
 | |
| 		BUG_ON(local_paca->in_kernel_slb_handler);
 | |
| 		local_paca->in_kernel_slb_handler = 1;
 | |
| #endif
 | |
| 		err = slb_allocate_kernel(ea, id);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		local_paca->in_kernel_slb_handler = 0;
 | |
| #endif
 | |
| 		return err;
 | |
| 	} else {
 | |
| 		struct mm_struct *mm = current->mm;
 | |
| 		long err;
 | |
| 
 | |
| 		if (unlikely(!mm))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		err = slb_allocate_user(mm, ea);
 | |
| 		if (!err)
 | |
| 			preload_add(current_thread_info(), ea);
 | |
| 
 | |
| 		return err;
 | |
| 	}
 | |
| }
 |