371 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Common signal handling code for both 32 and 64 bits
 | |
|  *
 | |
|  *    Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
 | |
|  *    Extracted from signal_32.c and signal_64.c
 | |
|  */
 | |
| 
 | |
| #include <linux/resume_user_mode.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/uprobes.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/livepatch.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <asm/hw_breakpoint.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/debug.h>
 | |
| #include <asm/tm.h>
 | |
| 
 | |
| #include "signal.h"
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| unsigned long copy_fpr_to_user(void __user *to,
 | |
| 			       struct task_struct *task)
 | |
| {
 | |
| 	u64 buf[ELF_NFPREG];
 | |
| 	int i;
 | |
| 
 | |
| 	/* save FPR copy to local buffer then write to the thread_struct */
 | |
| 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 | |
| 		buf[i] = task->thread.TS_FPR(i);
 | |
| 	buf[i] = task->thread.fp_state.fpscr;
 | |
| 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 | |
| }
 | |
| 
 | |
| unsigned long copy_fpr_from_user(struct task_struct *task,
 | |
| 				 void __user *from)
 | |
| {
 | |
| 	u64 buf[ELF_NFPREG];
 | |
| 	int i;
 | |
| 
 | |
| 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 | |
| 		return 1;
 | |
| 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 | |
| 		task->thread.TS_FPR(i) = buf[i];
 | |
| 	task->thread.fp_state.fpscr = buf[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long copy_vsx_to_user(void __user *to,
 | |
| 			       struct task_struct *task)
 | |
| {
 | |
| 	u64 buf[ELF_NVSRHALFREG];
 | |
| 	int i;
 | |
| 
 | |
| 	/* save FPR copy to local buffer then write to the thread_struct */
 | |
| 	for (i = 0; i < ELF_NVSRHALFREG; i++)
 | |
| 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 | |
| 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 | |
| }
 | |
| 
 | |
| unsigned long copy_vsx_from_user(struct task_struct *task,
 | |
| 				 void __user *from)
 | |
| {
 | |
| 	u64 buf[ELF_NVSRHALFREG];
 | |
| 	int i;
 | |
| 
 | |
| 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 | |
| 		return 1;
 | |
| 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 | |
| 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| unsigned long copy_ckfpr_to_user(void __user *to,
 | |
| 				  struct task_struct *task)
 | |
| {
 | |
| 	u64 buf[ELF_NFPREG];
 | |
| 	int i;
 | |
| 
 | |
| 	/* save FPR copy to local buffer then write to the thread_struct */
 | |
| 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 | |
| 		buf[i] = task->thread.TS_CKFPR(i);
 | |
| 	buf[i] = task->thread.ckfp_state.fpscr;
 | |
| 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 | |
| }
 | |
| 
 | |
| unsigned long copy_ckfpr_from_user(struct task_struct *task,
 | |
| 					  void __user *from)
 | |
| {
 | |
| 	u64 buf[ELF_NFPREG];
 | |
| 	int i;
 | |
| 
 | |
| 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 | |
| 		return 1;
 | |
| 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 | |
| 		task->thread.TS_CKFPR(i) = buf[i];
 | |
| 	task->thread.ckfp_state.fpscr = buf[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long copy_ckvsx_to_user(void __user *to,
 | |
| 				  struct task_struct *task)
 | |
| {
 | |
| 	u64 buf[ELF_NVSRHALFREG];
 | |
| 	int i;
 | |
| 
 | |
| 	/* save FPR copy to local buffer then write to the thread_struct */
 | |
| 	for (i = 0; i < ELF_NVSRHALFREG; i++)
 | |
| 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
 | |
| 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 | |
| }
 | |
| 
 | |
| unsigned long copy_ckvsx_from_user(struct task_struct *task,
 | |
| 					  void __user *from)
 | |
| {
 | |
| 	u64 buf[ELF_NVSRHALFREG];
 | |
| 	int i;
 | |
| 
 | |
| 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 | |
| 		return 1;
 | |
| 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 | |
| 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 | |
| #endif
 | |
| 
 | |
| /* Log an error when sending an unhandled signal to a process. Controlled
 | |
|  * through debug.exception-trace sysctl.
 | |
|  */
 | |
| 
 | |
| int show_unhandled_signals = 1;
 | |
| 
 | |
| unsigned long get_min_sigframe_size(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_PPC64))
 | |
| 		return get_min_sigframe_size_64();
 | |
| 	else
 | |
| 		return get_min_sigframe_size_32();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| unsigned long get_min_sigframe_size_compat(void)
 | |
| {
 | |
| 	return get_min_sigframe_size_32();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allocate space for the signal frame
 | |
|  */
 | |
| static unsigned long get_tm_stackpointer(struct task_struct *tsk);
 | |
| 
 | |
| void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
 | |
| 			  size_t frame_size, int is_32)
 | |
| {
 | |
|         unsigned long oldsp, newsp;
 | |
| 	unsigned long sp = get_tm_stackpointer(tsk);
 | |
| 
 | |
|         /* Default to using normal stack */
 | |
| 	if (is_32)
 | |
| 		oldsp = sp & 0x0ffffffffUL;
 | |
| 	else
 | |
| 		oldsp = sp;
 | |
| 	oldsp = sigsp(oldsp, ksig);
 | |
| 	newsp = (oldsp - frame_size) & ~0xFUL;
 | |
| 
 | |
|         return (void __user *)newsp;
 | |
| }
 | |
| 
 | |
| static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
 | |
| 				  int has_handler)
 | |
| {
 | |
| 	unsigned long ret = regs->gpr[3];
 | |
| 	int restart = 1;
 | |
| 
 | |
| 	/* syscall ? */
 | |
| 	if (!trap_is_syscall(regs))
 | |
| 		return;
 | |
| 
 | |
| 	if (trap_norestart(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/* error signalled ? */
 | |
| 	if (trap_is_scv(regs)) {
 | |
| 		/* 32-bit compat mode sign extend? */
 | |
| 		if (!IS_ERR_VALUE(ret))
 | |
| 			return;
 | |
| 		ret = -ret;
 | |
| 	} else if (!(regs->ccr & 0x10000000)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (ret) {
 | |
| 	case ERESTART_RESTARTBLOCK:
 | |
| 	case ERESTARTNOHAND:
 | |
| 		/* ERESTARTNOHAND means that the syscall should only be
 | |
| 		 * restarted if there was no handler for the signal, and since
 | |
| 		 * we only get here if there is a handler, we dont restart.
 | |
| 		 */
 | |
| 		restart = !has_handler;
 | |
| 		break;
 | |
| 	case ERESTARTSYS:
 | |
| 		/* ERESTARTSYS means to restart the syscall if there is no
 | |
| 		 * handler or the handler was registered with SA_RESTART
 | |
| 		 */
 | |
| 		restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
 | |
| 		break;
 | |
| 	case ERESTARTNOINTR:
 | |
| 		/* ERESTARTNOINTR means that the syscall should be
 | |
| 		 * called again after the signal handler returns.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 	if (restart) {
 | |
| 		if (ret == ERESTART_RESTARTBLOCK)
 | |
| 			regs->gpr[0] = __NR_restart_syscall;
 | |
| 		else
 | |
| 			regs->gpr[3] = regs->orig_gpr3;
 | |
| 		regs_add_return_ip(regs, -4);
 | |
| 		regs->result = 0;
 | |
| 	} else {
 | |
| 		if (trap_is_scv(regs)) {
 | |
| 			regs->result = -EINTR;
 | |
| 			regs->gpr[3] = -EINTR;
 | |
| 		} else {
 | |
| 			regs->result = -EINTR;
 | |
| 			regs->gpr[3] = EINTR;
 | |
| 			regs->ccr |= 0x10000000;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_signal(struct task_struct *tsk)
 | |
| {
 | |
| 	sigset_t *oldset = sigmask_to_save();
 | |
| 	struct ksignal ksig = { .sig = 0 };
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(tsk != current);
 | |
| 
 | |
| 	get_signal(&ksig);
 | |
| 
 | |
| 	/* Is there any syscall restart business here ? */
 | |
| 	check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
 | |
| 
 | |
| 	if (ksig.sig <= 0) {
 | |
| 		/* No signal to deliver -- put the saved sigmask back */
 | |
| 		restore_saved_sigmask();
 | |
| 		set_trap_norestart(tsk->thread.regs);
 | |
| 		return;               /* no signals delivered */
 | |
| 	}
 | |
| 
 | |
|         /*
 | |
| 	 * Reenable the DABR before delivering the signal to
 | |
| 	 * user space. The DABR will have been cleared if it
 | |
| 	 * triggered inside the kernel.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < nr_wp_slots(); i++) {
 | |
| 			if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
 | |
| 				__set_breakpoint(i, &tsk->thread.hw_brk[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Re-enable the breakpoints for the signal stack */
 | |
| 	thread_change_pc(tsk, tsk->thread.regs);
 | |
| 
 | |
| 	rseq_signal_deliver(&ksig, tsk->thread.regs);
 | |
| 
 | |
| 	if (is_32bit_task()) {
 | |
|         	if (ksig.ka.sa.sa_flags & SA_SIGINFO)
 | |
| 			ret = handle_rt_signal32(&ksig, oldset, tsk);
 | |
| 		else
 | |
| 			ret = handle_signal32(&ksig, oldset, tsk);
 | |
| 	} else {
 | |
| 		ret = handle_rt_signal64(&ksig, oldset, tsk);
 | |
| 	}
 | |
| 
 | |
| 	set_trap_norestart(tsk->thread.regs);
 | |
| 	signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
 | |
| }
 | |
| 
 | |
| void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
 | |
| {
 | |
| 	if (thread_info_flags & _TIF_UPROBE)
 | |
| 		uprobe_notify_resume(regs);
 | |
| 
 | |
| 	if (thread_info_flags & _TIF_PATCH_PENDING)
 | |
| 		klp_update_patch_state(current);
 | |
| 
 | |
| 	if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
 | |
| 		BUG_ON(regs != current->thread.regs);
 | |
| 		do_signal(current);
 | |
| 	}
 | |
| 
 | |
| 	if (thread_info_flags & _TIF_NOTIFY_RESUME)
 | |
| 		resume_user_mode_work(regs);
 | |
| }
 | |
| 
 | |
| static unsigned long get_tm_stackpointer(struct task_struct *tsk)
 | |
| {
 | |
| 	/* When in an active transaction that takes a signal, we need to be
 | |
| 	 * careful with the stack.  It's possible that the stack has moved back
 | |
| 	 * up after the tbegin.  The obvious case here is when the tbegin is
 | |
| 	 * called inside a function that returns before a tend.  In this case,
 | |
| 	 * the stack is part of the checkpointed transactional memory state.
 | |
| 	 * If we write over this non transactionally or in suspend, we are in
 | |
| 	 * trouble because if we get a tm abort, the program counter and stack
 | |
| 	 * pointer will be back at the tbegin but our in memory stack won't be
 | |
| 	 * valid anymore.
 | |
| 	 *
 | |
| 	 * To avoid this, when taking a signal in an active transaction, we
 | |
| 	 * need to use the stack pointer from the checkpointed state, rather
 | |
| 	 * than the speculated state.  This ensures that the signal context
 | |
| 	 * (written tm suspended) will be written below the stack required for
 | |
| 	 * the rollback.  The transaction is aborted because of the treclaim,
 | |
| 	 * so any memory written between the tbegin and the signal will be
 | |
| 	 * rolled back anyway.
 | |
| 	 *
 | |
| 	 * For signals taken in non-TM or suspended mode, we use the
 | |
| 	 * normal/non-checkpointed stack pointer.
 | |
| 	 */
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 	unsigned long ret = regs->gpr[1];
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 	BUG_ON(tsk != current);
 | |
| 
 | |
| 	if (MSR_TM_ACTIVE(regs->msr)) {
 | |
| 		preempt_disable();
 | |
| 		tm_reclaim_current(TM_CAUSE_SIGNAL);
 | |
| 		if (MSR_TM_TRANSACTIONAL(regs->msr))
 | |
| 			ret = tsk->thread.ckpt_regs.gpr[1];
 | |
| 
 | |
| 		/*
 | |
| 		 * If we treclaim, we must clear the current thread's TM bits
 | |
| 		 * before re-enabling preemption. Otherwise we might be
 | |
| 		 * preempted and have the live MSR[TS] changed behind our back
 | |
| 		 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
 | |
| 		 * enter the signal handler in non-transactional state.
 | |
| 		 */
 | |
| 		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
 | |
| static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
 | |
| 
 | |
| void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
 | |
| 		  const char *where, void __user *ptr)
 | |
| {
 | |
| 	if (show_unhandled_signals)
 | |
| 		printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
 | |
| 				   task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
 | |
| }
 |