1394 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1394 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
 | |
| 
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/authenc.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include "cc_buffer_mgr.h"
 | |
| #include "cc_lli_defs.h"
 | |
| #include "cc_cipher.h"
 | |
| #include "cc_hash.h"
 | |
| #include "cc_aead.h"
 | |
| 
 | |
| union buffer_array_entry {
 | |
| 	struct scatterlist *sgl;
 | |
| 	dma_addr_t buffer_dma;
 | |
| };
 | |
| 
 | |
| struct buffer_array {
 | |
| 	unsigned int num_of_buffers;
 | |
| 	union buffer_array_entry entry[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| 	unsigned int offset[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| 	int nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| 	int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| 	bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| 	u32 *mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
 | |
| };
 | |
| 
 | |
| static inline char *cc_dma_buf_type(enum cc_req_dma_buf_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case CC_DMA_BUF_NULL:
 | |
| 		return "BUF_NULL";
 | |
| 	case CC_DMA_BUF_DLLI:
 | |
| 		return "BUF_DLLI";
 | |
| 	case CC_DMA_BUF_MLLI:
 | |
| 		return "BUF_MLLI";
 | |
| 	default:
 | |
| 		return "BUF_INVALID";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cc_copy_mac() - Copy MAC to temporary location
 | |
|  *
 | |
|  * @dev: device object
 | |
|  * @req: aead request object
 | |
|  * @dir: [IN] copy from/to sgl
 | |
|  */
 | |
| static void cc_copy_mac(struct device *dev, struct aead_request *req,
 | |
| 			enum cc_sg_cpy_direct dir)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	u32 skip = req->assoclen + req->cryptlen;
 | |
| 
 | |
| 	cc_copy_sg_portion(dev, areq_ctx->backup_mac, req->src,
 | |
| 			   (skip - areq_ctx->req_authsize), skip, dir);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cc_get_sgl_nents() - Get scatterlist number of entries.
 | |
|  *
 | |
|  * @dev: Device object
 | |
|  * @sg_list: SG list
 | |
|  * @nbytes: [IN] Total SGL data bytes.
 | |
|  * @lbytes: [OUT] Returns the amount of bytes at the last entry
 | |
|  *
 | |
|  * Return:
 | |
|  * Number of entries in the scatterlist
 | |
|  */
 | |
| static unsigned int cc_get_sgl_nents(struct device *dev,
 | |
| 				     struct scatterlist *sg_list,
 | |
| 				     unsigned int nbytes, u32 *lbytes)
 | |
| {
 | |
| 	unsigned int nents = 0;
 | |
| 
 | |
| 	*lbytes = 0;
 | |
| 
 | |
| 	while (nbytes && sg_list) {
 | |
| 		nents++;
 | |
| 		/* get the number of bytes in the last entry */
 | |
| 		*lbytes = nbytes;
 | |
| 		nbytes -= (sg_list->length > nbytes) ?
 | |
| 				nbytes : sg_list->length;
 | |
| 		sg_list = sg_next(sg_list);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "nents %d last bytes %d\n", nents, *lbytes);
 | |
| 	return nents;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cc_copy_sg_portion() - Copy scatter list data,
 | |
|  * from to_skip to end, to dest and vice versa
 | |
|  *
 | |
|  * @dev: Device object
 | |
|  * @dest: Buffer to copy to/from
 | |
|  * @sg: SG list
 | |
|  * @to_skip: Number of bytes to skip before copying
 | |
|  * @end: Offset of last byte to copy
 | |
|  * @direct: Transfer direction (true == from SG list to buffer, false == from
 | |
|  *          buffer to SG list)
 | |
|  */
 | |
| void cc_copy_sg_portion(struct device *dev, u8 *dest, struct scatterlist *sg,
 | |
| 			u32 to_skip, u32 end, enum cc_sg_cpy_direct direct)
 | |
| {
 | |
| 	u32 nents;
 | |
| 
 | |
| 	nents = sg_nents_for_len(sg, end);
 | |
| 	sg_copy_buffer(sg, nents, dest, (end - to_skip + 1), to_skip,
 | |
| 		       (direct == CC_SG_TO_BUF));
 | |
| }
 | |
| 
 | |
| static int cc_render_buff_to_mlli(struct device *dev, dma_addr_t buff_dma,
 | |
| 				  u32 buff_size, u32 *curr_nents,
 | |
| 				  u32 **mlli_entry_pp)
 | |
| {
 | |
| 	u32 *mlli_entry_p = *mlli_entry_pp;
 | |
| 	u32 new_nents;
 | |
| 
 | |
| 	/* Verify there is no memory overflow*/
 | |
| 	new_nents = (*curr_nents + buff_size / CC_MAX_MLLI_ENTRY_SIZE + 1);
 | |
| 	if (new_nents > MAX_NUM_OF_TOTAL_MLLI_ENTRIES) {
 | |
| 		dev_err(dev, "Too many mlli entries. current %d max %d\n",
 | |
| 			new_nents, MAX_NUM_OF_TOTAL_MLLI_ENTRIES);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*handle buffer longer than 64 kbytes */
 | |
| 	while (buff_size > CC_MAX_MLLI_ENTRY_SIZE) {
 | |
| 		cc_lli_set_addr(mlli_entry_p, buff_dma);
 | |
| 		cc_lli_set_size(mlli_entry_p, CC_MAX_MLLI_ENTRY_SIZE);
 | |
| 		dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
 | |
| 			*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
 | |
| 			mlli_entry_p[LLI_WORD1_OFFSET]);
 | |
| 		buff_dma += CC_MAX_MLLI_ENTRY_SIZE;
 | |
| 		buff_size -= CC_MAX_MLLI_ENTRY_SIZE;
 | |
| 		mlli_entry_p = mlli_entry_p + 2;
 | |
| 		(*curr_nents)++;
 | |
| 	}
 | |
| 	/*Last entry */
 | |
| 	cc_lli_set_addr(mlli_entry_p, buff_dma);
 | |
| 	cc_lli_set_size(mlli_entry_p, buff_size);
 | |
| 	dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
 | |
| 		*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
 | |
| 		mlli_entry_p[LLI_WORD1_OFFSET]);
 | |
| 	mlli_entry_p = mlli_entry_p + 2;
 | |
| 	*mlli_entry_pp = mlli_entry_p;
 | |
| 	(*curr_nents)++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cc_render_sg_to_mlli(struct device *dev, struct scatterlist *sgl,
 | |
| 				u32 sgl_data_len, u32 sgl_offset,
 | |
| 				u32 *curr_nents, u32 **mlli_entry_pp)
 | |
| {
 | |
| 	struct scatterlist *curr_sgl = sgl;
 | |
| 	u32 *mlli_entry_p = *mlli_entry_pp;
 | |
| 	s32 rc = 0;
 | |
| 
 | |
| 	for ( ; (curr_sgl && sgl_data_len);
 | |
| 	      curr_sgl = sg_next(curr_sgl)) {
 | |
| 		u32 entry_data_len =
 | |
| 			(sgl_data_len > sg_dma_len(curr_sgl) - sgl_offset) ?
 | |
| 				sg_dma_len(curr_sgl) - sgl_offset :
 | |
| 				sgl_data_len;
 | |
| 		sgl_data_len -= entry_data_len;
 | |
| 		rc = cc_render_buff_to_mlli(dev, sg_dma_address(curr_sgl) +
 | |
| 					    sgl_offset, entry_data_len,
 | |
| 					    curr_nents, &mlli_entry_p);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		sgl_offset = 0;
 | |
| 	}
 | |
| 	*mlli_entry_pp = mlli_entry_p;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cc_generate_mlli(struct device *dev, struct buffer_array *sg_data,
 | |
| 			    struct mlli_params *mlli_params, gfp_t flags)
 | |
| {
 | |
| 	u32 *mlli_p;
 | |
| 	u32 total_nents = 0, prev_total_nents = 0;
 | |
| 	int rc = 0, i;
 | |
| 
 | |
| 	dev_dbg(dev, "NUM of SG's = %d\n", sg_data->num_of_buffers);
 | |
| 
 | |
| 	/* Allocate memory from the pointed pool */
 | |
| 	mlli_params->mlli_virt_addr =
 | |
| 		dma_pool_alloc(mlli_params->curr_pool, flags,
 | |
| 			       &mlli_params->mlli_dma_addr);
 | |
| 	if (!mlli_params->mlli_virt_addr) {
 | |
| 		dev_err(dev, "dma_pool_alloc() failed\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto build_mlli_exit;
 | |
| 	}
 | |
| 	/* Point to start of MLLI */
 | |
| 	mlli_p = mlli_params->mlli_virt_addr;
 | |
| 	/* go over all SG's and link it to one MLLI table */
 | |
| 	for (i = 0; i < sg_data->num_of_buffers; i++) {
 | |
| 		union buffer_array_entry *entry = &sg_data->entry[i];
 | |
| 		u32 tot_len = sg_data->total_data_len[i];
 | |
| 		u32 offset = sg_data->offset[i];
 | |
| 
 | |
| 		rc = cc_render_sg_to_mlli(dev, entry->sgl, tot_len, offset,
 | |
| 					  &total_nents, &mlli_p);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* set last bit in the current table */
 | |
| 		if (sg_data->mlli_nents[i]) {
 | |
| 			/*Calculate the current MLLI table length for the
 | |
| 			 *length field in the descriptor
 | |
| 			 */
 | |
| 			*sg_data->mlli_nents[i] +=
 | |
| 				(total_nents - prev_total_nents);
 | |
| 			prev_total_nents = total_nents;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set MLLI size for the bypass operation */
 | |
| 	mlli_params->mlli_len = (total_nents * LLI_ENTRY_BYTE_SIZE);
 | |
| 
 | |
| 	dev_dbg(dev, "MLLI params: virt_addr=%pK dma_addr=%pad mlli_len=0x%X\n",
 | |
| 		mlli_params->mlli_virt_addr, &mlli_params->mlli_dma_addr,
 | |
| 		mlli_params->mlli_len);
 | |
| 
 | |
| build_mlli_exit:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void cc_add_sg_entry(struct device *dev, struct buffer_array *sgl_data,
 | |
| 			    unsigned int nents, struct scatterlist *sgl,
 | |
| 			    unsigned int data_len, unsigned int data_offset,
 | |
| 			    bool is_last_table, u32 *mlli_nents)
 | |
| {
 | |
| 	unsigned int index = sgl_data->num_of_buffers;
 | |
| 
 | |
| 	dev_dbg(dev, "index=%u nents=%u sgl=%pK data_len=0x%08X is_last=%d\n",
 | |
| 		index, nents, sgl, data_len, is_last_table);
 | |
| 	sgl_data->nents[index] = nents;
 | |
| 	sgl_data->entry[index].sgl = sgl;
 | |
| 	sgl_data->offset[index] = data_offset;
 | |
| 	sgl_data->total_data_len[index] = data_len;
 | |
| 	sgl_data->is_last[index] = is_last_table;
 | |
| 	sgl_data->mlli_nents[index] = mlli_nents;
 | |
| 	if (sgl_data->mlli_nents[index])
 | |
| 		*sgl_data->mlli_nents[index] = 0;
 | |
| 	sgl_data->num_of_buffers++;
 | |
| }
 | |
| 
 | |
| static int cc_map_sg(struct device *dev, struct scatterlist *sg,
 | |
| 		     unsigned int nbytes, int direction, u32 *nents,
 | |
| 		     u32 max_sg_nents, u32 *lbytes, u32 *mapped_nents)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!nbytes) {
 | |
| 		*mapped_nents = 0;
 | |
| 		*lbytes = 0;
 | |
| 		*nents = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*nents = cc_get_sgl_nents(dev, sg, nbytes, lbytes);
 | |
| 	if (*nents > max_sg_nents) {
 | |
| 		*nents = 0;
 | |
| 		dev_err(dev, "Too many fragments. current %d max %d\n",
 | |
| 			*nents, max_sg_nents);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = dma_map_sg(dev, sg, *nents, direction);
 | |
| 	if (!ret) {
 | |
| 		*nents = 0;
 | |
| 		dev_err(dev, "dma_map_sg() sg buffer failed %d\n", ret);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	*mapped_nents = ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cc_set_aead_conf_buf(struct device *dev, struct aead_req_ctx *areq_ctx,
 | |
| 		     u8 *config_data, struct buffer_array *sg_data,
 | |
| 		     unsigned int assoclen)
 | |
| {
 | |
| 	dev_dbg(dev, " handle additional data config set to DLLI\n");
 | |
| 	/* create sg for the current buffer */
 | |
| 	sg_init_one(&areq_ctx->ccm_adata_sg, config_data,
 | |
| 		    AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size);
 | |
| 	if (dma_map_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE) != 1) {
 | |
| 		dev_err(dev, "dma_map_sg() config buffer failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
 | |
| 		&sg_dma_address(&areq_ctx->ccm_adata_sg),
 | |
| 		sg_page(&areq_ctx->ccm_adata_sg),
 | |
| 		sg_virt(&areq_ctx->ccm_adata_sg),
 | |
| 		areq_ctx->ccm_adata_sg.offset, areq_ctx->ccm_adata_sg.length);
 | |
| 	/* prepare for case of MLLI */
 | |
| 	if (assoclen > 0) {
 | |
| 		cc_add_sg_entry(dev, sg_data, 1, &areq_ctx->ccm_adata_sg,
 | |
| 				(AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size),
 | |
| 				0, false, NULL);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cc_set_hash_buf(struct device *dev, struct ahash_req_ctx *areq_ctx,
 | |
| 			   u8 *curr_buff, u32 curr_buff_cnt,
 | |
| 			   struct buffer_array *sg_data)
 | |
| {
 | |
| 	dev_dbg(dev, " handle curr buff %x set to   DLLI\n", curr_buff_cnt);
 | |
| 	/* create sg for the current buffer */
 | |
| 	sg_init_one(areq_ctx->buff_sg, curr_buff, curr_buff_cnt);
 | |
| 	if (dma_map_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE) != 1) {
 | |
| 		dev_err(dev, "dma_map_sg() src buffer failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
 | |
| 		&sg_dma_address(areq_ctx->buff_sg), sg_page(areq_ctx->buff_sg),
 | |
| 		sg_virt(areq_ctx->buff_sg), areq_ctx->buff_sg->offset,
 | |
| 		areq_ctx->buff_sg->length);
 | |
| 	areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
 | |
| 	areq_ctx->curr_sg = areq_ctx->buff_sg;
 | |
| 	areq_ctx->in_nents = 0;
 | |
| 	/* prepare for case of MLLI */
 | |
| 	cc_add_sg_entry(dev, sg_data, 1, areq_ctx->buff_sg, curr_buff_cnt, 0,
 | |
| 			false, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void cc_unmap_cipher_request(struct device *dev, void *ctx,
 | |
| 				unsigned int ivsize, struct scatterlist *src,
 | |
| 				struct scatterlist *dst)
 | |
| {
 | |
| 	struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
 | |
| 
 | |
| 	if (req_ctx->gen_ctx.iv_dma_addr) {
 | |
| 		dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n",
 | |
| 			&req_ctx->gen_ctx.iv_dma_addr, ivsize);
 | |
| 		dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr,
 | |
| 				 ivsize, DMA_BIDIRECTIONAL);
 | |
| 	}
 | |
| 	/* Release pool */
 | |
| 	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI &&
 | |
| 	    req_ctx->mlli_params.mlli_virt_addr) {
 | |
| 		dma_pool_free(req_ctx->mlli_params.curr_pool,
 | |
| 			      req_ctx->mlli_params.mlli_virt_addr,
 | |
| 			      req_ctx->mlli_params.mlli_dma_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (src != dst) {
 | |
| 		dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_TO_DEVICE);
 | |
| 		dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_FROM_DEVICE);
 | |
| 		dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst));
 | |
| 		dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
 | |
| 	} else {
 | |
| 		dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL);
 | |
| 		dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
 | |
| 			  unsigned int ivsize, unsigned int nbytes,
 | |
| 			  void *info, struct scatterlist *src,
 | |
| 			  struct scatterlist *dst, gfp_t flags)
 | |
| {
 | |
| 	struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
 | |
| 	struct mlli_params *mlli_params = &req_ctx->mlli_params;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	struct buffer_array sg_data;
 | |
| 	u32 dummy = 0;
 | |
| 	int rc = 0;
 | |
| 	u32 mapped_nents = 0;
 | |
| 	int src_direction = (src != dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	req_ctx->dma_buf_type = CC_DMA_BUF_DLLI;
 | |
| 	mlli_params->curr_pool = NULL;
 | |
| 	sg_data.num_of_buffers = 0;
 | |
| 
 | |
| 	/* Map IV buffer */
 | |
| 	if (ivsize) {
 | |
| 		dump_byte_array("iv", info, ivsize);
 | |
| 		req_ctx->gen_ctx.iv_dma_addr =
 | |
| 			dma_map_single(dev, info, ivsize, DMA_BIDIRECTIONAL);
 | |
| 		if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) {
 | |
| 			dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
 | |
| 				ivsize, info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
 | |
| 			ivsize, info, &req_ctx->gen_ctx.iv_dma_addr);
 | |
| 	} else {
 | |
| 		req_ctx->gen_ctx.iv_dma_addr = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Map the src SGL */
 | |
| 	rc = cc_map_sg(dev, src, nbytes, src_direction, &req_ctx->in_nents,
 | |
| 		       LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents);
 | |
| 	if (rc)
 | |
| 		goto cipher_exit;
 | |
| 	if (mapped_nents > 1)
 | |
| 		req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
 | |
| 
 | |
| 	if (src == dst) {
 | |
| 		/* Handle inplace operation */
 | |
| 		if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
 | |
| 			req_ctx->out_nents = 0;
 | |
| 			cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
 | |
| 					nbytes, 0, true,
 | |
| 					&req_ctx->in_mlli_nents);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Map the dst sg */
 | |
| 		rc = cc_map_sg(dev, dst, nbytes, DMA_FROM_DEVICE,
 | |
| 			       &req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
 | |
| 			       &dummy, &mapped_nents);
 | |
| 		if (rc)
 | |
| 			goto cipher_exit;
 | |
| 		if (mapped_nents > 1)
 | |
| 			req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
 | |
| 
 | |
| 		if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
 | |
| 			cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
 | |
| 					nbytes, 0, true,
 | |
| 					&req_ctx->in_mlli_nents);
 | |
| 			cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst,
 | |
| 					nbytes, 0, true,
 | |
| 					&req_ctx->out_mlli_nents);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
 | |
| 		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
 | |
| 		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
 | |
| 		if (rc)
 | |
| 			goto cipher_exit;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n",
 | |
| 		cc_dma_buf_type(req_ctx->dma_buf_type));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cipher_exit:
 | |
| 	cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void cc_unmap_aead_request(struct device *dev, struct aead_request *req)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	unsigned int hw_iv_size = areq_ctx->hw_iv_size;
 | |
| 	struct cc_drvdata *drvdata = dev_get_drvdata(dev);
 | |
| 	int src_direction = (req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	if (areq_ctx->mac_buf_dma_addr) {
 | |
| 		dma_unmap_single(dev, areq_ctx->mac_buf_dma_addr,
 | |
| 				 MAX_MAC_SIZE, DMA_BIDIRECTIONAL);
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
 | |
| 		if (areq_ctx->hkey_dma_addr) {
 | |
| 			dma_unmap_single(dev, areq_ctx->hkey_dma_addr,
 | |
| 					 AES_BLOCK_SIZE, DMA_BIDIRECTIONAL);
 | |
| 		}
 | |
| 
 | |
| 		if (areq_ctx->gcm_block_len_dma_addr) {
 | |
| 			dma_unmap_single(dev, areq_ctx->gcm_block_len_dma_addr,
 | |
| 					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		if (areq_ctx->gcm_iv_inc1_dma_addr) {
 | |
| 			dma_unmap_single(dev, areq_ctx->gcm_iv_inc1_dma_addr,
 | |
| 					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		if (areq_ctx->gcm_iv_inc2_dma_addr) {
 | |
| 			dma_unmap_single(dev, areq_ctx->gcm_iv_inc2_dma_addr,
 | |
| 					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
 | |
| 		if (areq_ctx->ccm_iv0_dma_addr) {
 | |
| 			dma_unmap_single(dev, areq_ctx->ccm_iv0_dma_addr,
 | |
| 					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		dma_unmap_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE);
 | |
| 	}
 | |
| 	if (areq_ctx->gen_ctx.iv_dma_addr) {
 | |
| 		dma_unmap_single(dev, areq_ctx->gen_ctx.iv_dma_addr,
 | |
| 				 hw_iv_size, DMA_BIDIRECTIONAL);
 | |
| 		kfree_sensitive(areq_ctx->gen_ctx.iv);
 | |
| 	}
 | |
| 
 | |
| 	/* Release pool */
 | |
| 	if ((areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
 | |
| 	     areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) &&
 | |
| 	    (areq_ctx->mlli_params.mlli_virt_addr)) {
 | |
| 		dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
 | |
| 			&areq_ctx->mlli_params.mlli_dma_addr,
 | |
| 			areq_ctx->mlli_params.mlli_virt_addr);
 | |
| 		dma_pool_free(areq_ctx->mlli_params.curr_pool,
 | |
| 			      areq_ctx->mlli_params.mlli_virt_addr,
 | |
| 			      areq_ctx->mlli_params.mlli_dma_addr);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "Unmapping src sgl: req->src=%pK areq_ctx->src.nents=%u areq_ctx->assoc.nents=%u assoclen:%u cryptlen=%u\n",
 | |
| 		sg_virt(req->src), areq_ctx->src.nents, areq_ctx->assoc.nents,
 | |
| 		areq_ctx->assoclen, req->cryptlen);
 | |
| 
 | |
| 	dma_unmap_sg(dev, req->src, areq_ctx->src.mapped_nents, src_direction);
 | |
| 	if (req->src != req->dst) {
 | |
| 		dev_dbg(dev, "Unmapping dst sgl: req->dst=%pK\n",
 | |
| 			sg_virt(req->dst));
 | |
| 		dma_unmap_sg(dev, req->dst, areq_ctx->dst.mapped_nents, DMA_FROM_DEVICE);
 | |
| 	}
 | |
| 	if (drvdata->coherent &&
 | |
| 	    areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
 | |
| 	    req->src == req->dst) {
 | |
| 		/* copy back mac from temporary location to deal with possible
 | |
| 		 * data memory overriding that caused by cache coherence
 | |
| 		 * problem.
 | |
| 		 */
 | |
| 		cc_copy_mac(dev, req, CC_SG_FROM_BUF);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool cc_is_icv_frag(unsigned int sgl_nents, unsigned int authsize,
 | |
| 			   u32 last_entry_data_size)
 | |
| {
 | |
| 	return ((sgl_nents > 1) && (last_entry_data_size < authsize));
 | |
| }
 | |
| 
 | |
| static int cc_aead_chain_iv(struct cc_drvdata *drvdata,
 | |
| 			    struct aead_request *req,
 | |
| 			    struct buffer_array *sg_data,
 | |
| 			    bool is_last, bool do_chain)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	unsigned int hw_iv_size = areq_ctx->hw_iv_size;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	gfp_t flags = cc_gfp_flags(&req->base);
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!req->iv) {
 | |
| 		areq_ctx->gen_ctx.iv_dma_addr = 0;
 | |
| 		areq_ctx->gen_ctx.iv = NULL;
 | |
| 		goto chain_iv_exit;
 | |
| 	}
 | |
| 
 | |
| 	areq_ctx->gen_ctx.iv = kmemdup(req->iv, hw_iv_size, flags);
 | |
| 	if (!areq_ctx->gen_ctx.iv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	areq_ctx->gen_ctx.iv_dma_addr =
 | |
| 		dma_map_single(dev, areq_ctx->gen_ctx.iv, hw_iv_size,
 | |
| 			       DMA_BIDIRECTIONAL);
 | |
| 	if (dma_mapping_error(dev, areq_ctx->gen_ctx.iv_dma_addr)) {
 | |
| 		dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
 | |
| 			hw_iv_size, req->iv);
 | |
| 		kfree_sensitive(areq_ctx->gen_ctx.iv);
 | |
| 		areq_ctx->gen_ctx.iv = NULL;
 | |
| 		rc = -ENOMEM;
 | |
| 		goto chain_iv_exit;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
 | |
| 		hw_iv_size, req->iv, &areq_ctx->gen_ctx.iv_dma_addr);
 | |
| 
 | |
| chain_iv_exit:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int cc_aead_chain_assoc(struct cc_drvdata *drvdata,
 | |
| 			       struct aead_request *req,
 | |
| 			       struct buffer_array *sg_data,
 | |
| 			       bool is_last, bool do_chain)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	int rc = 0;
 | |
| 	int mapped_nents = 0;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 
 | |
| 	if (!sg_data) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto chain_assoc_exit;
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->assoclen == 0) {
 | |
| 		areq_ctx->assoc_buff_type = CC_DMA_BUF_NULL;
 | |
| 		areq_ctx->assoc.nents = 0;
 | |
| 		areq_ctx->assoc.mlli_nents = 0;
 | |
| 		dev_dbg(dev, "Chain assoc of length 0: buff_type=%s nents=%u\n",
 | |
| 			cc_dma_buf_type(areq_ctx->assoc_buff_type),
 | |
| 			areq_ctx->assoc.nents);
 | |
| 		goto chain_assoc_exit;
 | |
| 	}
 | |
| 
 | |
| 	mapped_nents = sg_nents_for_len(req->src, areq_ctx->assoclen);
 | |
| 	if (mapped_nents < 0)
 | |
| 		return mapped_nents;
 | |
| 
 | |
| 	if (mapped_nents > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
 | |
| 		dev_err(dev, "Too many fragments. current %d max %d\n",
 | |
| 			mapped_nents, LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	areq_ctx->assoc.nents = mapped_nents;
 | |
| 
 | |
| 	/* in CCM case we have additional entry for
 | |
| 	 * ccm header configurations
 | |
| 	 */
 | |
| 	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
 | |
| 		if ((mapped_nents + 1) > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
 | |
| 			dev_err(dev, "CCM case.Too many fragments. Current %d max %d\n",
 | |
| 				(areq_ctx->assoc.nents + 1),
 | |
| 				LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
 | |
| 			rc = -ENOMEM;
 | |
| 			goto chain_assoc_exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mapped_nents == 1 && areq_ctx->ccm_hdr_size == ccm_header_size_null)
 | |
| 		areq_ctx->assoc_buff_type = CC_DMA_BUF_DLLI;
 | |
| 	else
 | |
| 		areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
 | |
| 
 | |
| 	if (do_chain || areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
 | |
| 		dev_dbg(dev, "Chain assoc: buff_type=%s nents=%u\n",
 | |
| 			cc_dma_buf_type(areq_ctx->assoc_buff_type),
 | |
| 			areq_ctx->assoc.nents);
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->assoc.nents, req->src,
 | |
| 				areq_ctx->assoclen, 0, is_last,
 | |
| 				&areq_ctx->assoc.mlli_nents);
 | |
| 		areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
 | |
| 	}
 | |
| 
 | |
| chain_assoc_exit:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void cc_prepare_aead_data_dlli(struct aead_request *req,
 | |
| 				      u32 *src_last_bytes, u32 *dst_last_bytes)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
 | |
| 	unsigned int authsize = areq_ctx->req_authsize;
 | |
| 	struct scatterlist *sg;
 | |
| 	ssize_t offset;
 | |
| 
 | |
| 	areq_ctx->is_icv_fragmented = false;
 | |
| 
 | |
| 	if ((req->src == req->dst) || direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
 | |
| 		sg = areq_ctx->src_sgl;
 | |
| 		offset = *src_last_bytes - authsize;
 | |
| 	} else {
 | |
| 		sg = areq_ctx->dst_sgl;
 | |
| 		offset = *dst_last_bytes - authsize;
 | |
| 	}
 | |
| 
 | |
| 	areq_ctx->icv_dma_addr = sg_dma_address(sg) + offset;
 | |
| 	areq_ctx->icv_virt_addr = sg_virt(sg) + offset;
 | |
| }
 | |
| 
 | |
| static void cc_prepare_aead_data_mlli(struct cc_drvdata *drvdata,
 | |
| 				      struct aead_request *req,
 | |
| 				      struct buffer_array *sg_data,
 | |
| 				      u32 *src_last_bytes, u32 *dst_last_bytes,
 | |
| 				      bool is_last_table)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
 | |
| 	unsigned int authsize = areq_ctx->req_authsize;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	if (req->src == req->dst) {
 | |
| 		/*INPLACE*/
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
 | |
| 				areq_ctx->src_sgl, areq_ctx->cryptlen,
 | |
| 				areq_ctx->src_offset, is_last_table,
 | |
| 				&areq_ctx->src.mlli_nents);
 | |
| 
 | |
| 		areq_ctx->is_icv_fragmented =
 | |
| 			cc_is_icv_frag(areq_ctx->src.nents, authsize,
 | |
| 				       *src_last_bytes);
 | |
| 
 | |
| 		if (areq_ctx->is_icv_fragmented) {
 | |
| 			/* Backup happens only when ICV is fragmented, ICV
 | |
| 			 * verification is made by CPU compare in order to
 | |
| 			 * simplify MAC verification upon request completion
 | |
| 			 */
 | |
| 			if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
 | |
| 				/* In coherent platforms (e.g. ACP)
 | |
| 				 * already copying ICV for any
 | |
| 				 * INPLACE-DECRYPT operation, hence
 | |
| 				 * we must neglect this code.
 | |
| 				 */
 | |
| 				if (!drvdata->coherent)
 | |
| 					cc_copy_mac(dev, req, CC_SG_TO_BUF);
 | |
| 
 | |
| 				areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
 | |
| 			} else {
 | |
| 				areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
 | |
| 				areq_ctx->icv_dma_addr =
 | |
| 					areq_ctx->mac_buf_dma_addr;
 | |
| 			}
 | |
| 		} else { /* Contig. ICV */
 | |
| 			sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
 | |
| 			/*Should hanlde if the sg is not contig.*/
 | |
| 			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
 | |
| 				(*src_last_bytes - authsize);
 | |
| 			areq_ctx->icv_virt_addr = sg_virt(sg) +
 | |
| 				(*src_last_bytes - authsize);
 | |
| 		}
 | |
| 
 | |
| 	} else if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
 | |
| 		/*NON-INPLACE and DECRYPT*/
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
 | |
| 				areq_ctx->src_sgl, areq_ctx->cryptlen,
 | |
| 				areq_ctx->src_offset, is_last_table,
 | |
| 				&areq_ctx->src.mlli_nents);
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
 | |
| 				areq_ctx->dst_sgl, areq_ctx->cryptlen,
 | |
| 				areq_ctx->dst_offset, is_last_table,
 | |
| 				&areq_ctx->dst.mlli_nents);
 | |
| 
 | |
| 		areq_ctx->is_icv_fragmented =
 | |
| 			cc_is_icv_frag(areq_ctx->src.nents, authsize,
 | |
| 				       *src_last_bytes);
 | |
| 		/* Backup happens only when ICV is fragmented, ICV
 | |
| 
 | |
| 		 * verification is made by CPU compare in order to simplify
 | |
| 		 * MAC verification upon request completion
 | |
| 		 */
 | |
| 		if (areq_ctx->is_icv_fragmented) {
 | |
| 			cc_copy_mac(dev, req, CC_SG_TO_BUF);
 | |
| 			areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
 | |
| 
 | |
| 		} else { /* Contig. ICV */
 | |
| 			sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
 | |
| 			/*Should hanlde if the sg is not contig.*/
 | |
| 			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
 | |
| 				(*src_last_bytes - authsize);
 | |
| 			areq_ctx->icv_virt_addr = sg_virt(sg) +
 | |
| 				(*src_last_bytes - authsize);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		/*NON-INPLACE and ENCRYPT*/
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
 | |
| 				areq_ctx->dst_sgl, areq_ctx->cryptlen,
 | |
| 				areq_ctx->dst_offset, is_last_table,
 | |
| 				&areq_ctx->dst.mlli_nents);
 | |
| 		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
 | |
| 				areq_ctx->src_sgl, areq_ctx->cryptlen,
 | |
| 				areq_ctx->src_offset, is_last_table,
 | |
| 				&areq_ctx->src.mlli_nents);
 | |
| 
 | |
| 		areq_ctx->is_icv_fragmented =
 | |
| 			cc_is_icv_frag(areq_ctx->dst.nents, authsize,
 | |
| 				       *dst_last_bytes);
 | |
| 
 | |
| 		if (!areq_ctx->is_icv_fragmented) {
 | |
| 			sg = &areq_ctx->dst_sgl[areq_ctx->dst.nents - 1];
 | |
| 			/* Contig. ICV */
 | |
| 			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
 | |
| 				(*dst_last_bytes - authsize);
 | |
| 			areq_ctx->icv_virt_addr = sg_virt(sg) +
 | |
| 				(*dst_last_bytes - authsize);
 | |
| 		} else {
 | |
| 			areq_ctx->icv_dma_addr = areq_ctx->mac_buf_dma_addr;
 | |
| 			areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cc_aead_chain_data(struct cc_drvdata *drvdata,
 | |
| 			      struct aead_request *req,
 | |
| 			      struct buffer_array *sg_data,
 | |
| 			      bool is_last_table, bool do_chain)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
 | |
| 	unsigned int authsize = areq_ctx->req_authsize;
 | |
| 	unsigned int src_last_bytes = 0, dst_last_bytes = 0;
 | |
| 	int rc = 0;
 | |
| 	u32 src_mapped_nents = 0, dst_mapped_nents = 0;
 | |
| 	u32 offset = 0;
 | |
| 	/* non-inplace mode */
 | |
| 	unsigned int size_for_map = req->assoclen + req->cryptlen;
 | |
| 	u32 sg_index = 0;
 | |
| 	u32 size_to_skip = req->assoclen;
 | |
| 	struct scatterlist *sgl;
 | |
| 
 | |
| 	offset = size_to_skip;
 | |
| 
 | |
| 	if (!sg_data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	areq_ctx->src_sgl = req->src;
 | |
| 	areq_ctx->dst_sgl = req->dst;
 | |
| 
 | |
| 	size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
 | |
| 			authsize : 0;
 | |
| 	src_mapped_nents = cc_get_sgl_nents(dev, req->src, size_for_map,
 | |
| 					    &src_last_bytes);
 | |
| 	sg_index = areq_ctx->src_sgl->length;
 | |
| 	//check where the data starts
 | |
| 	while (src_mapped_nents && (sg_index <= size_to_skip)) {
 | |
| 		src_mapped_nents--;
 | |
| 		offset -= areq_ctx->src_sgl->length;
 | |
| 		sgl = sg_next(areq_ctx->src_sgl);
 | |
| 		if (!sgl)
 | |
| 			break;
 | |
| 		areq_ctx->src_sgl = sgl;
 | |
| 		sg_index += areq_ctx->src_sgl->length;
 | |
| 	}
 | |
| 	if (src_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
 | |
| 		dev_err(dev, "Too many fragments. current %d max %d\n",
 | |
| 			src_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	areq_ctx->src.nents = src_mapped_nents;
 | |
| 
 | |
| 	areq_ctx->src_offset = offset;
 | |
| 
 | |
| 	if (req->src != req->dst) {
 | |
| 		size_for_map = req->assoclen + req->cryptlen;
 | |
| 
 | |
| 		if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT)
 | |
| 			size_for_map += authsize;
 | |
| 		else
 | |
| 			size_for_map -= authsize;
 | |
| 
 | |
| 		rc = cc_map_sg(dev, req->dst, size_for_map, DMA_FROM_DEVICE,
 | |
| 			       &areq_ctx->dst.mapped_nents,
 | |
| 			       LLI_MAX_NUM_OF_DATA_ENTRIES, &dst_last_bytes,
 | |
| 			       &dst_mapped_nents);
 | |
| 		if (rc)
 | |
| 			goto chain_data_exit;
 | |
| 	}
 | |
| 
 | |
| 	dst_mapped_nents = cc_get_sgl_nents(dev, req->dst, size_for_map,
 | |
| 					    &dst_last_bytes);
 | |
| 	sg_index = areq_ctx->dst_sgl->length;
 | |
| 	offset = size_to_skip;
 | |
| 
 | |
| 	//check where the data starts
 | |
| 	while (dst_mapped_nents && sg_index <= size_to_skip) {
 | |
| 		dst_mapped_nents--;
 | |
| 		offset -= areq_ctx->dst_sgl->length;
 | |
| 		sgl = sg_next(areq_ctx->dst_sgl);
 | |
| 		if (!sgl)
 | |
| 			break;
 | |
| 		areq_ctx->dst_sgl = sgl;
 | |
| 		sg_index += areq_ctx->dst_sgl->length;
 | |
| 	}
 | |
| 	if (dst_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
 | |
| 		dev_err(dev, "Too many fragments. current %d max %d\n",
 | |
| 			dst_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	areq_ctx->dst.nents = dst_mapped_nents;
 | |
| 	areq_ctx->dst_offset = offset;
 | |
| 	if (src_mapped_nents > 1 ||
 | |
| 	    dst_mapped_nents  > 1 ||
 | |
| 	    do_chain) {
 | |
| 		areq_ctx->data_buff_type = CC_DMA_BUF_MLLI;
 | |
| 		cc_prepare_aead_data_mlli(drvdata, req, sg_data,
 | |
| 					  &src_last_bytes, &dst_last_bytes,
 | |
| 					  is_last_table);
 | |
| 	} else {
 | |
| 		areq_ctx->data_buff_type = CC_DMA_BUF_DLLI;
 | |
| 		cc_prepare_aead_data_dlli(req, &src_last_bytes,
 | |
| 					  &dst_last_bytes);
 | |
| 	}
 | |
| 
 | |
| chain_data_exit:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void cc_update_aead_mlli_nents(struct cc_drvdata *drvdata,
 | |
| 				      struct aead_request *req)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	u32 curr_mlli_size = 0;
 | |
| 
 | |
| 	if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
 | |
| 		areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr;
 | |
| 		curr_mlli_size = areq_ctx->assoc.mlli_nents *
 | |
| 						LLI_ENTRY_BYTE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
 | |
| 		/*Inplace case dst nents equal to src nents*/
 | |
| 		if (req->src == req->dst) {
 | |
| 			areq_ctx->dst.mlli_nents = areq_ctx->src.mlli_nents;
 | |
| 			areq_ctx->src.sram_addr = drvdata->mlli_sram_addr +
 | |
| 								curr_mlli_size;
 | |
| 			areq_ctx->dst.sram_addr = areq_ctx->src.sram_addr;
 | |
| 			if (!areq_ctx->is_single_pass)
 | |
| 				areq_ctx->assoc.mlli_nents +=
 | |
| 					areq_ctx->src.mlli_nents;
 | |
| 		} else {
 | |
| 			if (areq_ctx->gen_ctx.op_type ==
 | |
| 					DRV_CRYPTO_DIRECTION_DECRYPT) {
 | |
| 				areq_ctx->src.sram_addr =
 | |
| 						drvdata->mlli_sram_addr +
 | |
| 								curr_mlli_size;
 | |
| 				areq_ctx->dst.sram_addr =
 | |
| 						areq_ctx->src.sram_addr +
 | |
| 						areq_ctx->src.mlli_nents *
 | |
| 						LLI_ENTRY_BYTE_SIZE;
 | |
| 				if (!areq_ctx->is_single_pass)
 | |
| 					areq_ctx->assoc.mlli_nents +=
 | |
| 						areq_ctx->src.mlli_nents;
 | |
| 			} else {
 | |
| 				areq_ctx->dst.sram_addr =
 | |
| 						drvdata->mlli_sram_addr +
 | |
| 								curr_mlli_size;
 | |
| 				areq_ctx->src.sram_addr =
 | |
| 						areq_ctx->dst.sram_addr +
 | |
| 						areq_ctx->dst.mlli_nents *
 | |
| 						LLI_ENTRY_BYTE_SIZE;
 | |
| 				if (!areq_ctx->is_single_pass)
 | |
| 					areq_ctx->assoc.mlli_nents +=
 | |
| 						areq_ctx->dst.mlli_nents;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int cc_map_aead_request(struct cc_drvdata *drvdata, struct aead_request *req)
 | |
| {
 | |
| 	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
 | |
| 	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	struct buffer_array sg_data;
 | |
| 	unsigned int authsize = areq_ctx->req_authsize;
 | |
| 	int rc = 0;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	u32 mapped_nents = 0;
 | |
| 	u32 dummy = 0; /*used for the assoc data fragments */
 | |
| 	u32 size_to_map;
 | |
| 	gfp_t flags = cc_gfp_flags(&req->base);
 | |
| 
 | |
| 	mlli_params->curr_pool = NULL;
 | |
| 	sg_data.num_of_buffers = 0;
 | |
| 
 | |
| 	/* copy mac to a temporary location to deal with possible
 | |
| 	 * data memory overriding that caused by cache coherence problem.
 | |
| 	 */
 | |
| 	if (drvdata->coherent &&
 | |
| 	    areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
 | |
| 	    req->src == req->dst)
 | |
| 		cc_copy_mac(dev, req, CC_SG_TO_BUF);
 | |
| 
 | |
| 	/* cacluate the size for cipher remove ICV in decrypt*/
 | |
| 	areq_ctx->cryptlen = (areq_ctx->gen_ctx.op_type ==
 | |
| 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
 | |
| 				req->cryptlen :
 | |
| 				(req->cryptlen - authsize);
 | |
| 
 | |
| 	dma_addr = dma_map_single(dev, areq_ctx->mac_buf, MAX_MAC_SIZE,
 | |
| 				  DMA_BIDIRECTIONAL);
 | |
| 	if (dma_mapping_error(dev, dma_addr)) {
 | |
| 		dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
 | |
| 			MAX_MAC_SIZE, areq_ctx->mac_buf);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto aead_map_failure;
 | |
| 	}
 | |
| 	areq_ctx->mac_buf_dma_addr = dma_addr;
 | |
| 
 | |
| 	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
 | |
| 		void *addr = areq_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
 | |
| 
 | |
| 		dma_addr = dma_map_single(dev, addr, AES_BLOCK_SIZE,
 | |
| 					  DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (dma_mapping_error(dev, dma_addr)) {
 | |
| 			dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
 | |
| 				AES_BLOCK_SIZE, addr);
 | |
| 			areq_ctx->ccm_iv0_dma_addr = 0;
 | |
| 			rc = -ENOMEM;
 | |
| 			goto aead_map_failure;
 | |
| 		}
 | |
| 		areq_ctx->ccm_iv0_dma_addr = dma_addr;
 | |
| 
 | |
| 		rc = cc_set_aead_conf_buf(dev, areq_ctx, areq_ctx->ccm_config,
 | |
| 					  &sg_data, areq_ctx->assoclen);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
 | |
| 		dma_addr = dma_map_single(dev, areq_ctx->hkey, AES_BLOCK_SIZE,
 | |
| 					  DMA_BIDIRECTIONAL);
 | |
| 		if (dma_mapping_error(dev, dma_addr)) {
 | |
| 			dev_err(dev, "Mapping hkey %u B at va=%pK for DMA failed\n",
 | |
| 				AES_BLOCK_SIZE, areq_ctx->hkey);
 | |
| 			rc = -ENOMEM;
 | |
| 			goto aead_map_failure;
 | |
| 		}
 | |
| 		areq_ctx->hkey_dma_addr = dma_addr;
 | |
| 
 | |
| 		dma_addr = dma_map_single(dev, &areq_ctx->gcm_len_block,
 | |
| 					  AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(dev, dma_addr)) {
 | |
| 			dev_err(dev, "Mapping gcm_len_block %u B at va=%pK for DMA failed\n",
 | |
| 				AES_BLOCK_SIZE, &areq_ctx->gcm_len_block);
 | |
| 			rc = -ENOMEM;
 | |
| 			goto aead_map_failure;
 | |
| 		}
 | |
| 		areq_ctx->gcm_block_len_dma_addr = dma_addr;
 | |
| 
 | |
| 		dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc1,
 | |
| 					  AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (dma_mapping_error(dev, dma_addr)) {
 | |
| 			dev_err(dev, "Mapping gcm_iv_inc1 %u B at va=%pK for DMA failed\n",
 | |
| 				AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc1));
 | |
| 			areq_ctx->gcm_iv_inc1_dma_addr = 0;
 | |
| 			rc = -ENOMEM;
 | |
| 			goto aead_map_failure;
 | |
| 		}
 | |
| 		areq_ctx->gcm_iv_inc1_dma_addr = dma_addr;
 | |
| 
 | |
| 		dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc2,
 | |
| 					  AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (dma_mapping_error(dev, dma_addr)) {
 | |
| 			dev_err(dev, "Mapping gcm_iv_inc2 %u B at va=%pK for DMA failed\n",
 | |
| 				AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc2));
 | |
| 			areq_ctx->gcm_iv_inc2_dma_addr = 0;
 | |
| 			rc = -ENOMEM;
 | |
| 			goto aead_map_failure;
 | |
| 		}
 | |
| 		areq_ctx->gcm_iv_inc2_dma_addr = dma_addr;
 | |
| 	}
 | |
| 
 | |
| 	size_to_map = req->cryptlen + req->assoclen;
 | |
| 	/* If we do in-place encryption, we also need the auth tag */
 | |
| 	if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) &&
 | |
| 	   (req->src == req->dst)) {
 | |
| 		size_to_map += authsize;
 | |
| 	}
 | |
| 
 | |
| 	rc = cc_map_sg(dev, req->src, size_to_map,
 | |
| 		       (req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL),
 | |
| 		       &areq_ctx->src.mapped_nents,
 | |
| 		       (LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES +
 | |
| 			LLI_MAX_NUM_OF_DATA_ENTRIES),
 | |
| 		       &dummy, &mapped_nents);
 | |
| 	if (rc)
 | |
| 		goto aead_map_failure;
 | |
| 
 | |
| 	if (areq_ctx->is_single_pass) {
 | |
| 		/*
 | |
| 		 * Create MLLI table for:
 | |
| 		 *   (1) Assoc. data
 | |
| 		 *   (2) Src/Dst SGLs
 | |
| 		 *   Note: IV is contg. buffer (not an SGL)
 | |
| 		 */
 | |
| 		rc = cc_aead_chain_assoc(drvdata, req, &sg_data, true, false);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 		rc = cc_aead_chain_iv(drvdata, req, &sg_data, true, false);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 		rc = cc_aead_chain_data(drvdata, req, &sg_data, true, false);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 	} else { /* DOUBLE-PASS flow */
 | |
| 		/*
 | |
| 		 * Prepare MLLI table(s) in this order:
 | |
| 		 *
 | |
| 		 * If ENCRYPT/DECRYPT (inplace):
 | |
| 		 *   (1) MLLI table for assoc
 | |
| 		 *   (2) IV entry (chained right after end of assoc)
 | |
| 		 *   (3) MLLI for src/dst (inplace operation)
 | |
| 		 *
 | |
| 		 * If ENCRYPT (non-inplace)
 | |
| 		 *   (1) MLLI table for assoc
 | |
| 		 *   (2) IV entry (chained right after end of assoc)
 | |
| 		 *   (3) MLLI for dst
 | |
| 		 *   (4) MLLI for src
 | |
| 		 *
 | |
| 		 * If DECRYPT (non-inplace)
 | |
| 		 *   (1) MLLI table for assoc
 | |
| 		 *   (2) IV entry (chained right after end of assoc)
 | |
| 		 *   (3) MLLI for src
 | |
| 		 *   (4) MLLI for dst
 | |
| 		 */
 | |
| 		rc = cc_aead_chain_assoc(drvdata, req, &sg_data, false, true);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 		rc = cc_aead_chain_iv(drvdata, req, &sg_data, false, true);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 		rc = cc_aead_chain_data(drvdata, req, &sg_data, true, true);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 	}
 | |
| 
 | |
| 	/* Mlli support -start building the MLLI according to the above
 | |
| 	 * results
 | |
| 	 */
 | |
| 	if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
 | |
| 	    areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
 | |
| 		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
 | |
| 		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
 | |
| 		if (rc)
 | |
| 			goto aead_map_failure;
 | |
| 
 | |
| 		cc_update_aead_mlli_nents(drvdata, req);
 | |
| 		dev_dbg(dev, "assoc params mn %d\n",
 | |
| 			areq_ctx->assoc.mlli_nents);
 | |
| 		dev_dbg(dev, "src params mn %d\n", areq_ctx->src.mlli_nents);
 | |
| 		dev_dbg(dev, "dst params mn %d\n", areq_ctx->dst.mlli_nents);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| aead_map_failure:
 | |
| 	cc_unmap_aead_request(dev, req);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx,
 | |
| 			      struct scatterlist *src, unsigned int nbytes,
 | |
| 			      bool do_update, gfp_t flags)
 | |
| {
 | |
| 	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	u8 *curr_buff = cc_hash_buf(areq_ctx);
 | |
| 	u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
 | |
| 	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
 | |
| 	struct buffer_array sg_data;
 | |
| 	int rc = 0;
 | |
| 	u32 dummy = 0;
 | |
| 	u32 mapped_nents = 0;
 | |
| 
 | |
| 	dev_dbg(dev, "final params : curr_buff=%pK curr_buff_cnt=0x%X nbytes = 0x%X src=%pK curr_index=%u\n",
 | |
| 		curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
 | |
| 	/* Init the type of the dma buffer */
 | |
| 	areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
 | |
| 	mlli_params->curr_pool = NULL;
 | |
| 	sg_data.num_of_buffers = 0;
 | |
| 	areq_ctx->in_nents = 0;
 | |
| 
 | |
| 	if (nbytes == 0 && *curr_buff_cnt == 0) {
 | |
| 		/* nothing to do */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* map the previous buffer */
 | |
| 	if (*curr_buff_cnt) {
 | |
| 		rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
 | |
| 				     &sg_data);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (src && nbytes > 0 && do_update) {
 | |
| 		rc = cc_map_sg(dev, src, nbytes, DMA_TO_DEVICE,
 | |
| 			       &areq_ctx->in_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
 | |
| 			       &dummy, &mapped_nents);
 | |
| 		if (rc)
 | |
| 			goto unmap_curr_buff;
 | |
| 		if (src && mapped_nents == 1 &&
 | |
| 		    areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
 | |
| 			memcpy(areq_ctx->buff_sg, src,
 | |
| 			       sizeof(struct scatterlist));
 | |
| 			areq_ctx->buff_sg->length = nbytes;
 | |
| 			areq_ctx->curr_sg = areq_ctx->buff_sg;
 | |
| 			areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
 | |
| 		} else {
 | |
| 			areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*build mlli */
 | |
| 	if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
 | |
| 		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
 | |
| 		/* add the src data to the sg_data */
 | |
| 		cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, nbytes,
 | |
| 				0, true, &areq_ctx->mlli_nents);
 | |
| 		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
 | |
| 		if (rc)
 | |
| 			goto fail_unmap_din;
 | |
| 	}
 | |
| 	/* change the buffer index for the unmap function */
 | |
| 	areq_ctx->buff_index = (areq_ctx->buff_index ^ 1);
 | |
| 	dev_dbg(dev, "areq_ctx->data_dma_buf_type = %s\n",
 | |
| 		cc_dma_buf_type(areq_ctx->data_dma_buf_type));
 | |
| 	return 0;
 | |
| 
 | |
| fail_unmap_din:
 | |
| 	dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
 | |
| 
 | |
| unmap_curr_buff:
 | |
| 	if (*curr_buff_cnt)
 | |
| 		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int cc_map_hash_request_update(struct cc_drvdata *drvdata, void *ctx,
 | |
| 			       struct scatterlist *src, unsigned int nbytes,
 | |
| 			       unsigned int block_size, gfp_t flags)
 | |
| {
 | |
| 	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 	u8 *curr_buff = cc_hash_buf(areq_ctx);
 | |
| 	u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
 | |
| 	u8 *next_buff = cc_next_buf(areq_ctx);
 | |
| 	u32 *next_buff_cnt = cc_next_buf_cnt(areq_ctx);
 | |
| 	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
 | |
| 	unsigned int update_data_len;
 | |
| 	u32 total_in_len = nbytes + *curr_buff_cnt;
 | |
| 	struct buffer_array sg_data;
 | |
| 	unsigned int swap_index = 0;
 | |
| 	int rc = 0;
 | |
| 	u32 dummy = 0;
 | |
| 	u32 mapped_nents = 0;
 | |
| 
 | |
| 	dev_dbg(dev, " update params : curr_buff=%pK curr_buff_cnt=0x%X nbytes=0x%X src=%pK curr_index=%u\n",
 | |
| 		curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
 | |
| 	/* Init the type of the dma buffer */
 | |
| 	areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
 | |
| 	mlli_params->curr_pool = NULL;
 | |
| 	areq_ctx->curr_sg = NULL;
 | |
| 	sg_data.num_of_buffers = 0;
 | |
| 	areq_ctx->in_nents = 0;
 | |
| 
 | |
| 	if (total_in_len < block_size) {
 | |
| 		dev_dbg(dev, " less than one block: curr_buff=%pK *curr_buff_cnt=0x%X copy_to=%pK\n",
 | |
| 			curr_buff, *curr_buff_cnt, &curr_buff[*curr_buff_cnt]);
 | |
| 		areq_ctx->in_nents = sg_nents_for_len(src, nbytes);
 | |
| 		sg_copy_to_buffer(src, areq_ctx->in_nents,
 | |
| 				  &curr_buff[*curr_buff_cnt], nbytes);
 | |
| 		*curr_buff_cnt += nbytes;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the residue size*/
 | |
| 	*next_buff_cnt = total_in_len & (block_size - 1);
 | |
| 	/* update data len */
 | |
| 	update_data_len = total_in_len - *next_buff_cnt;
 | |
| 
 | |
| 	dev_dbg(dev, " temp length : *next_buff_cnt=0x%X update_data_len=0x%X\n",
 | |
| 		*next_buff_cnt, update_data_len);
 | |
| 
 | |
| 	/* Copy the new residue to next buffer */
 | |
| 	if (*next_buff_cnt) {
 | |
| 		dev_dbg(dev, " handle residue: next buff %pK skip data %u residue %u\n",
 | |
| 			next_buff, (update_data_len - *curr_buff_cnt),
 | |
| 			*next_buff_cnt);
 | |
| 		cc_copy_sg_portion(dev, next_buff, src,
 | |
| 				   (update_data_len - *curr_buff_cnt),
 | |
| 				   nbytes, CC_SG_TO_BUF);
 | |
| 		/* change the buffer index for next operation */
 | |
| 		swap_index = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (*curr_buff_cnt) {
 | |
| 		rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
 | |
| 				     &sg_data);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 		/* change the buffer index for next operation */
 | |
| 		swap_index = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (update_data_len > *curr_buff_cnt) {
 | |
| 		rc = cc_map_sg(dev, src, (update_data_len - *curr_buff_cnt),
 | |
| 			       DMA_TO_DEVICE, &areq_ctx->in_nents,
 | |
| 			       LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy,
 | |
| 			       &mapped_nents);
 | |
| 		if (rc)
 | |
| 			goto unmap_curr_buff;
 | |
| 		if (mapped_nents == 1 &&
 | |
| 		    areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
 | |
| 			/* only one entry in the SG and no previous data */
 | |
| 			memcpy(areq_ctx->buff_sg, src,
 | |
| 			       sizeof(struct scatterlist));
 | |
| 			areq_ctx->buff_sg->length = update_data_len;
 | |
| 			areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
 | |
| 			areq_ctx->curr_sg = areq_ctx->buff_sg;
 | |
| 		} else {
 | |
| 			areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
 | |
| 		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
 | |
| 		/* add the src data to the sg_data */
 | |
| 		cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src,
 | |
| 				(update_data_len - *curr_buff_cnt), 0, true,
 | |
| 				&areq_ctx->mlli_nents);
 | |
| 		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
 | |
| 		if (rc)
 | |
| 			goto fail_unmap_din;
 | |
| 	}
 | |
| 	areq_ctx->buff_index = (areq_ctx->buff_index ^ swap_index);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_unmap_din:
 | |
| 	dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
 | |
| 
 | |
| unmap_curr_buff:
 | |
| 	if (*curr_buff_cnt)
 | |
| 		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void cc_unmap_hash_request(struct device *dev, void *ctx,
 | |
| 			   struct scatterlist *src, bool do_revert)
 | |
| {
 | |
| 	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
 | |
| 	u32 *prev_len = cc_next_buf_cnt(areq_ctx);
 | |
| 
 | |
| 	/*In case a pool was set, a table was
 | |
| 	 *allocated and should be released
 | |
| 	 */
 | |
| 	if (areq_ctx->mlli_params.curr_pool) {
 | |
| 		dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
 | |
| 			&areq_ctx->mlli_params.mlli_dma_addr,
 | |
| 			areq_ctx->mlli_params.mlli_virt_addr);
 | |
| 		dma_pool_free(areq_ctx->mlli_params.curr_pool,
 | |
| 			      areq_ctx->mlli_params.mlli_virt_addr,
 | |
| 			      areq_ctx->mlli_params.mlli_dma_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (src && areq_ctx->in_nents) {
 | |
| 		dev_dbg(dev, "Unmapped sg src: virt=%pK dma=%pad len=0x%X\n",
 | |
| 			sg_virt(src), &sg_dma_address(src), sg_dma_len(src));
 | |
| 		dma_unmap_sg(dev, src,
 | |
| 			     areq_ctx->in_nents, DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	if (*prev_len) {
 | |
| 		dev_dbg(dev, "Unmapped buffer: areq_ctx->buff_sg=%pK dma=%pad len 0x%X\n",
 | |
| 			sg_virt(areq_ctx->buff_sg),
 | |
| 			&sg_dma_address(areq_ctx->buff_sg),
 | |
| 			sg_dma_len(areq_ctx->buff_sg));
 | |
| 		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
 | |
| 		if (!do_revert) {
 | |
| 			/* clean the previous data length for update
 | |
| 			 * operation
 | |
| 			 */
 | |
| 			*prev_len = 0;
 | |
| 		} else {
 | |
| 			areq_ctx->buff_index ^= 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int cc_buffer_mgr_init(struct cc_drvdata *drvdata)
 | |
| {
 | |
| 	struct device *dev = drvdata_to_dev(drvdata);
 | |
| 
 | |
| 	drvdata->mlli_buffs_pool =
 | |
| 		dma_pool_create("dx_single_mlli_tables", dev,
 | |
| 				MAX_NUM_OF_TOTAL_MLLI_ENTRIES *
 | |
| 				LLI_ENTRY_BYTE_SIZE,
 | |
| 				MLLI_TABLE_MIN_ALIGNMENT, 0);
 | |
| 
 | |
| 	if (!drvdata->mlli_buffs_pool)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cc_buffer_mgr_fini(struct cc_drvdata *drvdata)
 | |
| {
 | |
| 	dma_pool_destroy(drvdata->mlli_buffs_pool);
 | |
| 	return 0;
 | |
| }
 |