193 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *  Helper library for PATA timings
 | |
|  *
 | |
|  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
 | |
|  *  Copyright 2003-2004 Jeff Garzik
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/libata.h>
 | |
| 
 | |
| /*
 | |
|  * This mode timing computation functionality is ported over from
 | |
|  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
 | |
|  */
 | |
| /*
 | |
|  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
 | |
|  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
 | |
|  * for UDMA6, which is currently supported only by Maxtor drives.
 | |
|  *
 | |
|  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
 | |
|  */
 | |
| 
 | |
| static const struct ata_timing ata_timing[] = {
 | |
| /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
 | |
| 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
 | |
| 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
 | |
| 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
 | |
| 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
 | |
| 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
 | |
| 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
 | |
| 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
 | |
| 
 | |
| 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
 | |
| 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
 | |
| 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
 | |
| 
 | |
| 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
 | |
| 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
 | |
| 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
 | |
| 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
 | |
| 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
 | |
| 
 | |
| /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
 | |
| 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
 | |
| 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
 | |
| 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
 | |
| 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
 | |
| 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
 | |
| 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
 | |
| 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
 | |
| 
 | |
| 	{ 0xFF }
 | |
| };
 | |
| 
 | |
| #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
 | |
| #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
 | |
| 
 | |
| static void ata_timing_quantize(const struct ata_timing *t,
 | |
| 				struct ata_timing *q, int T, int UT)
 | |
| {
 | |
| 	q->setup	= EZ(t->setup,       T);
 | |
| 	q->act8b	= EZ(t->act8b,       T);
 | |
| 	q->rec8b	= EZ(t->rec8b,       T);
 | |
| 	q->cyc8b	= EZ(t->cyc8b,       T);
 | |
| 	q->active	= EZ(t->active,      T);
 | |
| 	q->recover	= EZ(t->recover,     T);
 | |
| 	q->dmack_hold	= EZ(t->dmack_hold,  T);
 | |
| 	q->cycle	= EZ(t->cycle,       T);
 | |
| 	q->udma		= EZ(t->udma,       UT);
 | |
| }
 | |
| 
 | |
| void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
 | |
| 		      struct ata_timing *m, unsigned int what)
 | |
| {
 | |
| 	if (what & ATA_TIMING_SETUP)
 | |
| 		m->setup = max(a->setup, b->setup);
 | |
| 	if (what & ATA_TIMING_ACT8B)
 | |
| 		m->act8b = max(a->act8b, b->act8b);
 | |
| 	if (what & ATA_TIMING_REC8B)
 | |
| 		m->rec8b = max(a->rec8b, b->rec8b);
 | |
| 	if (what & ATA_TIMING_CYC8B)
 | |
| 		m->cyc8b = max(a->cyc8b, b->cyc8b);
 | |
| 	if (what & ATA_TIMING_ACTIVE)
 | |
| 		m->active = max(a->active, b->active);
 | |
| 	if (what & ATA_TIMING_RECOVER)
 | |
| 		m->recover = max(a->recover, b->recover);
 | |
| 	if (what & ATA_TIMING_DMACK_HOLD)
 | |
| 		m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
 | |
| 	if (what & ATA_TIMING_CYCLE)
 | |
| 		m->cycle = max(a->cycle, b->cycle);
 | |
| 	if (what & ATA_TIMING_UDMA)
 | |
| 		m->udma = max(a->udma, b->udma);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_timing_merge);
 | |
| 
 | |
| const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
 | |
| {
 | |
| 	const struct ata_timing *t = ata_timing;
 | |
| 
 | |
| 	while (xfer_mode > t->mode)
 | |
| 		t++;
 | |
| 
 | |
| 	if (xfer_mode == t->mode)
 | |
| 		return t;
 | |
| 
 | |
| 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
 | |
| 			__func__, xfer_mode);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_timing_find_mode);
 | |
| 
 | |
| int ata_timing_compute(struct ata_device *adev, unsigned short speed,
 | |
| 		       struct ata_timing *t, int T, int UT)
 | |
| {
 | |
| 	const u16 *id = adev->id;
 | |
| 	const struct ata_timing *s;
 | |
| 	struct ata_timing p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the mode.
 | |
| 	 */
 | |
| 	s = ata_timing_find_mode(speed);
 | |
| 	if (!s)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(t, s, sizeof(*s));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the drive is an EIDE drive, it can tell us it needs extended
 | |
| 	 * PIO/MW_DMA cycle timing.
 | |
| 	 */
 | |
| 
 | |
| 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
 | |
| 		memset(&p, 0, sizeof(p));
 | |
| 
 | |
| 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
 | |
| 			if (speed <= XFER_PIO_2)
 | |
| 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
 | |
| 			else if ((speed <= XFER_PIO_4) ||
 | |
| 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
 | |
| 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
 | |
| 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
 | |
| 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
 | |
| 
 | |
| 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the timing to bus clock counts.
 | |
| 	 */
 | |
| 
 | |
| 	ata_timing_quantize(t, t, T, UT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
 | |
| 	 * S.M.A.R.T * and some other commands. We have to ensure that the
 | |
| 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
 | |
| 	 */
 | |
| 
 | |
| 	if (speed > XFER_PIO_6) {
 | |
| 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
 | |
| 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lengthen active & recovery time so that cycle time is correct.
 | |
| 	 */
 | |
| 
 | |
| 	if (t->act8b + t->rec8b < t->cyc8b) {
 | |
| 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
 | |
| 		t->rec8b = t->cyc8b - t->act8b;
 | |
| 	}
 | |
| 
 | |
| 	if (t->active + t->recover < t->cycle) {
 | |
| 		t->active += (t->cycle - (t->active + t->recover)) / 2;
 | |
| 		t->recover = t->cycle - t->active;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In a few cases quantisation may produce enough errors to
 | |
| 	 * leave t->cycle too low for the sum of active and recovery
 | |
| 	 * if so we must correct this.
 | |
| 	 */
 | |
| 	if (t->active + t->recover > t->cycle)
 | |
| 		t->cycle = t->active + t->recover;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_timing_compute);
 |