956 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			956 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Common EFI (Extensible Firmware Interface) support functions
 | |
|  * Based on Extensible Firmware Interface Specification version 1.0
 | |
|  *
 | |
|  * Copyright (C) 1999 VA Linux Systems
 | |
|  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 | |
|  * Copyright (C) 1999-2002 Hewlett-Packard Co.
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  * Copyright (C) 2005-2008 Intel Co.
 | |
|  *	Fenghua Yu <fenghua.yu@intel.com>
 | |
|  *	Bibo Mao <bibo.mao@intel.com>
 | |
|  *	Chandramouli Narayanan <mouli@linux.intel.com>
 | |
|  *	Huang Ying <ying.huang@intel.com>
 | |
|  * Copyright (C) 2013 SuSE Labs
 | |
|  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 | |
|  *
 | |
|  * Copied from efi_32.c to eliminate the duplicated code between EFI
 | |
|  * 32/64 support code. --ying 2007-10-26
 | |
|  *
 | |
|  * All EFI Runtime Services are not implemented yet as EFI only
 | |
|  * supports physical mode addressing on SoftSDV. This is to be fixed
 | |
|  * in a future version.  --drummond 1999-07-20
 | |
|  *
 | |
|  * Implemented EFI runtime services and virtual mode calls.  --davidm
 | |
|  *
 | |
|  * Goutham Rao: <goutham.rao@intel.com>
 | |
|  *	Skip non-WB memory and ignore empty memory ranges.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/efi-bgrt.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/bcd.h>
 | |
| 
 | |
| #include <asm/setup.h>
 | |
| #include <asm/efi.h>
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/x86_init.h>
 | |
| #include <asm/uv/uv.h>
 | |
| 
 | |
| static unsigned long efi_systab_phys __initdata;
 | |
| static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
 | |
| static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
 | |
| static unsigned long efi_runtime, efi_nr_tables;
 | |
| 
 | |
| unsigned long efi_fw_vendor, efi_config_table;
 | |
| 
 | |
| static const efi_config_table_type_t arch_tables[] __initconst = {
 | |
| 	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
 | |
| 	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
 | |
| #ifdef CONFIG_X86_UV
 | |
| 	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
 | |
| #endif
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| static const unsigned long * const efi_tables[] = {
 | |
| 	&efi.acpi,
 | |
| 	&efi.acpi20,
 | |
| 	&efi.smbios,
 | |
| 	&efi.smbios3,
 | |
| 	&uga_phys,
 | |
| #ifdef CONFIG_X86_UV
 | |
| 	&uv_systab_phys,
 | |
| #endif
 | |
| 	&efi_fw_vendor,
 | |
| 	&efi_runtime,
 | |
| 	&efi_config_table,
 | |
| 	&efi.esrt,
 | |
| 	&prop_phys,
 | |
| 	&efi_mem_attr_table,
 | |
| #ifdef CONFIG_EFI_RCI2_TABLE
 | |
| 	&rci2_table_phys,
 | |
| #endif
 | |
| 	&efi.tpm_log,
 | |
| 	&efi.tpm_final_log,
 | |
| 	&efi_rng_seed,
 | |
| #ifdef CONFIG_LOAD_UEFI_KEYS
 | |
| 	&efi.mokvar_table,
 | |
| #endif
 | |
| #ifdef CONFIG_EFI_COCO_SECRET
 | |
| 	&efi.coco_secret,
 | |
| #endif
 | |
| #ifdef CONFIG_UNACCEPTED_MEMORY
 | |
| 	&efi.unaccepted,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| u64 efi_setup;		/* efi setup_data physical address */
 | |
| 
 | |
| static int add_efi_memmap __initdata;
 | |
| static int __init setup_add_efi_memmap(char *arg)
 | |
| {
 | |
| 	add_efi_memmap = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("add_efi_memmap", setup_add_efi_memmap);
 | |
| 
 | |
| /*
 | |
|  * Tell the kernel about the EFI memory map.  This might include
 | |
|  * more than the max 128 entries that can fit in the passed in e820
 | |
|  * legacy (zeropage) memory map, but the kernel's e820 table can hold
 | |
|  * E820_MAX_ENTRIES.
 | |
|  */
 | |
| 
 | |
| static void __init do_add_efi_memmap(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md;
 | |
| 
 | |
| 	if (!efi_enabled(EFI_MEMMAP))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		unsigned long long start = md->phys_addr;
 | |
| 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 		int e820_type;
 | |
| 
 | |
| 		switch (md->type) {
 | |
| 		case EFI_LOADER_CODE:
 | |
| 		case EFI_LOADER_DATA:
 | |
| 		case EFI_BOOT_SERVICES_CODE:
 | |
| 		case EFI_BOOT_SERVICES_DATA:
 | |
| 		case EFI_CONVENTIONAL_MEMORY:
 | |
| 			if (efi_soft_reserve_enabled()
 | |
| 			    && (md->attribute & EFI_MEMORY_SP))
 | |
| 				e820_type = E820_TYPE_SOFT_RESERVED;
 | |
| 			else if (md->attribute & EFI_MEMORY_WB)
 | |
| 				e820_type = E820_TYPE_RAM;
 | |
| 			else
 | |
| 				e820_type = E820_TYPE_RESERVED;
 | |
| 			break;
 | |
| 		case EFI_ACPI_RECLAIM_MEMORY:
 | |
| 			e820_type = E820_TYPE_ACPI;
 | |
| 			break;
 | |
| 		case EFI_ACPI_MEMORY_NVS:
 | |
| 			e820_type = E820_TYPE_NVS;
 | |
| 			break;
 | |
| 		case EFI_UNUSABLE_MEMORY:
 | |
| 			e820_type = E820_TYPE_UNUSABLE;
 | |
| 			break;
 | |
| 		case EFI_PERSISTENT_MEMORY:
 | |
| 			e820_type = E820_TYPE_PMEM;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 | |
| 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 | |
| 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 | |
| 			 */
 | |
| 			e820_type = E820_TYPE_RESERVED;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		e820__range_add(start, size, e820_type);
 | |
| 	}
 | |
| 	e820__update_table(e820_table);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given add_efi_memmap defaults to 0 and there is no alternative
 | |
|  * e820 mechanism for soft-reserved memory, import the full EFI memory
 | |
|  * map if soft reservations are present and enabled. Otherwise, the
 | |
|  * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
 | |
|  * the efi=nosoftreserve option.
 | |
|  */
 | |
| static bool do_efi_soft_reserve(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md;
 | |
| 
 | |
| 	if (!efi_enabled(EFI_MEMMAP))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!efi_soft_reserve_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md)
 | |
| 		if (md->type == EFI_CONVENTIONAL_MEMORY &&
 | |
| 		    (md->attribute & EFI_MEMORY_SP))
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int __init efi_memblock_x86_reserve_range(void)
 | |
| {
 | |
| 	struct efi_info *e = &boot_params.efi_info;
 | |
| 	struct efi_memory_map_data data;
 | |
| 	phys_addr_t pmap;
 | |
| 	int rv;
 | |
| 
 | |
| 	if (efi_enabled(EFI_PARAVIRT))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Can't handle firmware tables above 4GB on i386 */
 | |
| 	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
 | |
| 		pr_err("Memory map is above 4GB, disabling EFI.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
 | |
| 
 | |
| 	data.phys_map		= pmap;
 | |
| 	data.size 		= e->efi_memmap_size;
 | |
| 	data.desc_size		= e->efi_memdesc_size;
 | |
| 	data.desc_version	= e->efi_memdesc_version;
 | |
| 
 | |
| 	if (!efi_enabled(EFI_PARAVIRT)) {
 | |
| 		rv = efi_memmap_init_early(&data);
 | |
| 		if (rv)
 | |
| 			return rv;
 | |
| 	}
 | |
| 
 | |
| 	if (add_efi_memmap || do_efi_soft_reserve())
 | |
| 		do_add_efi_memmap();
 | |
| 
 | |
| 	WARN(efi.memmap.desc_version != 1,
 | |
| 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
 | |
| 	     efi.memmap.desc_version);
 | |
| 
 | |
| 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
 | |
| 	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
 | |
| #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
 | |
| #define U64_HIGH_BIT		(~(U64_MAX >> 1))
 | |
| 
 | |
| static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
 | |
| {
 | |
| 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
 | |
| 	u64 end_hi = 0;
 | |
| 	char buf[64];
 | |
| 
 | |
| 	if (md->num_pages == 0) {
 | |
| 		end = 0;
 | |
| 	} else if (md->num_pages > EFI_PAGES_MAX ||
 | |
| 		   EFI_PAGES_MAX - md->num_pages <
 | |
| 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
 | |
| 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
 | |
| 			>> OVERFLOW_ADDR_SHIFT;
 | |
| 
 | |
| 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
 | |
| 			end_hi += 1;
 | |
| 	} else {
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
 | |
| 
 | |
| 	if (end_hi) {
 | |
| 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
 | |
| 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 | |
| 			md->phys_addr, end_hi, end);
 | |
| 	} else {
 | |
| 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
 | |
| 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 | |
| 			md->phys_addr, end);
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __init efi_clean_memmap(void)
 | |
| {
 | |
| 	efi_memory_desc_t *out = efi.memmap.map;
 | |
| 	const efi_memory_desc_t *in = out;
 | |
| 	const efi_memory_desc_t *end = efi.memmap.map_end;
 | |
| 	int i, n_removal;
 | |
| 
 | |
| 	for (i = n_removal = 0; in < end; i++) {
 | |
| 		if (efi_memmap_entry_valid(in, i)) {
 | |
| 			if (out != in)
 | |
| 				memcpy(out, in, efi.memmap.desc_size);
 | |
| 			out = (void *)out + efi.memmap.desc_size;
 | |
| 		} else {
 | |
| 			n_removal++;
 | |
| 		}
 | |
| 		in = (void *)in + efi.memmap.desc_size;
 | |
| 	}
 | |
| 
 | |
| 	if (n_removal > 0) {
 | |
| 		struct efi_memory_map_data data = {
 | |
| 			.phys_map	= efi.memmap.phys_map,
 | |
| 			.desc_version	= efi.memmap.desc_version,
 | |
| 			.desc_size	= efi.memmap.desc_size,
 | |
| 			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
 | |
| 			.flags		= 0,
 | |
| 		};
 | |
| 
 | |
| 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
 | |
| 		efi_memmap_install(&data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
 | |
|  * mapped by the OS so they can be accessed by EFI runtime services, but
 | |
|  * should have no other significance to the OS (UEFI r2.10, sec 7.2).
 | |
|  * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
 | |
|  * regions to E820_TYPE_RESERVED entries, which prevent Linux from
 | |
|  * allocating space from them (see remove_e820_regions()).
 | |
|  *
 | |
|  * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
 | |
|  * PCI host bridge windows, which means Linux can't allocate BAR space for
 | |
|  * hot-added devices.
 | |
|  *
 | |
|  * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
 | |
|  * problem.
 | |
|  *
 | |
|  * Retain small EfiMemoryMappedIO regions because on some platforms, these
 | |
|  * describe non-window space that's included in host bridge _CRS.  If we
 | |
|  * assign that space to PCI devices, they don't work.
 | |
|  */
 | |
| static void __init efi_remove_e820_mmio(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 size, start, end;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		if (md->type == EFI_MEMORY_MAPPED_IO) {
 | |
| 			size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 			start = md->phys_addr;
 | |
| 			end = start + size - 1;
 | |
| 			if (size >= 256*1024) {
 | |
| 				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
 | |
| 					i, start, end, size >> 20);
 | |
| 				e820__range_remove(start, size,
 | |
| 						   E820_TYPE_RESERVED, 1);
 | |
| 			} else {
 | |
| 				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
 | |
| 					i, start, end, size >> 10);
 | |
| 			}
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init efi_print_memmap(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		char buf[64];
 | |
| 
 | |
| 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
 | |
| 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
 | |
| 			md->phys_addr,
 | |
| 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
 | |
| 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init efi_systab_init(unsigned long phys)
 | |
| {
 | |
| 	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
 | |
| 					  : sizeof(efi_system_table_32_t);
 | |
| 	const efi_table_hdr_t *hdr;
 | |
| 	bool over4g = false;
 | |
| 	void *p;
 | |
| 	int ret;
 | |
| 
 | |
| 	hdr = p = early_memremap_ro(phys, size);
 | |
| 	if (p == NULL) {
 | |
| 		pr_err("Couldn't map the system table!\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = efi_systab_check_header(hdr);
 | |
| 	if (ret) {
 | |
| 		early_memunmap(p, size);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (efi_enabled(EFI_64BIT)) {
 | |
| 		const efi_system_table_64_t *systab64 = p;
 | |
| 
 | |
| 		efi_runtime	= systab64->runtime;
 | |
| 		over4g		= systab64->runtime > U32_MAX;
 | |
| 
 | |
| 		if (efi_setup) {
 | |
| 			struct efi_setup_data *data;
 | |
| 
 | |
| 			data = early_memremap_ro(efi_setup, sizeof(*data));
 | |
| 			if (!data) {
 | |
| 				early_memunmap(p, size);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			efi_fw_vendor		= (unsigned long)data->fw_vendor;
 | |
| 			efi_config_table	= (unsigned long)data->tables;
 | |
| 
 | |
| 			over4g |= data->fw_vendor	> U32_MAX ||
 | |
| 				  data->tables		> U32_MAX;
 | |
| 
 | |
| 			early_memunmap(data, sizeof(*data));
 | |
| 		} else {
 | |
| 			efi_fw_vendor		= systab64->fw_vendor;
 | |
| 			efi_config_table	= systab64->tables;
 | |
| 
 | |
| 			over4g |= systab64->fw_vendor	> U32_MAX ||
 | |
| 				  systab64->tables	> U32_MAX;
 | |
| 		}
 | |
| 		efi_nr_tables = systab64->nr_tables;
 | |
| 	} else {
 | |
| 		const efi_system_table_32_t *systab32 = p;
 | |
| 
 | |
| 		efi_fw_vendor		= systab32->fw_vendor;
 | |
| 		efi_runtime		= systab32->runtime;
 | |
| 		efi_config_table	= systab32->tables;
 | |
| 		efi_nr_tables		= systab32->nr_tables;
 | |
| 	}
 | |
| 
 | |
| 	efi.runtime_version = hdr->revision;
 | |
| 
 | |
| 	efi_systab_report_header(hdr, efi_fw_vendor);
 | |
| 	early_memunmap(p, size);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
 | |
| 		pr_err("EFI data located above 4GB, disabling EFI.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
 | |
| {
 | |
| 	void *config_tables;
 | |
| 	int sz, ret;
 | |
| 
 | |
| 	if (efi_nr_tables == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (efi_enabled(EFI_64BIT))
 | |
| 		sz = sizeof(efi_config_table_64_t);
 | |
| 	else
 | |
| 		sz = sizeof(efi_config_table_32_t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's see what config tables the firmware passed to us.
 | |
| 	 */
 | |
| 	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
 | |
| 	if (config_tables == NULL) {
 | |
| 		pr_err("Could not map Configuration table!\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
 | |
| 				      arch_tables);
 | |
| 
 | |
| 	early_memunmap(config_tables, efi_nr_tables * sz);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __init efi_init(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_X86_32) &&
 | |
| 	    (boot_params.efi_info.efi_systab_hi ||
 | |
| 	     boot_params.efi_info.efi_memmap_hi)) {
 | |
| 		pr_info("Table located above 4GB, disabling EFI.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efi_systab_phys = boot_params.efi_info.efi_systab |
 | |
| 			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
 | |
| 
 | |
| 	if (efi_systab_init(efi_systab_phys))
 | |
| 		return;
 | |
| 
 | |
| 	if (efi_reuse_config(efi_config_table, efi_nr_tables))
 | |
| 		return;
 | |
| 
 | |
| 	if (efi_config_init(arch_tables))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: We currently don't support runtime services on an EFI
 | |
| 	 * that doesn't match the kernel 32/64-bit mode.
 | |
| 	 */
 | |
| 
 | |
| 	if (!efi_runtime_supported())
 | |
| 		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
 | |
| 
 | |
| 	if (!efi_runtime_supported() || efi_runtime_disabled()) {
 | |
| 		efi_memmap_unmap();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse the EFI Properties table if it exists */
 | |
| 	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
 | |
| 		efi_properties_table_t *tbl;
 | |
| 
 | |
| 		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
 | |
| 		if (tbl == NULL) {
 | |
| 			pr_err("Could not map Properties table!\n");
 | |
| 		} else {
 | |
| 			if (tbl->memory_protection_attribute &
 | |
| 			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
 | |
| 				set_bit(EFI_NX_PE_DATA, &efi.flags);
 | |
| 
 | |
| 			early_memunmap(tbl, sizeof(*tbl));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 	efi_clean_memmap();
 | |
| 
 | |
| 	efi_remove_e820_mmio();
 | |
| 
 | |
| 	if (efi_enabled(EFI_DBG))
 | |
| 		efi_print_memmap();
 | |
| }
 | |
| 
 | |
| /* Merge contiguous regions of the same type and attribute */
 | |
| static void __init efi_merge_regions(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md, *prev_md = NULL;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		u64 prev_size;
 | |
| 
 | |
| 		if (!prev_md) {
 | |
| 			prev_md = md;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_md->type != md->type ||
 | |
| 		    prev_md->attribute != md->attribute) {
 | |
| 			prev_md = md;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
 | |
| 
 | |
| 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
 | |
| 			prev_md->num_pages += md->num_pages;
 | |
| 			md->type = EFI_RESERVED_TYPE;
 | |
| 			md->attribute = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		prev_md = md;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *realloc_pages(void *old_memmap, int old_shift)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
 | |
| 	if (!ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * A first-time allocation doesn't have anything to copy.
 | |
| 	 */
 | |
| 	if (!old_memmap)
 | |
| 		return ret;
 | |
| 
 | |
| 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 | |
| 
 | |
| out:
 | |
| 	free_pages((unsigned long)old_memmap, old_shift);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate the EFI memory map in reverse order because the regions
 | |
|  * will be mapped top-down. The end result is the same as if we had
 | |
|  * mapped things forward, but doesn't require us to change the
 | |
|  * existing implementation of efi_map_region().
 | |
|  */
 | |
| static inline void *efi_map_next_entry_reverse(void *entry)
 | |
| {
 | |
| 	/* Initial call */
 | |
| 	if (!entry)
 | |
| 		return efi.memmap.map_end - efi.memmap.desc_size;
 | |
| 
 | |
| 	entry -= efi.memmap.desc_size;
 | |
| 	if (entry < efi.memmap.map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * efi_map_next_entry - Return the next EFI memory map descriptor
 | |
|  * @entry: Previous EFI memory map descriptor
 | |
|  *
 | |
|  * This is a helper function to iterate over the EFI memory map, which
 | |
|  * we do in different orders depending on the current configuration.
 | |
|  *
 | |
|  * To begin traversing the memory map @entry must be %NULL.
 | |
|  *
 | |
|  * Returns %NULL when we reach the end of the memory map.
 | |
|  */
 | |
| static void *efi_map_next_entry(void *entry)
 | |
| {
 | |
| 	if (efi_enabled(EFI_64BIT)) {
 | |
| 		/*
 | |
| 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
 | |
| 		 * config table feature requires us to map all entries
 | |
| 		 * in the same order as they appear in the EFI memory
 | |
| 		 * map. That is to say, entry N must have a lower
 | |
| 		 * virtual address than entry N+1. This is because the
 | |
| 		 * firmware toolchain leaves relative references in
 | |
| 		 * the code/data sections, which are split and become
 | |
| 		 * separate EFI memory regions. Mapping things
 | |
| 		 * out-of-order leads to the firmware accessing
 | |
| 		 * unmapped addresses.
 | |
| 		 *
 | |
| 		 * Since we need to map things this way whether or not
 | |
| 		 * the kernel actually makes use of
 | |
| 		 * EFI_PROPERTIES_TABLE, let's just switch to this
 | |
| 		 * scheme by default for 64-bit.
 | |
| 		 */
 | |
| 		return efi_map_next_entry_reverse(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* Initial call */
 | |
| 	if (!entry)
 | |
| 		return efi.memmap.map;
 | |
| 
 | |
| 	entry += efi.memmap.desc_size;
 | |
| 	if (entry >= efi.memmap.map_end)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static bool should_map_region(efi_memory_desc_t *md)
 | |
| {
 | |
| 	/*
 | |
| 	 * Runtime regions always require runtime mappings (obviously).
 | |
| 	 */
 | |
| 	if (md->attribute & EFI_MEMORY_RUNTIME)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit EFI doesn't suffer from the bug that requires us to
 | |
| 	 * reserve boot services regions, and mixed mode support
 | |
| 	 * doesn't exist for 32-bit kernels.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_X86_32))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * EFI specific purpose memory may be reserved by default
 | |
| 	 * depending on kernel config and boot options.
 | |
| 	 */
 | |
| 	if (md->type == EFI_CONVENTIONAL_MEMORY &&
 | |
| 	    efi_soft_reserve_enabled() &&
 | |
| 	    (md->attribute & EFI_MEMORY_SP))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map all of RAM so that we can access arguments in the 1:1
 | |
| 	 * mapping when making EFI runtime calls.
 | |
| 	 */
 | |
| 	if (efi_is_mixed()) {
 | |
| 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
 | |
| 		    md->type == EFI_LOADER_DATA ||
 | |
| 		    md->type == EFI_LOADER_CODE)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Map boot services regions as a workaround for buggy
 | |
| 	 * firmware that accesses them even when they shouldn't.
 | |
| 	 *
 | |
| 	 * See efi_{reserve,free}_boot_services().
 | |
| 	 */
 | |
| 	if (md->type == EFI_BOOT_SERVICES_CODE ||
 | |
| 	    md->type == EFI_BOOT_SERVICES_DATA)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map the efi memory ranges of the runtime services and update new_mmap with
 | |
|  * virtual addresses.
 | |
|  */
 | |
| static void * __init efi_map_regions(int *count, int *pg_shift)
 | |
| {
 | |
| 	void *p, *new_memmap = NULL;
 | |
| 	unsigned long left = 0;
 | |
| 	unsigned long desc_size;
 | |
| 	efi_memory_desc_t *md;
 | |
| 
 | |
| 	desc_size = efi.memmap.desc_size;
 | |
| 
 | |
| 	p = NULL;
 | |
| 	while ((p = efi_map_next_entry(p))) {
 | |
| 		md = p;
 | |
| 
 | |
| 		if (!should_map_region(md))
 | |
| 			continue;
 | |
| 
 | |
| 		efi_map_region(md);
 | |
| 
 | |
| 		if (left < desc_size) {
 | |
| 			new_memmap = realloc_pages(new_memmap, *pg_shift);
 | |
| 			if (!new_memmap)
 | |
| 				return NULL;
 | |
| 
 | |
| 			left += PAGE_SIZE << *pg_shift;
 | |
| 			(*pg_shift)++;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
 | |
| 
 | |
| 		left -= desc_size;
 | |
| 		(*count)++;
 | |
| 	}
 | |
| 
 | |
| 	return new_memmap;
 | |
| }
 | |
| 
 | |
| static void __init kexec_enter_virtual_mode(void)
 | |
| {
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| 	efi_memory_desc_t *md;
 | |
| 	unsigned int num_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't do virtual mode, since we don't do runtime services, on
 | |
| 	 * non-native EFI.
 | |
| 	 */
 | |
| 	if (efi_is_mixed()) {
 | |
| 		efi_memmap_unmap();
 | |
| 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (efi_alloc_page_tables()) {
 | |
| 		pr_err("Failed to allocate EFI page tables\n");
 | |
| 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	* Map efi regions which were passed via setup_data. The virt_addr is a
 | |
| 	* fixed addr which was used in first kernel of a kexec boot.
 | |
| 	*/
 | |
| 	for_each_efi_memory_desc(md)
 | |
| 		efi_map_region_fixed(md); /* FIXME: add error handling */
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister the early EFI memmap from efi_init() and install
 | |
| 	 * the new EFI memory map.
 | |
| 	 */
 | |
| 	efi_memmap_unmap();
 | |
| 
 | |
| 	if (efi_memmap_init_late(efi.memmap.phys_map,
 | |
| 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
 | |
| 		pr_err("Failed to remap late EFI memory map\n");
 | |
| 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
 | |
| 	num_pages >>= PAGE_SHIFT;
 | |
| 
 | |
| 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
 | |
| 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efi_sync_low_kernel_mappings();
 | |
| 	efi_native_runtime_setup();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function will switch the EFI runtime services to virtual mode.
 | |
|  * Essentially, we look through the EFI memmap and map every region that
 | |
|  * has the runtime attribute bit set in its memory descriptor into the
 | |
|  * efi_pgd page table.
 | |
|  *
 | |
|  * The new method does a pagetable switch in a preemption-safe manner
 | |
|  * so that we're in a different address space when calling a runtime
 | |
|  * function. For function arguments passing we do copy the PUDs of the
 | |
|  * kernel page table into efi_pgd prior to each call.
 | |
|  *
 | |
|  * Specially for kexec boot, efi runtime maps in previous kernel should
 | |
|  * be passed in via setup_data. In that case runtime ranges will be mapped
 | |
|  * to the same virtual addresses as the first kernel, see
 | |
|  * kexec_enter_virtual_mode().
 | |
|  */
 | |
| static void __init __efi_enter_virtual_mode(void)
 | |
| {
 | |
| 	int count = 0, pg_shift = 0;
 | |
| 	void *new_memmap = NULL;
 | |
| 	efi_status_t status;
 | |
| 	unsigned long pa;
 | |
| 
 | |
| 	if (efi_alloc_page_tables()) {
 | |
| 		pr_err("Failed to allocate EFI page tables\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	efi_merge_regions();
 | |
| 	new_memmap = efi_map_regions(&count, &pg_shift);
 | |
| 	if (!new_memmap) {
 | |
| 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	pa = __pa(new_memmap);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister the early EFI memmap from efi_init() and install
 | |
| 	 * the new EFI memory map that we are about to pass to the
 | |
| 	 * firmware via SetVirtualAddressMap().
 | |
| 	 */
 | |
| 	efi_memmap_unmap();
 | |
| 
 | |
| 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
 | |
| 		pr_err("Failed to remap late EFI memory map\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (efi_enabled(EFI_DBG)) {
 | |
| 		pr_info("EFI runtime memory map:\n");
 | |
| 		efi_print_memmap();
 | |
| 	}
 | |
| 
 | |
| 	if (efi_setup_page_tables(pa, 1 << pg_shift))
 | |
| 		goto err;
 | |
| 
 | |
| 	efi_sync_low_kernel_mappings();
 | |
| 
 | |
| 	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
 | |
| 					     efi.memmap.desc_size,
 | |
| 					     efi.memmap.desc_version,
 | |
| 					     (efi_memory_desc_t *)pa,
 | |
| 					     efi_systab_phys);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
 | |
| 		       status);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	efi_check_for_embedded_firmwares();
 | |
| 	efi_free_boot_services();
 | |
| 
 | |
| 	if (!efi_is_mixed())
 | |
| 		efi_native_runtime_setup();
 | |
| 	else
 | |
| 		efi_thunk_runtime_setup();
 | |
| 
 | |
| 	/*
 | |
| 	 * Apply more restrictive page table mapping attributes now that
 | |
| 	 * SVAM() has been called and the firmware has performed all
 | |
| 	 * necessary relocation fixups for the new virtual addresses.
 | |
| 	 */
 | |
| 	efi_runtime_update_mappings();
 | |
| 
 | |
| 	/* clean DUMMY object */
 | |
| 	efi_delete_dummy_variable();
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| }
 | |
| 
 | |
| void __init efi_enter_virtual_mode(void)
 | |
| {
 | |
| 	if (efi_enabled(EFI_PARAVIRT))
 | |
| 		return;
 | |
| 
 | |
| 	efi.runtime = (efi_runtime_services_t *)efi_runtime;
 | |
| 
 | |
| 	if (efi_setup)
 | |
| 		kexec_enter_virtual_mode();
 | |
| 	else
 | |
| 		__efi_enter_virtual_mode();
 | |
| 
 | |
| 	efi_dump_pagetable();
 | |
| }
 | |
| 
 | |
| bool efi_is_table_address(unsigned long phys_addr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
 | |
| 		if (*(efi_tables[i]) == phys_addr)
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| char *efi_systab_show_arch(char *str)
 | |
| {
 | |
| 	if (uga_phys != EFI_INVALID_TABLE_ADDR)
 | |
| 		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| #define EFI_FIELD(var) efi_ ## var
 | |
| 
 | |
| #define EFI_ATTR_SHOW(name) \
 | |
| static ssize_t name##_show(struct kobject *kobj, \
 | |
| 				struct kobj_attribute *attr, char *buf) \
 | |
| { \
 | |
| 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
 | |
| }
 | |
| 
 | |
| EFI_ATTR_SHOW(fw_vendor);
 | |
| EFI_ATTR_SHOW(runtime);
 | |
| EFI_ATTR_SHOW(config_table);
 | |
| 
 | |
| struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
 | |
| struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
 | |
| struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
 | |
| 
 | |
| umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
 | |
| {
 | |
| 	if (attr == &efi_attr_fw_vendor.attr) {
 | |
| 		if (efi_enabled(EFI_PARAVIRT) ||
 | |
| 				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
 | |
| 			return 0;
 | |
| 	} else if (attr == &efi_attr_runtime.attr) {
 | |
| 		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
 | |
| 			return 0;
 | |
| 	} else if (attr == &efi_attr_config_table.attr) {
 | |
| 		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return attr->mode;
 | |
| }
 | |
| 
 | |
| enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
 | |
| {
 | |
| 	return boot_params.secure_boot;
 | |
| }
 |