273 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/arch/arm/mm/fault-armv.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Modifications for ARM processor (c) 1995-2002 Russell King
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/bugs.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cachetype.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| 
 | |
| static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| /*
 | |
|  * We take the easy way out of this problem - we make the
 | |
|  * PTE uncacheable.  However, we leave the write buffer on.
 | |
|  *
 | |
|  * Note that the pte lock held when calling update_mmu_cache must also
 | |
|  * guard the pte (somewhere else in the same mm) that we modify here.
 | |
|  * Therefore those configurations which might call adjust_pte (those
 | |
|  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 | |
|  */
 | |
| static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 | |
| 	unsigned long pfn, pte_t *ptep)
 | |
| {
 | |
| 	pte_t entry = *ptep;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this page is present, it's actually being shared.
 | |
| 	 */
 | |
| 	ret = pte_present(entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this page isn't present, or is already setup to
 | |
| 	 * fault (ie, is old), we can safely ignore any issues.
 | |
| 	 */
 | |
| 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 | |
| 		flush_cache_page(vma, address, pfn);
 | |
| 		outer_flush_range((pfn << PAGE_SHIFT),
 | |
| 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 | |
| 		pte_val(entry) &= ~L_PTE_MT_MASK;
 | |
| 		pte_val(entry) |= shared_pte_mask;
 | |
| 		set_pte_at(vma->vm_mm, address, ptep, entry);
 | |
| 		flush_tlb_page(vma, address);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
 | |
| /*
 | |
|  * If we are using split PTE locks, then we need to take the page
 | |
|  * lock here.  Otherwise we are using shared mm->page_table_lock
 | |
|  * which is already locked, thus cannot take it.
 | |
|  */
 | |
| static inline void do_pte_lock(spinlock_t *ptl)
 | |
| {
 | |
| 	/*
 | |
| 	 * Use nested version here to indicate that we are already
 | |
| 	 * holding one similar spinlock.
 | |
| 	 */
 | |
| 	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static inline void do_pte_unlock(spinlock_t *ptl)
 | |
| {
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
 | |
| static inline void do_pte_lock(spinlock_t *ptl) {}
 | |
| static inline void do_pte_unlock(spinlock_t *ptl) {}
 | |
| #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
 | |
| 
 | |
| static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 | |
| 	unsigned long pfn)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int ret;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, address);
 | |
| 	if (pgd_none_or_clear_bad(pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (p4d_none_or_clear_bad(p4d))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (pud_none_or_clear_bad(pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none_or_clear_bad(pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is called while another page table is mapped, so we
 | |
| 	 * must use the nested version.  This also means we need to
 | |
| 	 * open-code the spin-locking.
 | |
| 	 */
 | |
| 	pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl);
 | |
| 	if (!pte)
 | |
| 		return 0;
 | |
| 
 | |
| 	do_pte_lock(ptl);
 | |
| 
 | |
| 	ret = do_adjust_pte(vma, address, pfn, pte);
 | |
| 
 | |
| 	do_pte_unlock(ptl);
 | |
| 	pte_unmap(pte);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
 | |
| 	unsigned long addr, pte_t *ptep, unsigned long pfn)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct vm_area_struct *mpnt;
 | |
| 	unsigned long offset;
 | |
| 	pgoff_t pgoff;
 | |
| 	int aliases = 0;
 | |
| 
 | |
| 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have any shared mappings that are in the same mm
 | |
| 	 * space, then we need to handle them specially to maintain
 | |
| 	 * cache coherency.
 | |
| 	 */
 | |
| 	flush_dcache_mmap_lock(mapping);
 | |
| 	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
 | |
| 		/*
 | |
| 		 * If this VMA is not in our MM, we can ignore it.
 | |
| 		 * Note that we intentionally mask out the VMA
 | |
| 		 * that we are fixing up.
 | |
| 		 */
 | |
| 		if (mpnt->vm_mm != mm || mpnt == vma)
 | |
| 			continue;
 | |
| 		if (!(mpnt->vm_flags & VM_MAYSHARE))
 | |
| 			continue;
 | |
| 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
 | |
| 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
 | |
| 	}
 | |
| 	flush_dcache_mmap_unlock(mapping);
 | |
| 	if (aliases)
 | |
| 		do_adjust_pte(vma, addr, pfn, ptep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take care of architecture specific things when placing a new PTE into
 | |
|  * a page table, or changing an existing PTE.  Basically, there are two
 | |
|  * things that we need to take care of:
 | |
|  *
 | |
|  *  1. If PG_dcache_clean is not set for the page, we need to ensure
 | |
|  *     that any cache entries for the kernels virtual memory
 | |
|  *     range are written back to the page.
 | |
|  *  2. If we have multiple shared mappings of the same space in
 | |
|  *     an object, we need to deal with the cache aliasing issues.
 | |
|  *
 | |
|  * Note that the pte lock will be held.
 | |
|  */
 | |
| void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pte_t *ptep, unsigned int nr)
 | |
| {
 | |
| 	unsigned long pfn = pte_pfn(*ptep);
 | |
| 	struct address_space *mapping;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The zero page is never written to, so never has any dirty
 | |
| 	 * cache lines, and therefore never needs to be flushed.
 | |
| 	 */
 | |
| 	if (is_zero_pfn(pfn))
 | |
| 		return;
 | |
| 
 | |
| 	folio = page_folio(pfn_to_page(pfn));
 | |
| 	mapping = folio_flush_mapping(folio);
 | |
| 	if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
 | |
| 		__flush_dcache_folio(mapping, folio);
 | |
| 	if (mapping) {
 | |
| 		if (cache_is_vivt())
 | |
| 			make_coherent(mapping, vma, addr, ptep, pfn);
 | |
| 		else if (vma->vm_flags & VM_EXEC)
 | |
| 			__flush_icache_all();
 | |
| 	}
 | |
| }
 | |
| #endif	/* __LINUX_ARM_ARCH__ < 6 */
 | |
| 
 | |
| /*
 | |
|  * Check whether the write buffer has physical address aliasing
 | |
|  * issues.  If it has, we need to avoid them for the case where
 | |
|  * we have several shared mappings of the same object in user
 | |
|  * space.
 | |
|  */
 | |
| static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
 | |
| {
 | |
| 	register unsigned long zero = 0, one = 1, val;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	mb();
 | |
| 	*p1 = one;
 | |
| 	mb();
 | |
| 	*p2 = zero;
 | |
| 	mb();
 | |
| 	val = *p1;
 | |
| 	mb();
 | |
| 	local_irq_enable();
 | |
| 	return val != zero;
 | |
| }
 | |
| 
 | |
| void __init check_writebuffer_bugs(void)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	const char *reason;
 | |
| 	unsigned long v = 1;
 | |
| 
 | |
| 	pr_info("CPU: Testing write buffer coherency: ");
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (page) {
 | |
| 		unsigned long *p1, *p2;
 | |
| 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
 | |
| 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
 | |
| 
 | |
| 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
 | |
| 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
 | |
| 
 | |
| 		if (p1 && p2) {
 | |
| 			v = check_writebuffer(p1, p2);
 | |
| 			reason = "enabling work-around";
 | |
| 		} else {
 | |
| 			reason = "unable to map memory\n";
 | |
| 		}
 | |
| 
 | |
| 		vunmap(p1);
 | |
| 		vunmap(p2);
 | |
| 		put_page(page);
 | |
| 	} else {
 | |
| 		reason = "unable to grab page\n";
 | |
| 	}
 | |
| 
 | |
| 	if (v) {
 | |
| 		pr_cont("failed, %s\n", reason);
 | |
| 		shared_pte_mask = L_PTE_MT_UNCACHED;
 | |
| 	} else {
 | |
| 		pr_cont("ok\n");
 | |
| 	}
 | |
| }
 |