615 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			615 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright 2013 Red Hat Inc.
 | |
|  *
 | |
|  * Authors: Jérôme Glisse <jglisse@redhat.com>
 | |
|  */
 | |
| /*
 | |
|  * Refer to include/linux/hmm.h for information about heterogeneous memory
 | |
|  * management or HMM for short.
 | |
|  */
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/hmm.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/jump_label.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| struct hmm_vma_walk {
 | |
| 	struct hmm_range	*range;
 | |
| 	unsigned long		last;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	HMM_NEED_FAULT = 1 << 0,
 | |
| 	HMM_NEED_WRITE_FAULT = 1 << 1,
 | |
| 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
 | |
| };
 | |
| 
 | |
| static int hmm_pfns_fill(unsigned long addr, unsigned long end,
 | |
| 			 struct hmm_range *range, unsigned long cpu_flags)
 | |
| {
 | |
| 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE, i++)
 | |
| 		range->hmm_pfns[i] = cpu_flags;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
 | |
|  * @addr: range virtual start address (inclusive)
 | |
|  * @end: range virtual end address (exclusive)
 | |
|  * @required_fault: HMM_NEED_* flags
 | |
|  * @walk: mm_walk structure
 | |
|  * Return: -EBUSY after page fault, or page fault error
 | |
|  *
 | |
|  * This function will be called whenever pmd_none() or pte_none() returns true,
 | |
|  * or whenever there is no page directory covering the virtual address range.
 | |
|  */
 | |
| static int hmm_vma_fault(unsigned long addr, unsigned long end,
 | |
| 			 unsigned int required_fault, struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
 | |
| 
 | |
| 	WARN_ON_ONCE(!required_fault);
 | |
| 	hmm_vma_walk->last = addr;
 | |
| 
 | |
| 	if (required_fault & HMM_NEED_WRITE_FAULT) {
 | |
| 		if (!(vma->vm_flags & VM_WRITE))
 | |
| 			return -EPERM;
 | |
| 		fault_flags |= FAULT_FLAG_WRITE;
 | |
| 	}
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE)
 | |
| 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
 | |
| 		    VM_FAULT_ERROR)
 | |
| 			return -EFAULT;
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 | |
| 				       unsigned long pfn_req_flags,
 | |
| 				       unsigned long cpu_flags)
 | |
| {
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 
 | |
| 	/*
 | |
| 	 * So we not only consider the individual per page request we also
 | |
| 	 * consider the default flags requested for the range. The API can
 | |
| 	 * be used 2 ways. The first one where the HMM user coalesces
 | |
| 	 * multiple page faults into one request and sets flags per pfn for
 | |
| 	 * those faults. The second one where the HMM user wants to pre-
 | |
| 	 * fault a range with specific flags. For the latter one it is a
 | |
| 	 * waste to have the user pre-fill the pfn arrays with a default
 | |
| 	 * flags value.
 | |
| 	 */
 | |
| 	pfn_req_flags &= range->pfn_flags_mask;
 | |
| 	pfn_req_flags |= range->default_flags;
 | |
| 
 | |
| 	/* We aren't ask to do anything ... */
 | |
| 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Need to write fault ? */
 | |
| 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
 | |
| 	    !(cpu_flags & HMM_PFN_WRITE))
 | |
| 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
 | |
| 
 | |
| 	/* If CPU page table is not valid then we need to fault */
 | |
| 	if (!(cpu_flags & HMM_PFN_VALID))
 | |
| 		return HMM_NEED_FAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 | |
| 		     const unsigned long hmm_pfns[], unsigned long npages,
 | |
| 		     unsigned long cpu_flags)
 | |
| {
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned int required_fault = 0;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the default flags do not request to fault pages, and the mask does
 | |
| 	 * not allow for individual pages to be faulted, then
 | |
| 	 * hmm_pte_need_fault() will always return 0.
 | |
| 	 */
 | |
| 	if (!((range->default_flags | range->pfn_flags_mask) &
 | |
| 	      HMM_PFN_REQ_FAULT))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < npages; ++i) {
 | |
| 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
 | |
| 						     cpu_flags);
 | |
| 		if (required_fault == HMM_NEED_ALL_BITS)
 | |
| 			return required_fault;
 | |
| 	}
 | |
| 	return required_fault;
 | |
| }
 | |
| 
 | |
| static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 | |
| 			     __always_unused int depth, struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned int required_fault;
 | |
| 	unsigned long i, npages;
 | |
| 	unsigned long *hmm_pfns;
 | |
| 
 | |
| 	i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 	npages = (end - addr) >> PAGE_SHIFT;
 | |
| 	hmm_pfns = &range->hmm_pfns[i];
 | |
| 	required_fault =
 | |
| 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
 | |
| 	if (!walk->vma) {
 | |
| 		if (required_fault)
 | |
| 			return -EFAULT;
 | |
| 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
 | |
| 	}
 | |
| 	if (required_fault)
 | |
| 		return hmm_vma_fault(addr, end, required_fault, walk);
 | |
| 	return hmm_pfns_fill(addr, end, range, 0);
 | |
| }
 | |
| 
 | |
| static inline unsigned long hmm_pfn_flags_order(unsigned long order)
 | |
| {
 | |
| 	return order << HMM_PFN_ORDER_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
 | |
| 						 pmd_t pmd)
 | |
| {
 | |
| 	if (pmd_protnone(pmd))
 | |
| 		return 0;
 | |
| 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
 | |
| 				 HMM_PFN_VALID) |
 | |
| 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
 | |
| 			      unsigned long end, unsigned long hmm_pfns[],
 | |
| 			      pmd_t pmd)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned long pfn, npages, i;
 | |
| 	unsigned int required_fault;
 | |
| 	unsigned long cpu_flags;
 | |
| 
 | |
| 	npages = (end - addr) >> PAGE_SHIFT;
 | |
| 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 | |
| 	required_fault =
 | |
| 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
 | |
| 	if (required_fault)
 | |
| 		return hmm_vma_fault(addr, end, required_fault, walk);
 | |
| 
 | |
| 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 | |
| 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
 | |
| 		hmm_pfns[i] = pfn | cpu_flags;
 | |
| 	return 0;
 | |
| }
 | |
| #else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| /* stub to allow the code below to compile */
 | |
| int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
 | |
| 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
 | |
| 						 pte_t pte)
 | |
| {
 | |
| 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
 | |
| 		return 0;
 | |
| 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
 | |
| }
 | |
| 
 | |
| static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 | |
| 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
 | |
| 			      unsigned long *hmm_pfn)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned int required_fault;
 | |
| 	unsigned long cpu_flags;
 | |
| 	pte_t pte = ptep_get(ptep);
 | |
| 	uint64_t pfn_req_flags = *hmm_pfn;
 | |
| 
 | |
| 	if (pte_none_mostly(pte)) {
 | |
| 		required_fault =
 | |
| 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
 | |
| 		if (required_fault)
 | |
| 			goto fault;
 | |
| 		*hmm_pfn = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pte_present(pte)) {
 | |
| 		swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't fault in device private pages owned by the caller,
 | |
| 		 * just report the PFN.
 | |
| 		 */
 | |
| 		if (is_device_private_entry(entry) &&
 | |
| 		    pfn_swap_entry_to_page(entry)->pgmap->owner ==
 | |
| 		    range->dev_private_owner) {
 | |
| 			cpu_flags = HMM_PFN_VALID;
 | |
| 			if (is_writable_device_private_entry(entry))
 | |
| 				cpu_flags |= HMM_PFN_WRITE;
 | |
| 			*hmm_pfn = swp_offset_pfn(entry) | cpu_flags;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		required_fault =
 | |
| 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
 | |
| 		if (!required_fault) {
 | |
| 			*hmm_pfn = 0;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (!non_swap_entry(entry))
 | |
| 			goto fault;
 | |
| 
 | |
| 		if (is_device_private_entry(entry))
 | |
| 			goto fault;
 | |
| 
 | |
| 		if (is_device_exclusive_entry(entry))
 | |
| 			goto fault;
 | |
| 
 | |
| 		if (is_migration_entry(entry)) {
 | |
| 			pte_unmap(ptep);
 | |
| 			hmm_vma_walk->last = addr;
 | |
| 			migration_entry_wait(walk->mm, pmdp, addr);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		/* Report error for everything else */
 | |
| 		pte_unmap(ptep);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 | |
| 	required_fault =
 | |
| 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
 | |
| 	if (required_fault)
 | |
| 		goto fault;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bypass devmap pte such as DAX page when all pfn requested
 | |
| 	 * flags(pfn_req_flags) are fulfilled.
 | |
| 	 * Since each architecture defines a struct page for the zero page, just
 | |
| 	 * fall through and treat it like a normal page.
 | |
| 	 */
 | |
| 	if (!vm_normal_page(walk->vma, addr, pte) &&
 | |
| 	    !pte_devmap(pte) &&
 | |
| 	    !is_zero_pfn(pte_pfn(pte))) {
 | |
| 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
 | |
| 			pte_unmap(ptep);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		*hmm_pfn = HMM_PFN_ERROR;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
 | |
| 	return 0;
 | |
| 
 | |
| fault:
 | |
| 	pte_unmap(ptep);
 | |
| 	/* Fault any virtual address we were asked to fault */
 | |
| 	return hmm_vma_fault(addr, end, required_fault, walk);
 | |
| }
 | |
| 
 | |
| static int hmm_vma_walk_pmd(pmd_t *pmdp,
 | |
| 			    unsigned long start,
 | |
| 			    unsigned long end,
 | |
| 			    struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned long *hmm_pfns =
 | |
| 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
 | |
| 	unsigned long npages = (end - start) >> PAGE_SHIFT;
 | |
| 	unsigned long addr = start;
 | |
| 	pte_t *ptep;
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| again:
 | |
| 	pmd = pmdp_get_lockless(pmdp);
 | |
| 	if (pmd_none(pmd))
 | |
| 		return hmm_vma_walk_hole(start, end, -1, walk);
 | |
| 
 | |
| 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
 | |
| 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
 | |
| 			hmm_vma_walk->last = addr;
 | |
| 			pmd_migration_entry_wait(walk->mm, pmdp);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		return hmm_pfns_fill(start, end, range, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (!pmd_present(pmd)) {
 | |
| 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
 | |
| 			return -EFAULT;
 | |
| 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
 | |
| 		/*
 | |
| 		 * No need to take pmd_lock here, even if some other thread
 | |
| 		 * is splitting the huge pmd we will get that event through
 | |
| 		 * mmu_notifier callback.
 | |
| 		 *
 | |
| 		 * So just read pmd value and check again it's a transparent
 | |
| 		 * huge or device mapping one and compute corresponding pfn
 | |
| 		 * values.
 | |
| 		 */
 | |
| 		pmd = pmdp_get_lockless(pmdp);
 | |
| 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 | |
| 			goto again;
 | |
| 
 | |
| 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have handled all the valid cases above ie either none, migration,
 | |
| 	 * huge or transparent huge. At this point either it is a valid pmd
 | |
| 	 * entry pointing to pte directory or it is a bad pmd that will not
 | |
| 	 * recover.
 | |
| 	 */
 | |
| 	if (pmd_bad(pmd)) {
 | |
| 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
 | |
| 			return -EFAULT;
 | |
| 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
 | |
| 	}
 | |
| 
 | |
| 	ptep = pte_offset_map(pmdp, addr);
 | |
| 	if (!ptep)
 | |
| 		goto again;
 | |
| 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
 | |
| 		int r;
 | |
| 
 | |
| 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
 | |
| 		if (r) {
 | |
| 			/* hmm_vma_handle_pte() did pte_unmap() */
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap(ptep - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
 | |
|     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 | |
| static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
 | |
| 						 pud_t pud)
 | |
| {
 | |
| 	if (!pud_present(pud))
 | |
| 		return 0;
 | |
| 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
 | |
| 				 HMM_PFN_VALID) |
 | |
| 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
 | |
| 		struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned long addr = start;
 | |
| 	pud_t pud;
 | |
| 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
 | |
| 
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Normally we don't want to split the huge page */
 | |
| 	walk->action = ACTION_CONTINUE;
 | |
| 
 | |
| 	pud = READ_ONCE(*pudp);
 | |
| 	if (pud_none(pud)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		return hmm_vma_walk_hole(start, end, -1, walk);
 | |
| 	}
 | |
| 
 | |
| 	if (pud_huge(pud) && pud_devmap(pud)) {
 | |
| 		unsigned long i, npages, pfn;
 | |
| 		unsigned int required_fault;
 | |
| 		unsigned long *hmm_pfns;
 | |
| 		unsigned long cpu_flags;
 | |
| 
 | |
| 		if (!pud_present(pud)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			return hmm_vma_walk_hole(start, end, -1, walk);
 | |
| 		}
 | |
| 
 | |
| 		i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 		npages = (end - addr) >> PAGE_SHIFT;
 | |
| 		hmm_pfns = &range->hmm_pfns[i];
 | |
| 
 | |
| 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
 | |
| 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
 | |
| 						      npages, cpu_flags);
 | |
| 		if (required_fault) {
 | |
| 			spin_unlock(ptl);
 | |
| 			return hmm_vma_fault(addr, end, required_fault, walk);
 | |
| 		}
 | |
| 
 | |
| 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 | |
| 		for (i = 0; i < npages; ++i, ++pfn)
 | |
| 			hmm_pfns[i] = pfn | cpu_flags;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Ask for the PUD to be split */
 | |
| 	walk->action = ACTION_SUBTREE;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define hmm_vma_walk_pud	NULL
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
 | |
| 				      unsigned long start, unsigned long end,
 | |
| 				      struct mm_walk *walk)
 | |
| {
 | |
| 	unsigned long addr = start, i, pfn;
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	unsigned int required_fault;
 | |
| 	unsigned long pfn_req_flags;
 | |
| 	unsigned long cpu_flags;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
 | |
| 	entry = huge_ptep_get(pte);
 | |
| 
 | |
| 	i = (start - range->start) >> PAGE_SHIFT;
 | |
| 	pfn_req_flags = range->hmm_pfns[i];
 | |
| 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
 | |
| 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
 | |
| 	required_fault =
 | |
| 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
 | |
| 	if (required_fault) {
 | |
| 		int ret;
 | |
| 
 | |
| 		spin_unlock(ptl);
 | |
| 		hugetlb_vma_unlock_read(vma);
 | |
| 		/*
 | |
| 		 * Avoid deadlock: drop the vma lock before calling
 | |
| 		 * hmm_vma_fault(), which will itself potentially take and
 | |
| 		 * drop the vma lock. This is also correct from a
 | |
| 		 * protection point of view, because there is no further
 | |
| 		 * use here of either pte or ptl after dropping the vma
 | |
| 		 * lock.
 | |
| 		 */
 | |
| 		ret = hmm_vma_fault(addr, end, required_fault, walk);
 | |
| 		hugetlb_vma_lock_read(vma);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
 | |
| 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
 | |
| 		range->hmm_pfns[i] = pfn | cpu_flags;
 | |
| 
 | |
| 	spin_unlock(ptl);
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define hmm_vma_walk_hugetlb_entry NULL
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| static int hmm_vma_walk_test(unsigned long start, unsigned long end,
 | |
| 			     struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 
 | |
| 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
 | |
| 	    vma->vm_flags & VM_READ)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * vma ranges that don't have struct page backing them or map I/O
 | |
| 	 * devices directly cannot be handled by hmm_range_fault().
 | |
| 	 *
 | |
| 	 * If the vma does not allow read access, then assume that it does not
 | |
| 	 * allow write access either. HMM does not support architectures that
 | |
| 	 * allow write without read.
 | |
| 	 *
 | |
| 	 * If a fault is requested for an unsupported range then it is a hard
 | |
| 	 * failure.
 | |
| 	 */
 | |
| 	if (hmm_range_need_fault(hmm_vma_walk,
 | |
| 				 range->hmm_pfns +
 | |
| 					 ((start - range->start) >> PAGE_SHIFT),
 | |
| 				 (end - start) >> PAGE_SHIFT, 0))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
 | |
| 
 | |
| 	/* Skip this vma and continue processing the next vma. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops hmm_walk_ops = {
 | |
| 	.pud_entry	= hmm_vma_walk_pud,
 | |
| 	.pmd_entry	= hmm_vma_walk_pmd,
 | |
| 	.pte_hole	= hmm_vma_walk_hole,
 | |
| 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
 | |
| 	.test_walk	= hmm_vma_walk_test,
 | |
| 	.walk_lock	= PGWALK_RDLOCK,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * hmm_range_fault - try to fault some address in a virtual address range
 | |
|  * @range:	argument structure
 | |
|  *
 | |
|  * Returns 0 on success or one of the following error codes:
 | |
|  *
 | |
|  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
 | |
|  *		(e.g., device file vma).
 | |
|  * -ENOMEM:	Out of memory.
 | |
|  * -EPERM:	Invalid permission (e.g., asking for write and range is read
 | |
|  *		only).
 | |
|  * -EBUSY:	The range has been invalidated and the caller needs to wait for
 | |
|  *		the invalidation to finish.
 | |
|  * -EFAULT:     A page was requested to be valid and could not be made valid
 | |
|  *              ie it has no backing VMA or it is illegal to access
 | |
|  *
 | |
|  * This is similar to get_user_pages(), except that it can read the page tables
 | |
|  * without mutating them (ie causing faults).
 | |
|  */
 | |
| int hmm_range_fault(struct hmm_range *range)
 | |
| {
 | |
| 	struct hmm_vma_walk hmm_vma_walk = {
 | |
| 		.range = range,
 | |
| 		.last = range->start,
 | |
| 	};
 | |
| 	struct mm_struct *mm = range->notifier->mm;
 | |
| 	int ret;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	do {
 | |
| 		/* If range is no longer valid force retry. */
 | |
| 		if (mmu_interval_check_retry(range->notifier,
 | |
| 					     range->notifier_seq))
 | |
| 			return -EBUSY;
 | |
| 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
 | |
| 				      &hmm_walk_ops, &hmm_vma_walk);
 | |
| 		/*
 | |
| 		 * When -EBUSY is returned the loop restarts with
 | |
| 		 * hmm_vma_walk.last set to an address that has not been stored
 | |
| 		 * in pfns. All entries < last in the pfn array are set to their
 | |
| 		 * output, and all >= are still at their input values.
 | |
| 		 */
 | |
| 	} while (ret == -EBUSY);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_range_fault);
 |