1533 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1533 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Data Access Monitor
 | |
|  *
 | |
|  * Author: SeongJae Park <sjpark@amazon.de>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "damon: " fmt
 | |
| 
 | |
| #include <linux/damon.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/damon.h>
 | |
| 
 | |
| #ifdef CONFIG_DAMON_KUNIT_TEST
 | |
| #undef DAMON_MIN_REGION
 | |
| #define DAMON_MIN_REGION 1
 | |
| #endif
 | |
| 
 | |
| static DEFINE_MUTEX(damon_lock);
 | |
| static int nr_running_ctxs;
 | |
| static bool running_exclusive_ctxs;
 | |
| 
 | |
| static DEFINE_MUTEX(damon_ops_lock);
 | |
| static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
 | |
| 
 | |
| static struct kmem_cache *damon_region_cache __ro_after_init;
 | |
| 
 | |
| /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
 | |
| static bool __damon_is_registered_ops(enum damon_ops_id id)
 | |
| {
 | |
| 	struct damon_operations empty_ops = {};
 | |
| 
 | |
| 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_is_registered_ops() - Check if a given damon_operations is registered.
 | |
|  * @id:	Id of the damon_operations to check if registered.
 | |
|  *
 | |
|  * Return: true if the ops is set, false otherwise.
 | |
|  */
 | |
| bool damon_is_registered_ops(enum damon_ops_id id)
 | |
| {
 | |
| 	bool registered;
 | |
| 
 | |
| 	if (id >= NR_DAMON_OPS)
 | |
| 		return false;
 | |
| 	mutex_lock(&damon_ops_lock);
 | |
| 	registered = __damon_is_registered_ops(id);
 | |
| 	mutex_unlock(&damon_ops_lock);
 | |
| 	return registered;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_register_ops() - Register a monitoring operations set to DAMON.
 | |
|  * @ops:	monitoring operations set to register.
 | |
|  *
 | |
|  * This function registers a monitoring operations set of valid &struct
 | |
|  * damon_operations->id so that others can find and use them later.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_register_ops(struct damon_operations *ops)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (ops->id >= NR_DAMON_OPS)
 | |
| 		return -EINVAL;
 | |
| 	mutex_lock(&damon_ops_lock);
 | |
| 	/* Fail for already registered ops */
 | |
| 	if (__damon_is_registered_ops(ops->id)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	damon_registered_ops[ops->id] = *ops;
 | |
| out:
 | |
| 	mutex_unlock(&damon_ops_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_select_ops() - Select a monitoring operations to use with the context.
 | |
|  * @ctx:	monitoring context to use the operations.
 | |
|  * @id:		id of the registered monitoring operations to select.
 | |
|  *
 | |
|  * This function finds registered monitoring operations set of @id and make
 | |
|  * @ctx to use it.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (id >= NR_DAMON_OPS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&damon_ops_lock);
 | |
| 	if (!__damon_is_registered_ops(id))
 | |
| 		err = -EINVAL;
 | |
| 	else
 | |
| 		ctx->ops = damon_registered_ops[id];
 | |
| 	mutex_unlock(&damon_ops_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct a damon_region struct
 | |
|  *
 | |
|  * Returns the pointer to the new struct if success, or NULL otherwise
 | |
|  */
 | |
| struct damon_region *damon_new_region(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct damon_region *region;
 | |
| 
 | |
| 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
 | |
| 	if (!region)
 | |
| 		return NULL;
 | |
| 
 | |
| 	region->ar.start = start;
 | |
| 	region->ar.end = end;
 | |
| 	region->nr_accesses = 0;
 | |
| 	INIT_LIST_HEAD(®ion->list);
 | |
| 
 | |
| 	region->age = 0;
 | |
| 	region->last_nr_accesses = 0;
 | |
| 
 | |
| 	return region;
 | |
| }
 | |
| 
 | |
| void damon_add_region(struct damon_region *r, struct damon_target *t)
 | |
| {
 | |
| 	list_add_tail(&r->list, &t->regions_list);
 | |
| 	t->nr_regions++;
 | |
| }
 | |
| 
 | |
| static void damon_del_region(struct damon_region *r, struct damon_target *t)
 | |
| {
 | |
| 	list_del(&r->list);
 | |
| 	t->nr_regions--;
 | |
| }
 | |
| 
 | |
| static void damon_free_region(struct damon_region *r)
 | |
| {
 | |
| 	kmem_cache_free(damon_region_cache, r);
 | |
| }
 | |
| 
 | |
| void damon_destroy_region(struct damon_region *r, struct damon_target *t)
 | |
| {
 | |
| 	damon_del_region(r, t);
 | |
| 	damon_free_region(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a region is intersecting an address range
 | |
|  *
 | |
|  * Returns true if it is.
 | |
|  */
 | |
| static bool damon_intersect(struct damon_region *r,
 | |
| 		struct damon_addr_range *re)
 | |
| {
 | |
| 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill holes in regions with new regions.
 | |
|  */
 | |
| static int damon_fill_regions_holes(struct damon_region *first,
 | |
| 		struct damon_region *last, struct damon_target *t)
 | |
| {
 | |
| 	struct damon_region *r = first;
 | |
| 
 | |
| 	damon_for_each_region_from(r, t) {
 | |
| 		struct damon_region *next, *newr;
 | |
| 
 | |
| 		if (r == last)
 | |
| 			break;
 | |
| 		next = damon_next_region(r);
 | |
| 		if (r->ar.end != next->ar.start) {
 | |
| 			newr = damon_new_region(r->ar.end, next->ar.start);
 | |
| 			if (!newr)
 | |
| 				return -ENOMEM;
 | |
| 			damon_insert_region(newr, r, next, t);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * damon_set_regions() - Set regions of a target for given address ranges.
 | |
|  * @t:		the given target.
 | |
|  * @ranges:	array of new monitoring target ranges.
 | |
|  * @nr_ranges:	length of @ranges.
 | |
|  *
 | |
|  * This function adds new regions to, or modify existing regions of a
 | |
|  * monitoring target to fit in specific ranges.
 | |
|  *
 | |
|  * Return: 0 if success, or negative error code otherwise.
 | |
|  */
 | |
| int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
 | |
| 		unsigned int nr_ranges)
 | |
| {
 | |
| 	struct damon_region *r, *next;
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Remove regions which are not in the new ranges */
 | |
| 	damon_for_each_region_safe(r, next, t) {
 | |
| 		for (i = 0; i < nr_ranges; i++) {
 | |
| 			if (damon_intersect(r, &ranges[i]))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (i == nr_ranges)
 | |
| 			damon_destroy_region(r, t);
 | |
| 	}
 | |
| 
 | |
| 	r = damon_first_region(t);
 | |
| 	/* Add new regions or resize existing regions to fit in the ranges */
 | |
| 	for (i = 0; i < nr_ranges; i++) {
 | |
| 		struct damon_region *first = NULL, *last, *newr;
 | |
| 		struct damon_addr_range *range;
 | |
| 
 | |
| 		range = &ranges[i];
 | |
| 		/* Get the first/last regions intersecting with the range */
 | |
| 		damon_for_each_region_from(r, t) {
 | |
| 			if (damon_intersect(r, range)) {
 | |
| 				if (!first)
 | |
| 					first = r;
 | |
| 				last = r;
 | |
| 			}
 | |
| 			if (r->ar.start >= range->end)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!first) {
 | |
| 			/* no region intersects with this range */
 | |
| 			newr = damon_new_region(
 | |
| 					ALIGN_DOWN(range->start,
 | |
| 						DAMON_MIN_REGION),
 | |
| 					ALIGN(range->end, DAMON_MIN_REGION));
 | |
| 			if (!newr)
 | |
| 				return -ENOMEM;
 | |
| 			damon_insert_region(newr, damon_prev_region(r), r, t);
 | |
| 		} else {
 | |
| 			/* resize intersecting regions to fit in this range */
 | |
| 			first->ar.start = ALIGN_DOWN(range->start,
 | |
| 					DAMON_MIN_REGION);
 | |
| 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
 | |
| 
 | |
| 			/* fill possible holes in the range */
 | |
| 			err = damon_fill_regions_holes(first, last, t);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct damos_filter *damos_new_filter(enum damos_filter_type type,
 | |
| 		bool matching)
 | |
| {
 | |
| 	struct damos_filter *filter;
 | |
| 
 | |
| 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
 | |
| 	if (!filter)
 | |
| 		return NULL;
 | |
| 	filter->type = type;
 | |
| 	filter->matching = matching;
 | |
| 	INIT_LIST_HEAD(&filter->list);
 | |
| 	return filter;
 | |
| }
 | |
| 
 | |
| void damos_add_filter(struct damos *s, struct damos_filter *f)
 | |
| {
 | |
| 	list_add_tail(&f->list, &s->filters);
 | |
| }
 | |
| 
 | |
| static void damos_del_filter(struct damos_filter *f)
 | |
| {
 | |
| 	list_del(&f->list);
 | |
| }
 | |
| 
 | |
| static void damos_free_filter(struct damos_filter *f)
 | |
| {
 | |
| 	kfree(f);
 | |
| }
 | |
| 
 | |
| void damos_destroy_filter(struct damos_filter *f)
 | |
| {
 | |
| 	damos_del_filter(f);
 | |
| 	damos_free_filter(f);
 | |
| }
 | |
| 
 | |
| /* initialize private fields of damos_quota and return the pointer */
 | |
| static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
 | |
| {
 | |
| 	quota->total_charged_sz = 0;
 | |
| 	quota->total_charged_ns = 0;
 | |
| 	quota->esz = 0;
 | |
| 	quota->charged_sz = 0;
 | |
| 	quota->charged_from = 0;
 | |
| 	quota->charge_target_from = NULL;
 | |
| 	quota->charge_addr_from = 0;
 | |
| 	return quota;
 | |
| }
 | |
| 
 | |
| struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
 | |
| 			enum damos_action action, struct damos_quota *quota,
 | |
| 			struct damos_watermarks *wmarks)
 | |
| {
 | |
| 	struct damos *scheme;
 | |
| 
 | |
| 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
 | |
| 	if (!scheme)
 | |
| 		return NULL;
 | |
| 	scheme->pattern = *pattern;
 | |
| 	scheme->action = action;
 | |
| 	INIT_LIST_HEAD(&scheme->filters);
 | |
| 	scheme->stat = (struct damos_stat){};
 | |
| 	INIT_LIST_HEAD(&scheme->list);
 | |
| 
 | |
| 	scheme->quota = *(damos_quota_init_priv(quota));
 | |
| 
 | |
| 	scheme->wmarks = *wmarks;
 | |
| 	scheme->wmarks.activated = true;
 | |
| 
 | |
| 	return scheme;
 | |
| }
 | |
| 
 | |
| void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
 | |
| {
 | |
| 	list_add_tail(&s->list, &ctx->schemes);
 | |
| }
 | |
| 
 | |
| static void damon_del_scheme(struct damos *s)
 | |
| {
 | |
| 	list_del(&s->list);
 | |
| }
 | |
| 
 | |
| static void damon_free_scheme(struct damos *s)
 | |
| {
 | |
| 	kfree(s);
 | |
| }
 | |
| 
 | |
| void damon_destroy_scheme(struct damos *s)
 | |
| {
 | |
| 	struct damos_filter *f, *next;
 | |
| 
 | |
| 	damos_for_each_filter_safe(f, next, s)
 | |
| 		damos_destroy_filter(f);
 | |
| 	damon_del_scheme(s);
 | |
| 	damon_free_scheme(s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct a damon_target struct
 | |
|  *
 | |
|  * Returns the pointer to the new struct if success, or NULL otherwise
 | |
|  */
 | |
| struct damon_target *damon_new_target(void)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 
 | |
| 	t = kmalloc(sizeof(*t), GFP_KERNEL);
 | |
| 	if (!t)
 | |
| 		return NULL;
 | |
| 
 | |
| 	t->pid = NULL;
 | |
| 	t->nr_regions = 0;
 | |
| 	INIT_LIST_HEAD(&t->regions_list);
 | |
| 	INIT_LIST_HEAD(&t->list);
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
 | |
| {
 | |
| 	list_add_tail(&t->list, &ctx->adaptive_targets);
 | |
| }
 | |
| 
 | |
| bool damon_targets_empty(struct damon_ctx *ctx)
 | |
| {
 | |
| 	return list_empty(&ctx->adaptive_targets);
 | |
| }
 | |
| 
 | |
| static void damon_del_target(struct damon_target *t)
 | |
| {
 | |
| 	list_del(&t->list);
 | |
| }
 | |
| 
 | |
| void damon_free_target(struct damon_target *t)
 | |
| {
 | |
| 	struct damon_region *r, *next;
 | |
| 
 | |
| 	damon_for_each_region_safe(r, next, t)
 | |
| 		damon_free_region(r);
 | |
| 	kfree(t);
 | |
| }
 | |
| 
 | |
| void damon_destroy_target(struct damon_target *t)
 | |
| {
 | |
| 	damon_del_target(t);
 | |
| 	damon_free_target(t);
 | |
| }
 | |
| 
 | |
| unsigned int damon_nr_regions(struct damon_target *t)
 | |
| {
 | |
| 	return t->nr_regions;
 | |
| }
 | |
| 
 | |
| struct damon_ctx *damon_new_ctx(void)
 | |
| {
 | |
| 	struct damon_ctx *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ctx->attrs.sample_interval = 5 * 1000;
 | |
| 	ctx->attrs.aggr_interval = 100 * 1000;
 | |
| 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
 | |
| 
 | |
| 	ktime_get_coarse_ts64(&ctx->last_aggregation);
 | |
| 	ctx->last_ops_update = ctx->last_aggregation;
 | |
| 
 | |
| 	mutex_init(&ctx->kdamond_lock);
 | |
| 
 | |
| 	ctx->attrs.min_nr_regions = 10;
 | |
| 	ctx->attrs.max_nr_regions = 1000;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ctx->adaptive_targets);
 | |
| 	INIT_LIST_HEAD(&ctx->schemes);
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static void damon_destroy_targets(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damon_target *t, *next_t;
 | |
| 
 | |
| 	if (ctx->ops.cleanup) {
 | |
| 		ctx->ops.cleanup(ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	damon_for_each_target_safe(t, next_t, ctx)
 | |
| 		damon_destroy_target(t);
 | |
| }
 | |
| 
 | |
| void damon_destroy_ctx(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damos *s, *next_s;
 | |
| 
 | |
| 	damon_destroy_targets(ctx);
 | |
| 
 | |
| 	damon_for_each_scheme_safe(s, next_s, ctx)
 | |
| 		damon_destroy_scheme(s);
 | |
| 
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static unsigned int damon_age_for_new_attrs(unsigned int age,
 | |
| 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
 | |
| {
 | |
| 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
 | |
| }
 | |
| 
 | |
| /* convert access ratio in bp (per 10,000) to nr_accesses */
 | |
| static unsigned int damon_accesses_bp_to_nr_accesses(
 | |
| 		unsigned int accesses_bp, struct damon_attrs *attrs)
 | |
| {
 | |
| 	unsigned int max_nr_accesses =
 | |
| 		attrs->aggr_interval / attrs->sample_interval;
 | |
| 
 | |
| 	return accesses_bp * max_nr_accesses / 10000;
 | |
| }
 | |
| 
 | |
| /* convert nr_accesses to access ratio in bp (per 10,000) */
 | |
| static unsigned int damon_nr_accesses_to_accesses_bp(
 | |
| 		unsigned int nr_accesses, struct damon_attrs *attrs)
 | |
| {
 | |
| 	unsigned int max_nr_accesses =
 | |
| 		attrs->aggr_interval / attrs->sample_interval;
 | |
| 
 | |
| 	return nr_accesses * 10000 / max_nr_accesses;
 | |
| }
 | |
| 
 | |
| static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
 | |
| 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
 | |
| {
 | |
| 	return damon_accesses_bp_to_nr_accesses(
 | |
| 			damon_nr_accesses_to_accesses_bp(
 | |
| 				nr_accesses, old_attrs),
 | |
| 			new_attrs);
 | |
| }
 | |
| 
 | |
| static void damon_update_monitoring_result(struct damon_region *r,
 | |
| 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
 | |
| {
 | |
| 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
 | |
| 			old_attrs, new_attrs);
 | |
| 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * region->nr_accesses is the number of sampling intervals in the last
 | |
|  * aggregation interval that access to the region has found, and region->age is
 | |
|  * the number of aggregation intervals that its access pattern has maintained.
 | |
|  * For the reason, the real meaning of the two fields depend on current
 | |
|  * sampling interval and aggregation interval.  This function updates
 | |
|  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
 | |
|  */
 | |
| static void damon_update_monitoring_results(struct damon_ctx *ctx,
 | |
| 		struct damon_attrs *new_attrs)
 | |
| {
 | |
| 	struct damon_attrs *old_attrs = &ctx->attrs;
 | |
| 	struct damon_target *t;
 | |
| 	struct damon_region *r;
 | |
| 
 | |
| 	/* if any interval is zero, simply forgive conversion */
 | |
| 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
 | |
| 			!new_attrs->sample_interval ||
 | |
| 			!new_attrs->aggr_interval)
 | |
| 		return;
 | |
| 
 | |
| 	damon_for_each_target(t, ctx)
 | |
| 		damon_for_each_region(r, t)
 | |
| 			damon_update_monitoring_result(
 | |
| 					r, old_attrs, new_attrs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_set_attrs() - Set attributes for the monitoring.
 | |
|  * @ctx:		monitoring context
 | |
|  * @attrs:		monitoring attributes
 | |
|  *
 | |
|  * This function should not be called while the kdamond is running.
 | |
|  * Every time interval is in micro-seconds.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
 | |
| {
 | |
| 	if (attrs->min_nr_regions < 3)
 | |
| 		return -EINVAL;
 | |
| 	if (attrs->min_nr_regions > attrs->max_nr_regions)
 | |
| 		return -EINVAL;
 | |
| 	if (attrs->sample_interval > attrs->aggr_interval)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	damon_update_monitoring_results(ctx, attrs);
 | |
| 	ctx->attrs = *attrs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_set_schemes() - Set data access monitoring based operation schemes.
 | |
|  * @ctx:	monitoring context
 | |
|  * @schemes:	array of the schemes
 | |
|  * @nr_schemes:	number of entries in @schemes
 | |
|  *
 | |
|  * This function should not be called while the kdamond of the context is
 | |
|  * running.
 | |
|  */
 | |
| void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
 | |
| 			ssize_t nr_schemes)
 | |
| {
 | |
| 	struct damos *s, *next;
 | |
| 	ssize_t i;
 | |
| 
 | |
| 	damon_for_each_scheme_safe(s, next, ctx)
 | |
| 		damon_destroy_scheme(s);
 | |
| 	for (i = 0; i < nr_schemes; i++)
 | |
| 		damon_add_scheme(ctx, schemes[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_nr_running_ctxs() - Return number of currently running contexts.
 | |
|  */
 | |
| int damon_nr_running_ctxs(void)
 | |
| {
 | |
| 	int nr_ctxs;
 | |
| 
 | |
| 	mutex_lock(&damon_lock);
 | |
| 	nr_ctxs = nr_running_ctxs;
 | |
| 	mutex_unlock(&damon_lock);
 | |
| 
 | |
| 	return nr_ctxs;
 | |
| }
 | |
| 
 | |
| /* Returns the size upper limit for each monitoring region */
 | |
| static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 	struct damon_region *r;
 | |
| 	unsigned long sz = 0;
 | |
| 
 | |
| 	damon_for_each_target(t, ctx) {
 | |
| 		damon_for_each_region(r, t)
 | |
| 			sz += damon_sz_region(r);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->attrs.min_nr_regions)
 | |
| 		sz /= ctx->attrs.min_nr_regions;
 | |
| 	if (sz < DAMON_MIN_REGION)
 | |
| 		sz = DAMON_MIN_REGION;
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static int kdamond_fn(void *data);
 | |
| 
 | |
| /*
 | |
|  * __damon_start() - Starts monitoring with given context.
 | |
|  * @ctx:	monitoring context
 | |
|  *
 | |
|  * This function should be called while damon_lock is hold.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int __damon_start(struct damon_ctx *ctx)
 | |
| {
 | |
| 	int err = -EBUSY;
 | |
| 
 | |
| 	mutex_lock(&ctx->kdamond_lock);
 | |
| 	if (!ctx->kdamond) {
 | |
| 		err = 0;
 | |
| 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
 | |
| 				nr_running_ctxs);
 | |
| 		if (IS_ERR(ctx->kdamond)) {
 | |
| 			err = PTR_ERR(ctx->kdamond);
 | |
| 			ctx->kdamond = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->kdamond_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_start() - Starts the monitorings for a given group of contexts.
 | |
|  * @ctxs:	an array of the pointers for contexts to start monitoring
 | |
|  * @nr_ctxs:	size of @ctxs
 | |
|  * @exclusive:	exclusiveness of this contexts group
 | |
|  *
 | |
|  * This function starts a group of monitoring threads for a group of monitoring
 | |
|  * contexts.  One thread per each context is created and run in parallel.  The
 | |
|  * caller should handle synchronization between the threads by itself.  If
 | |
|  * @exclusive is true and a group of threads that created by other
 | |
|  * 'damon_start()' call is currently running, this function does nothing but
 | |
|  * returns -EBUSY.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
 | |
| {
 | |
| 	int i;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&damon_lock);
 | |
| 	if ((exclusive && nr_running_ctxs) ||
 | |
| 			(!exclusive && running_exclusive_ctxs)) {
 | |
| 		mutex_unlock(&damon_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_ctxs; i++) {
 | |
| 		err = __damon_start(ctxs[i]);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		nr_running_ctxs++;
 | |
| 	}
 | |
| 	if (exclusive && nr_running_ctxs)
 | |
| 		running_exclusive_ctxs = true;
 | |
| 	mutex_unlock(&damon_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __damon_stop() - Stops monitoring of a given context.
 | |
|  * @ctx:	monitoring context
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int __damon_stop(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	mutex_lock(&ctx->kdamond_lock);
 | |
| 	tsk = ctx->kdamond;
 | |
| 	if (tsk) {
 | |
| 		get_task_struct(tsk);
 | |
| 		mutex_unlock(&ctx->kdamond_lock);
 | |
| 		kthread_stop_put(tsk);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->kdamond_lock);
 | |
| 
 | |
| 	return -EPERM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_stop() - Stops the monitorings for a given group of contexts.
 | |
|  * @ctxs:	an array of the pointers for contexts to stop monitoring
 | |
|  * @nr_ctxs:	size of @ctxs
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < nr_ctxs; i++) {
 | |
| 		/* nr_running_ctxs is decremented in kdamond_fn */
 | |
| 		err = __damon_stop(ctxs[i]);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * damon_check_reset_time_interval() - Check if a time interval is elapsed.
 | |
|  * @baseline:	the time to check whether the interval has elapsed since
 | |
|  * @interval:	the time interval (microseconds)
 | |
|  *
 | |
|  * See whether the given time interval has passed since the given baseline
 | |
|  * time.  If so, it also updates the baseline to current time for next check.
 | |
|  *
 | |
|  * Return:	true if the time interval has passed, or false otherwise.
 | |
|  */
 | |
| static bool damon_check_reset_time_interval(struct timespec64 *baseline,
 | |
| 		unsigned long interval)
 | |
| {
 | |
| 	struct timespec64 now;
 | |
| 
 | |
| 	ktime_get_coarse_ts64(&now);
 | |
| 	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
 | |
| 			interval * 1000)
 | |
| 		return false;
 | |
| 	*baseline = now;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether it is time to flush the aggregated information
 | |
|  */
 | |
| static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
 | |
| {
 | |
| 	return damon_check_reset_time_interval(&ctx->last_aggregation,
 | |
| 			ctx->attrs.aggr_interval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the aggregated monitoring results ('nr_accesses' of each region).
 | |
|  */
 | |
| static void kdamond_reset_aggregated(struct damon_ctx *c)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 	unsigned int ti = 0;	/* target's index */
 | |
| 
 | |
| 	damon_for_each_target(t, c) {
 | |
| 		struct damon_region *r;
 | |
| 
 | |
| 		damon_for_each_region(r, t) {
 | |
| 			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
 | |
| 			r->last_nr_accesses = r->nr_accesses;
 | |
| 			r->nr_accesses = 0;
 | |
| 		}
 | |
| 		ti++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void damon_split_region_at(struct damon_target *t,
 | |
| 				  struct damon_region *r, unsigned long sz_r);
 | |
| 
 | |
| static bool __damos_valid_target(struct damon_region *r, struct damos *s)
 | |
| {
 | |
| 	unsigned long sz;
 | |
| 
 | |
| 	sz = damon_sz_region(r);
 | |
| 	return s->pattern.min_sz_region <= sz &&
 | |
| 		sz <= s->pattern.max_sz_region &&
 | |
| 		s->pattern.min_nr_accesses <= r->nr_accesses &&
 | |
| 		r->nr_accesses <= s->pattern.max_nr_accesses &&
 | |
| 		s->pattern.min_age_region <= r->age &&
 | |
| 		r->age <= s->pattern.max_age_region;
 | |
| }
 | |
| 
 | |
| static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
 | |
| 		struct damon_region *r, struct damos *s)
 | |
| {
 | |
| 	bool ret = __damos_valid_target(r, s);
 | |
| 
 | |
| 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
 | |
| 		return ret;
 | |
| 
 | |
| 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * damos_skip_charged_region() - Check if the given region or starting part of
 | |
|  * it is already charged for the DAMOS quota.
 | |
|  * @t:	The target of the region.
 | |
|  * @rp:	The pointer to the region.
 | |
|  * @s:	The scheme to be applied.
 | |
|  *
 | |
|  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
 | |
|  * action would applied to only a part of the target access pattern fulfilling
 | |
|  * regions.  To avoid applying the scheme action to only already applied
 | |
|  * regions, DAMON skips applying the scheme action to the regions that charged
 | |
|  * in the previous charge window.
 | |
|  *
 | |
|  * This function checks if a given region should be skipped or not for the
 | |
|  * reason.  If only the starting part of the region has previously charged,
 | |
|  * this function splits the region into two so that the second one covers the
 | |
|  * area that not charged in the previous charge widnow and saves the second
 | |
|  * region in *rp and returns false, so that the caller can apply DAMON action
 | |
|  * to the second one.
 | |
|  *
 | |
|  * Return: true if the region should be entirely skipped, false otherwise.
 | |
|  */
 | |
| static bool damos_skip_charged_region(struct damon_target *t,
 | |
| 		struct damon_region **rp, struct damos *s)
 | |
| {
 | |
| 	struct damon_region *r = *rp;
 | |
| 	struct damos_quota *quota = &s->quota;
 | |
| 	unsigned long sz_to_skip;
 | |
| 
 | |
| 	/* Skip previously charged regions */
 | |
| 	if (quota->charge_target_from) {
 | |
| 		if (t != quota->charge_target_from)
 | |
| 			return true;
 | |
| 		if (r == damon_last_region(t)) {
 | |
| 			quota->charge_target_from = NULL;
 | |
| 			quota->charge_addr_from = 0;
 | |
| 			return true;
 | |
| 		}
 | |
| 		if (quota->charge_addr_from &&
 | |
| 				r->ar.end <= quota->charge_addr_from)
 | |
| 			return true;
 | |
| 
 | |
| 		if (quota->charge_addr_from && r->ar.start <
 | |
| 				quota->charge_addr_from) {
 | |
| 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
 | |
| 					r->ar.start, DAMON_MIN_REGION);
 | |
| 			if (!sz_to_skip) {
 | |
| 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
 | |
| 					return true;
 | |
| 				sz_to_skip = DAMON_MIN_REGION;
 | |
| 			}
 | |
| 			damon_split_region_at(t, r, sz_to_skip);
 | |
| 			r = damon_next_region(r);
 | |
| 			*rp = r;
 | |
| 		}
 | |
| 		quota->charge_target_from = NULL;
 | |
| 		quota->charge_addr_from = 0;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void damos_update_stat(struct damos *s,
 | |
| 		unsigned long sz_tried, unsigned long sz_applied)
 | |
| {
 | |
| 	s->stat.nr_tried++;
 | |
| 	s->stat.sz_tried += sz_tried;
 | |
| 	if (sz_applied)
 | |
| 		s->stat.nr_applied++;
 | |
| 	s->stat.sz_applied += sz_applied;
 | |
| }
 | |
| 
 | |
| static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
 | |
| 		struct damon_region *r, struct damos_filter *filter)
 | |
| {
 | |
| 	bool matched = false;
 | |
| 	struct damon_target *ti;
 | |
| 	int target_idx = 0;
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	switch (filter->type) {
 | |
| 	case DAMOS_FILTER_TYPE_TARGET:
 | |
| 		damon_for_each_target(ti, ctx) {
 | |
| 			if (ti == t)
 | |
| 				break;
 | |
| 			target_idx++;
 | |
| 		}
 | |
| 		matched = target_idx == filter->target_idx;
 | |
| 		break;
 | |
| 	case DAMOS_FILTER_TYPE_ADDR:
 | |
| 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
 | |
| 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
 | |
| 
 | |
| 		/* inside the range */
 | |
| 		if (start <= r->ar.start && r->ar.end <= end) {
 | |
| 			matched = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* outside of the range */
 | |
| 		if (r->ar.end <= start || end <= r->ar.start) {
 | |
| 			matched = false;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* start before the range and overlap */
 | |
| 		if (r->ar.start < start) {
 | |
| 			damon_split_region_at(t, r, start - r->ar.start);
 | |
| 			matched = false;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* start inside the range */
 | |
| 		damon_split_region_at(t, r, end - r->ar.start);
 | |
| 		matched = true;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return matched == filter->matching;
 | |
| }
 | |
| 
 | |
| static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
 | |
| 		struct damon_region *r, struct damos *s)
 | |
| {
 | |
| 	struct damos_filter *filter;
 | |
| 
 | |
| 	damos_for_each_filter(filter, s) {
 | |
| 		if (__damos_filter_out(ctx, t, r, filter))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
 | |
| 		struct damon_region *r, struct damos *s)
 | |
| {
 | |
| 	struct damos_quota *quota = &s->quota;
 | |
| 	unsigned long sz = damon_sz_region(r);
 | |
| 	struct timespec64 begin, end;
 | |
| 	unsigned long sz_applied = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (c->ops.apply_scheme) {
 | |
| 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
 | |
| 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
 | |
| 					DAMON_MIN_REGION);
 | |
| 			if (!sz)
 | |
| 				goto update_stat;
 | |
| 			damon_split_region_at(t, r, sz);
 | |
| 		}
 | |
| 		if (damos_filter_out(c, t, r, s))
 | |
| 			return;
 | |
| 		ktime_get_coarse_ts64(&begin);
 | |
| 		if (c->callback.before_damos_apply)
 | |
| 			err = c->callback.before_damos_apply(c, t, r, s);
 | |
| 		if (!err)
 | |
| 			sz_applied = c->ops.apply_scheme(c, t, r, s);
 | |
| 		ktime_get_coarse_ts64(&end);
 | |
| 		quota->total_charged_ns += timespec64_to_ns(&end) -
 | |
| 			timespec64_to_ns(&begin);
 | |
| 		quota->charged_sz += sz;
 | |
| 		if (quota->esz && quota->charged_sz >= quota->esz) {
 | |
| 			quota->charge_target_from = t;
 | |
| 			quota->charge_addr_from = r->ar.end + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (s->action != DAMOS_STAT)
 | |
| 		r->age = 0;
 | |
| 
 | |
| update_stat:
 | |
| 	damos_update_stat(s, sz, sz_applied);
 | |
| }
 | |
| 
 | |
| static void damon_do_apply_schemes(struct damon_ctx *c,
 | |
| 				   struct damon_target *t,
 | |
| 				   struct damon_region *r)
 | |
| {
 | |
| 	struct damos *s;
 | |
| 
 | |
| 	damon_for_each_scheme(s, c) {
 | |
| 		struct damos_quota *quota = &s->quota;
 | |
| 
 | |
| 		if (!s->wmarks.activated)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Check the quota */
 | |
| 		if (quota->esz && quota->charged_sz >= quota->esz)
 | |
| 			continue;
 | |
| 
 | |
| 		if (damos_skip_charged_region(t, &r, s))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!damos_valid_target(c, t, r, s))
 | |
| 			continue;
 | |
| 
 | |
| 		damos_apply_scheme(c, t, r, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Shouldn't be called if quota->ms and quota->sz are zero */
 | |
| static void damos_set_effective_quota(struct damos_quota *quota)
 | |
| {
 | |
| 	unsigned long throughput;
 | |
| 	unsigned long esz;
 | |
| 
 | |
| 	if (!quota->ms) {
 | |
| 		quota->esz = quota->sz;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (quota->total_charged_ns)
 | |
| 		throughput = quota->total_charged_sz * 1000000 /
 | |
| 			quota->total_charged_ns;
 | |
| 	else
 | |
| 		throughput = PAGE_SIZE * 1024;
 | |
| 	esz = throughput * quota->ms;
 | |
| 
 | |
| 	if (quota->sz && quota->sz < esz)
 | |
| 		esz = quota->sz;
 | |
| 	quota->esz = esz;
 | |
| }
 | |
| 
 | |
| static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
 | |
| {
 | |
| 	struct damos_quota *quota = &s->quota;
 | |
| 	struct damon_target *t;
 | |
| 	struct damon_region *r;
 | |
| 	unsigned long cumulated_sz;
 | |
| 	unsigned int score, max_score = 0;
 | |
| 
 | |
| 	if (!quota->ms && !quota->sz)
 | |
| 		return;
 | |
| 
 | |
| 	/* New charge window starts */
 | |
| 	if (time_after_eq(jiffies, quota->charged_from +
 | |
| 				msecs_to_jiffies(quota->reset_interval))) {
 | |
| 		if (quota->esz && quota->charged_sz >= quota->esz)
 | |
| 			s->stat.qt_exceeds++;
 | |
| 		quota->total_charged_sz += quota->charged_sz;
 | |
| 		quota->charged_from = jiffies;
 | |
| 		quota->charged_sz = 0;
 | |
| 		damos_set_effective_quota(quota);
 | |
| 	}
 | |
| 
 | |
| 	if (!c->ops.get_scheme_score)
 | |
| 		return;
 | |
| 
 | |
| 	/* Fill up the score histogram */
 | |
| 	memset(quota->histogram, 0, sizeof(quota->histogram));
 | |
| 	damon_for_each_target(t, c) {
 | |
| 		damon_for_each_region(r, t) {
 | |
| 			if (!__damos_valid_target(r, s))
 | |
| 				continue;
 | |
| 			score = c->ops.get_scheme_score(c, t, r, s);
 | |
| 			quota->histogram[score] += damon_sz_region(r);
 | |
| 			if (score > max_score)
 | |
| 				max_score = score;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set the min score limit */
 | |
| 	for (cumulated_sz = 0, score = max_score; ; score--) {
 | |
| 		cumulated_sz += quota->histogram[score];
 | |
| 		if (cumulated_sz >= quota->esz || !score)
 | |
| 			break;
 | |
| 	}
 | |
| 	quota->min_score = score;
 | |
| }
 | |
| 
 | |
| static void kdamond_apply_schemes(struct damon_ctx *c)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 	struct damon_region *r, *next_r;
 | |
| 	struct damos *s;
 | |
| 
 | |
| 	damon_for_each_scheme(s, c) {
 | |
| 		if (!s->wmarks.activated)
 | |
| 			continue;
 | |
| 
 | |
| 		damos_adjust_quota(c, s);
 | |
| 	}
 | |
| 
 | |
| 	damon_for_each_target(t, c) {
 | |
| 		damon_for_each_region_safe(r, next_r, t)
 | |
| 			damon_do_apply_schemes(c, t, r);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge two adjacent regions into one region
 | |
|  */
 | |
| static void damon_merge_two_regions(struct damon_target *t,
 | |
| 		struct damon_region *l, struct damon_region *r)
 | |
| {
 | |
| 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
 | |
| 
 | |
| 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
 | |
| 			(sz_l + sz_r);
 | |
| 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
 | |
| 	l->ar.end = r->ar.end;
 | |
| 	damon_destroy_region(r, t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge adjacent regions having similar access frequencies
 | |
|  *
 | |
|  * t		target affected by this merge operation
 | |
|  * thres	'->nr_accesses' diff threshold for the merge
 | |
|  * sz_limit	size upper limit of each region
 | |
|  */
 | |
| static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
 | |
| 				   unsigned long sz_limit)
 | |
| {
 | |
| 	struct damon_region *r, *prev = NULL, *next;
 | |
| 
 | |
| 	damon_for_each_region_safe(r, next, t) {
 | |
| 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
 | |
| 			r->age = 0;
 | |
| 		else
 | |
| 			r->age++;
 | |
| 
 | |
| 		if (prev && prev->ar.end == r->ar.start &&
 | |
| 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
 | |
| 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
 | |
| 			damon_merge_two_regions(t, prev, r);
 | |
| 		else
 | |
| 			prev = r;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge adjacent regions having similar access frequencies
 | |
|  *
 | |
|  * threshold	'->nr_accesses' diff threshold for the merge
 | |
|  * sz_limit	size upper limit of each region
 | |
|  *
 | |
|  * This function merges monitoring target regions which are adjacent and their
 | |
|  * access frequencies are similar.  This is for minimizing the monitoring
 | |
|  * overhead under the dynamically changeable access pattern.  If a merge was
 | |
|  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
 | |
|  */
 | |
| static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
 | |
| 				  unsigned long sz_limit)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 
 | |
| 	damon_for_each_target(t, c)
 | |
| 		damon_merge_regions_of(t, threshold, sz_limit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Split a region in two
 | |
|  *
 | |
|  * r		the region to be split
 | |
|  * sz_r		size of the first sub-region that will be made
 | |
|  */
 | |
| static void damon_split_region_at(struct damon_target *t,
 | |
| 				  struct damon_region *r, unsigned long sz_r)
 | |
| {
 | |
| 	struct damon_region *new;
 | |
| 
 | |
| 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
 | |
| 	if (!new)
 | |
| 		return;
 | |
| 
 | |
| 	r->ar.end = new->ar.start;
 | |
| 
 | |
| 	new->age = r->age;
 | |
| 	new->last_nr_accesses = r->last_nr_accesses;
 | |
| 
 | |
| 	damon_insert_region(new, r, damon_next_region(r), t);
 | |
| }
 | |
| 
 | |
| /* Split every region in the given target into 'nr_subs' regions */
 | |
| static void damon_split_regions_of(struct damon_target *t, int nr_subs)
 | |
| {
 | |
| 	struct damon_region *r, *next;
 | |
| 	unsigned long sz_region, sz_sub = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	damon_for_each_region_safe(r, next, t) {
 | |
| 		sz_region = damon_sz_region(r);
 | |
| 
 | |
| 		for (i = 0; i < nr_subs - 1 &&
 | |
| 				sz_region > 2 * DAMON_MIN_REGION; i++) {
 | |
| 			/*
 | |
| 			 * Randomly select size of left sub-region to be at
 | |
| 			 * least 10 percent and at most 90% of original region
 | |
| 			 */
 | |
| 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
 | |
| 					sz_region / 10, DAMON_MIN_REGION);
 | |
| 			/* Do not allow blank region */
 | |
| 			if (sz_sub == 0 || sz_sub >= sz_region)
 | |
| 				continue;
 | |
| 
 | |
| 			damon_split_region_at(t, r, sz_sub);
 | |
| 			sz_region = sz_sub;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Split every target region into randomly-sized small regions
 | |
|  *
 | |
|  * This function splits every target region into random-sized small regions if
 | |
|  * current total number of the regions is equal or smaller than half of the
 | |
|  * user-specified maximum number of regions.  This is for maximizing the
 | |
|  * monitoring accuracy under the dynamically changeable access patterns.  If a
 | |
|  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
 | |
|  * it.
 | |
|  */
 | |
| static void kdamond_split_regions(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 	unsigned int nr_regions = 0;
 | |
| 	static unsigned int last_nr_regions;
 | |
| 	int nr_subregions = 2;
 | |
| 
 | |
| 	damon_for_each_target(t, ctx)
 | |
| 		nr_regions += damon_nr_regions(t);
 | |
| 
 | |
| 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
 | |
| 		return;
 | |
| 
 | |
| 	/* Maybe the middle of the region has different access frequency */
 | |
| 	if (last_nr_regions == nr_regions &&
 | |
| 			nr_regions < ctx->attrs.max_nr_regions / 3)
 | |
| 		nr_subregions = 3;
 | |
| 
 | |
| 	damon_for_each_target(t, ctx)
 | |
| 		damon_split_regions_of(t, nr_subregions);
 | |
| 
 | |
| 	last_nr_regions = nr_regions;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether it is time to check and apply the operations-related data
 | |
|  * structures.
 | |
|  *
 | |
|  * Returns true if it is.
 | |
|  */
 | |
| static bool kdamond_need_update_operations(struct damon_ctx *ctx)
 | |
| {
 | |
| 	return damon_check_reset_time_interval(&ctx->last_ops_update,
 | |
| 			ctx->attrs.ops_update_interval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether current monitoring should be stopped
 | |
|  *
 | |
|  * The monitoring is stopped when either the user requested to stop, or all
 | |
|  * monitoring targets are invalid.
 | |
|  *
 | |
|  * Returns true if need to stop current monitoring.
 | |
|  */
 | |
| static bool kdamond_need_stop(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damon_target *t;
 | |
| 
 | |
| 	if (kthread_should_stop())
 | |
| 		return true;
 | |
| 
 | |
| 	if (!ctx->ops.target_valid)
 | |
| 		return false;
 | |
| 
 | |
| 	damon_for_each_target(t, ctx) {
 | |
| 		if (ctx->ops.target_valid(t))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
 | |
| {
 | |
| 	struct sysinfo i;
 | |
| 
 | |
| 	switch (metric) {
 | |
| 	case DAMOS_WMARK_FREE_MEM_RATE:
 | |
| 		si_meminfo(&i);
 | |
| 		return i.freeram * 1000 / i.totalram;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns zero if the scheme is active.  Else, returns time to wait for next
 | |
|  * watermark check in micro-seconds.
 | |
|  */
 | |
| static unsigned long damos_wmark_wait_us(struct damos *scheme)
 | |
| {
 | |
| 	unsigned long metric;
 | |
| 
 | |
| 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
 | |
| 		return 0;
 | |
| 
 | |
| 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
 | |
| 	/* higher than high watermark or lower than low watermark */
 | |
| 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
 | |
| 		if (scheme->wmarks.activated)
 | |
| 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
 | |
| 					scheme->action,
 | |
| 					metric > scheme->wmarks.high ?
 | |
| 					"high" : "low");
 | |
| 		scheme->wmarks.activated = false;
 | |
| 		return scheme->wmarks.interval;
 | |
| 	}
 | |
| 
 | |
| 	/* inactive and higher than middle watermark */
 | |
| 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
 | |
| 			!scheme->wmarks.activated)
 | |
| 		return scheme->wmarks.interval;
 | |
| 
 | |
| 	if (!scheme->wmarks.activated)
 | |
| 		pr_debug("activate a scheme (%d)\n", scheme->action);
 | |
| 	scheme->wmarks.activated = true;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kdamond_usleep(unsigned long usecs)
 | |
| {
 | |
| 	/* See Documentation/timers/timers-howto.rst for the thresholds */
 | |
| 	if (usecs > 20 * USEC_PER_MSEC)
 | |
| 		schedule_timeout_idle(usecs_to_jiffies(usecs));
 | |
| 	else
 | |
| 		usleep_idle_range(usecs, usecs + 1);
 | |
| }
 | |
| 
 | |
| /* Returns negative error code if it's not activated but should return */
 | |
| static int kdamond_wait_activation(struct damon_ctx *ctx)
 | |
| {
 | |
| 	struct damos *s;
 | |
| 	unsigned long wait_time;
 | |
| 	unsigned long min_wait_time = 0;
 | |
| 	bool init_wait_time = false;
 | |
| 
 | |
| 	while (!kdamond_need_stop(ctx)) {
 | |
| 		damon_for_each_scheme(s, ctx) {
 | |
| 			wait_time = damos_wmark_wait_us(s);
 | |
| 			if (!init_wait_time || wait_time < min_wait_time) {
 | |
| 				init_wait_time = true;
 | |
| 				min_wait_time = wait_time;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!min_wait_time)
 | |
| 			return 0;
 | |
| 
 | |
| 		kdamond_usleep(min_wait_time);
 | |
| 
 | |
| 		if (ctx->callback.after_wmarks_check &&
 | |
| 				ctx->callback.after_wmarks_check(ctx))
 | |
| 			break;
 | |
| 	}
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The monitoring daemon that runs as a kernel thread
 | |
|  */
 | |
| static int kdamond_fn(void *data)
 | |
| {
 | |
| 	struct damon_ctx *ctx = data;
 | |
| 	struct damon_target *t;
 | |
| 	struct damon_region *r, *next;
 | |
| 	unsigned int max_nr_accesses = 0;
 | |
| 	unsigned long sz_limit = 0;
 | |
| 
 | |
| 	pr_debug("kdamond (%d) starts\n", current->pid);
 | |
| 
 | |
| 	if (ctx->ops.init)
 | |
| 		ctx->ops.init(ctx);
 | |
| 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
 | |
| 		goto done;
 | |
| 
 | |
| 	sz_limit = damon_region_sz_limit(ctx);
 | |
| 
 | |
| 	while (!kdamond_need_stop(ctx)) {
 | |
| 		if (kdamond_wait_activation(ctx))
 | |
| 			break;
 | |
| 
 | |
| 		if (ctx->ops.prepare_access_checks)
 | |
| 			ctx->ops.prepare_access_checks(ctx);
 | |
| 		if (ctx->callback.after_sampling &&
 | |
| 				ctx->callback.after_sampling(ctx))
 | |
| 			break;
 | |
| 
 | |
| 		kdamond_usleep(ctx->attrs.sample_interval);
 | |
| 
 | |
| 		if (ctx->ops.check_accesses)
 | |
| 			max_nr_accesses = ctx->ops.check_accesses(ctx);
 | |
| 
 | |
| 		if (kdamond_aggregate_interval_passed(ctx)) {
 | |
| 			kdamond_merge_regions(ctx,
 | |
| 					max_nr_accesses / 10,
 | |
| 					sz_limit);
 | |
| 			if (ctx->callback.after_aggregation &&
 | |
| 					ctx->callback.after_aggregation(ctx))
 | |
| 				break;
 | |
| 			if (!list_empty(&ctx->schemes))
 | |
| 				kdamond_apply_schemes(ctx);
 | |
| 			kdamond_reset_aggregated(ctx);
 | |
| 			kdamond_split_regions(ctx);
 | |
| 			if (ctx->ops.reset_aggregated)
 | |
| 				ctx->ops.reset_aggregated(ctx);
 | |
| 		}
 | |
| 
 | |
| 		if (kdamond_need_update_operations(ctx)) {
 | |
| 			if (ctx->ops.update)
 | |
| 				ctx->ops.update(ctx);
 | |
| 			sz_limit = damon_region_sz_limit(ctx);
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	damon_for_each_target(t, ctx) {
 | |
| 		damon_for_each_region_safe(r, next, t)
 | |
| 			damon_destroy_region(r, t);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->callback.before_terminate)
 | |
| 		ctx->callback.before_terminate(ctx);
 | |
| 	if (ctx->ops.cleanup)
 | |
| 		ctx->ops.cleanup(ctx);
 | |
| 
 | |
| 	pr_debug("kdamond (%d) finishes\n", current->pid);
 | |
| 	mutex_lock(&ctx->kdamond_lock);
 | |
| 	ctx->kdamond = NULL;
 | |
| 	mutex_unlock(&ctx->kdamond_lock);
 | |
| 
 | |
| 	mutex_lock(&damon_lock);
 | |
| 	nr_running_ctxs--;
 | |
| 	if (!nr_running_ctxs && running_exclusive_ctxs)
 | |
| 		running_exclusive_ctxs = false;
 | |
| 	mutex_unlock(&damon_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * struct damon_system_ram_region - System RAM resource address region of
 | |
|  *				    [@start, @end).
 | |
|  * @start:	Start address of the region (inclusive).
 | |
|  * @end:	End address of the region (exclusive).
 | |
|  */
 | |
| struct damon_system_ram_region {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| };
 | |
| 
 | |
| static int walk_system_ram(struct resource *res, void *arg)
 | |
| {
 | |
| 	struct damon_system_ram_region *a = arg;
 | |
| 
 | |
| 	if (a->end - a->start < resource_size(res)) {
 | |
| 		a->start = res->start;
 | |
| 		a->end = res->end;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find biggest 'System RAM' resource and store its start and end address in
 | |
|  * @start and @end, respectively.  If no System RAM is found, returns false.
 | |
|  */
 | |
| static bool damon_find_biggest_system_ram(unsigned long *start,
 | |
| 						unsigned long *end)
 | |
| 
 | |
| {
 | |
| 	struct damon_system_ram_region arg = {};
 | |
| 
 | |
| 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
 | |
| 	if (arg.end <= arg.start)
 | |
| 		return false;
 | |
| 
 | |
| 	*start = arg.start;
 | |
| 	*end = arg.end;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * damon_set_region_biggest_system_ram_default() - Set the region of the given
 | |
|  * monitoring target as requested, or biggest 'System RAM'.
 | |
|  * @t:		The monitoring target to set the region.
 | |
|  * @start:	The pointer to the start address of the region.
 | |
|  * @end:	The pointer to the end address of the region.
 | |
|  *
 | |
|  * This function sets the region of @t as requested by @start and @end.  If the
 | |
|  * values of @start and @end are zero, however, this function finds the biggest
 | |
|  * 'System RAM' resource and sets the region to cover the resource.  In the
 | |
|  * latter case, this function saves the start and end addresses of the resource
 | |
|  * in @start and @end, respectively.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| int damon_set_region_biggest_system_ram_default(struct damon_target *t,
 | |
| 			unsigned long *start, unsigned long *end)
 | |
| {
 | |
| 	struct damon_addr_range addr_range;
 | |
| 
 | |
| 	if (*start > *end)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!*start && !*end &&
 | |
| 		!damon_find_biggest_system_ram(start, end))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr_range.start = *start;
 | |
| 	addr_range.end = *end;
 | |
| 	return damon_set_regions(t, &addr_range, 1);
 | |
| }
 | |
| 
 | |
| static int __init damon_init(void)
 | |
| {
 | |
| 	damon_region_cache = KMEM_CACHE(damon_region, 0);
 | |
| 	if (unlikely(!damon_region_cache)) {
 | |
| 		pr_err("creating damon_region_cache fails\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| subsys_initcall(damon_init);
 | |
| 
 | |
| #include "core-test.h"
 |