279 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * IEEE754 floating point arithmetic
 | |
|  * single precision: MADDF.f (Fused Multiply Add)
 | |
|  * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
 | |
|  *
 | |
|  * MIPS floating point support
 | |
|  * Copyright (C) 2015 Imagination Technologies, Ltd.
 | |
|  * Author: Markos Chandras <markos.chandras@imgtec.com>
 | |
|  */
 | |
| 
 | |
| #include "ieee754sp.h"
 | |
| 
 | |
| 
 | |
| static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
 | |
| 				 union ieee754sp y, enum maddf_flags flags)
 | |
| {
 | |
| 	int re;
 | |
| 	int rs;
 | |
| 	unsigned int rm;
 | |
| 	u64 rm64;
 | |
| 	u64 zm64;
 | |
| 	int s;
 | |
| 
 | |
| 	COMPXSP;
 | |
| 	COMPYSP;
 | |
| 	COMPZSP;
 | |
| 
 | |
| 	EXPLODEXSP;
 | |
| 	EXPLODEYSP;
 | |
| 	EXPLODEZSP;
 | |
| 
 | |
| 	FLUSHXSP;
 | |
| 	FLUSHYSP;
 | |
| 	FLUSHZSP;
 | |
| 
 | |
| 	ieee754_clearcx();
 | |
| 
 | |
| 	rs = xs ^ ys;
 | |
| 	if (flags & MADDF_NEGATE_PRODUCT)
 | |
| 		rs ^= 1;
 | |
| 	if (flags & MADDF_NEGATE_ADDITION)
 | |
| 		zs ^= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the cases when at least one of x, y or z is a NaN.
 | |
| 	 * Order of precedence is sNaN, qNaN and z, x, y.
 | |
| 	 */
 | |
| 	if (zc == IEEE754_CLASS_SNAN)
 | |
| 		return ieee754sp_nanxcpt(z);
 | |
| 	if (xc == IEEE754_CLASS_SNAN)
 | |
| 		return ieee754sp_nanxcpt(x);
 | |
| 	if (yc == IEEE754_CLASS_SNAN)
 | |
| 		return ieee754sp_nanxcpt(y);
 | |
| 	if (zc == IEEE754_CLASS_QNAN)
 | |
| 		return z;
 | |
| 	if (xc == IEEE754_CLASS_QNAN)
 | |
| 		return x;
 | |
| 	if (yc == IEEE754_CLASS_QNAN)
 | |
| 		return y;
 | |
| 
 | |
| 	if (zc == IEEE754_CLASS_DNORM)
 | |
| 		SPDNORMZ;
 | |
| 	/* ZERO z cases are handled separately below */
 | |
| 
 | |
| 	switch (CLPAIR(xc, yc)) {
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Infinity handling
 | |
| 	 */
 | |
| 	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
 | |
| 	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
 | |
| 		ieee754_setcx(IEEE754_INVALID_OPERATION);
 | |
| 		return ieee754sp_indef();
 | |
| 
 | |
| 	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
 | |
| 	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
 | |
| 	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
 | |
| 	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
 | |
| 	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
 | |
| 		if ((zc == IEEE754_CLASS_INF) && (zs != rs)) {
 | |
| 			/*
 | |
| 			 * Cases of addition of infinities with opposite signs
 | |
| 			 * or subtraction of infinities with same signs.
 | |
| 			 */
 | |
| 			ieee754_setcx(IEEE754_INVALID_OPERATION);
 | |
| 			return ieee754sp_indef();
 | |
| 		}
 | |
| 		/*
 | |
| 		 * z is here either not an infinity, or an infinity having the
 | |
| 		 * same sign as product (x*y). The result must be an infinity,
 | |
| 		 * and its sign is determined only by the sign of product (x*y).
 | |
| 		 */
 | |
| 		return ieee754sp_inf(rs);
 | |
| 
 | |
| 	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
 | |
| 	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
 | |
| 	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
 | |
| 	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
 | |
| 	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
 | |
| 		if (zc == IEEE754_CLASS_INF)
 | |
| 			return ieee754sp_inf(zs);
 | |
| 		if (zc == IEEE754_CLASS_ZERO) {
 | |
| 			/* Handle cases +0 + (-0) and similar ones. */
 | |
| 			if (zs == rs)
 | |
| 				/*
 | |
| 				 * Cases of addition of zeros of equal signs
 | |
| 				 * or subtraction of zeroes of opposite signs.
 | |
| 				 * The sign of the resulting zero is in any
 | |
| 				 * such case determined only by the sign of z.
 | |
| 				 */
 | |
| 				return z;
 | |
| 
 | |
| 			return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
 | |
| 		}
 | |
| 		/* x*y is here 0, and z is not 0, so just return z */
 | |
| 		return z;
 | |
| 
 | |
| 	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
 | |
| 		SPDNORMX;
 | |
| 		fallthrough;
 | |
| 	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
 | |
| 		if (zc == IEEE754_CLASS_INF)
 | |
| 			return ieee754sp_inf(zs);
 | |
| 		SPDNORMY;
 | |
| 		break;
 | |
| 
 | |
| 	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
 | |
| 		if (zc == IEEE754_CLASS_INF)
 | |
| 			return ieee754sp_inf(zs);
 | |
| 		SPDNORMX;
 | |
| 		break;
 | |
| 
 | |
| 	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
 | |
| 		if (zc == IEEE754_CLASS_INF)
 | |
| 			return ieee754sp_inf(zs);
 | |
| 		/* continue to real computations */
 | |
| 	}
 | |
| 
 | |
| 	/* Finally get to do some computation */
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the multiplication bit first
 | |
| 	 *
 | |
| 	 * rm = xm * ym, re = xe + ye basically
 | |
| 	 *
 | |
| 	 * At this point xm and ym should have been normalized.
 | |
| 	 */
 | |
| 
 | |
| 	/* rm = xm * ym, re = xe+ye basically */
 | |
| 	assert(xm & SP_HIDDEN_BIT);
 | |
| 	assert(ym & SP_HIDDEN_BIT);
 | |
| 
 | |
| 	re = xe + ye;
 | |
| 
 | |
| 	/* Multiple 24 bit xm and ym to give 48 bit results */
 | |
| 	rm64 = (uint64_t)xm * ym;
 | |
| 
 | |
| 	/* Shunt to top of word */
 | |
| 	rm64 = rm64 << 16;
 | |
| 
 | |
| 	/* Put explicit bit at bit 62 if necessary */
 | |
| 	if ((int64_t) rm64 < 0) {
 | |
| 		rm64 = rm64 >> 1;
 | |
| 		re++;
 | |
| 	}
 | |
| 
 | |
| 	assert(rm64 & (1 << 62));
 | |
| 
 | |
| 	if (zc == IEEE754_CLASS_ZERO) {
 | |
| 		/*
 | |
| 		 * Move explicit bit from bit 62 to bit 26 since the
 | |
| 		 * ieee754sp_format code expects the mantissa to be
 | |
| 		 * 27 bits wide (24 + 3 rounding bits).
 | |
| 		 */
 | |
| 		rm = XSPSRS64(rm64, (62 - 26));
 | |
| 		return ieee754sp_format(rs, re, rm);
 | |
| 	}
 | |
| 
 | |
| 	/* Move explicit bit from bit 23 to bit 62 */
 | |
| 	zm64 = (uint64_t)zm << (62 - 23);
 | |
| 	assert(zm64 & (1 << 62));
 | |
| 
 | |
| 	/* Make the exponents the same */
 | |
| 	if (ze > re) {
 | |
| 		/*
 | |
| 		 * Have to shift r fraction right to align.
 | |
| 		 */
 | |
| 		s = ze - re;
 | |
| 		rm64 = XSPSRS64(rm64, s);
 | |
| 		re += s;
 | |
| 	} else if (re > ze) {
 | |
| 		/*
 | |
| 		 * Have to shift z fraction right to align.
 | |
| 		 */
 | |
| 		s = re - ze;
 | |
| 		zm64 = XSPSRS64(zm64, s);
 | |
| 		ze += s;
 | |
| 	}
 | |
| 	assert(ze == re);
 | |
| 	assert(ze <= SP_EMAX);
 | |
| 
 | |
| 	/* Do the addition */
 | |
| 	if (zs == rs) {
 | |
| 		/*
 | |
| 		 * Generate 64 bit result by adding two 63 bit numbers
 | |
| 		 * leaving result in zm64, zs and ze.
 | |
| 		 */
 | |
| 		zm64 = zm64 + rm64;
 | |
| 		if ((int64_t)zm64 < 0) {	/* carry out */
 | |
| 			zm64 = XSPSRS1(zm64);
 | |
| 			ze++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (zm64 >= rm64) {
 | |
| 			zm64 = zm64 - rm64;
 | |
| 		} else {
 | |
| 			zm64 = rm64 - zm64;
 | |
| 			zs = rs;
 | |
| 		}
 | |
| 		if (zm64 == 0)
 | |
| 			return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
 | |
| 
 | |
| 		/*
 | |
| 		 * Put explicit bit at bit 62 if necessary.
 | |
| 		 */
 | |
| 		while ((zm64 >> 62) == 0) {
 | |
| 			zm64 <<= 1;
 | |
| 			ze--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move explicit bit from bit 62 to bit 26 since the
 | |
| 	 * ieee754sp_format code expects the mantissa to be
 | |
| 	 * 27 bits wide (24 + 3 rounding bits).
 | |
| 	 */
 | |
| 	zm = XSPSRS64(zm64, (62 - 26));
 | |
| 
 | |
| 	return ieee754sp_format(zs, ze, zm);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, 0);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, 0);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION);
 | |
| }
 | |
| 
 | |
| union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x,
 | |
| 				union ieee754sp y)
 | |
| {
 | |
| 	return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
 | |
| }
 |