3321 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3321 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * KVM/MIPS: Support for hardware virtualization extensions
 | |
|  *
 | |
|  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 | |
|  * Authors: Yann Le Du <ledu@kymasys.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cacheops.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/fpu.h>
 | |
| #include <asm/hazards.h>
 | |
| #include <asm/inst.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/r4kcache.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/tlbex.h>
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| 
 | |
| #include "interrupt.h"
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| #include "loongson_regs.h"
 | |
| #endif
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| /* Pointers to last VCPU loaded on each physical CPU */
 | |
| static struct kvm_vcpu *last_vcpu[NR_CPUS];
 | |
| /* Pointers to last VCPU executed on each physical CPU */
 | |
| static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * Number of guest VTLB entries to use, so we can catch inconsistency between
 | |
|  * CPUs.
 | |
|  */
 | |
| static unsigned int kvm_vz_guest_vtlb_size;
 | |
| 
 | |
| static inline long kvm_vz_read_gc0_ebase(void)
 | |
| {
 | |
| 	if (sizeof(long) == 8 && cpu_has_ebase_wg)
 | |
| 		return read_gc0_ebase_64();
 | |
| 	else
 | |
| 		return read_gc0_ebase();
 | |
| }
 | |
| 
 | |
| static inline void kvm_vz_write_gc0_ebase(long v)
 | |
| {
 | |
| 	/*
 | |
| 	 * First write with WG=1 to write upper bits, then write again in case
 | |
| 	 * WG should be left at 0.
 | |
| 	 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
 | |
| 	 */
 | |
| 	if (sizeof(long) == 8 &&
 | |
| 	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
 | |
| 		write_gc0_ebase_64(v | MIPS_EBASE_WG);
 | |
| 		write_gc0_ebase_64(v);
 | |
| 	} else {
 | |
| 		write_gc0_ebase(v | MIPS_EBASE_WG);
 | |
| 		write_gc0_ebase(v);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These Config bits may be writable by the guest:
 | |
|  * Config:	[K23, KU] (!TLB), K0
 | |
|  * Config1:	(none)
 | |
|  * Config2:	[TU, SU] (impl)
 | |
|  * Config3:	ISAOnExc
 | |
|  * Config4:	FTLBPageSize
 | |
|  * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR
 | |
|  */
 | |
| 
 | |
| static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return CONF_CM_CMASK;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return MIPS_CONF3_ISA_OE;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* no need to be exact */
 | |
| 	return MIPS_CONF4_VFTLBPAGESIZE;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
 | |
| 
 | |
| 	/* Permit MSAEn changes if MSA supported and enabled */
 | |
| 	if (kvm_mips_guest_has_msa(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF5_MSAEN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 | |
| 	 * feature exists according to FIR register.
 | |
| 	 */
 | |
| 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 | |
| 		if (cpu_has_ufr)
 | |
| 			mask |= MIPS_CONF5_UFR;
 | |
| 		if (cpu_has_fre)
 | |
| 			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
 | |
| 	}
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VZ optionally allows these additional Config bits to be written by root:
 | |
|  * Config:	M, [MT]
 | |
|  * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP
 | |
|  * Config2:	M
 | |
|  * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
 | |
|  *		VInt, SP, CDMM, MT, SM, TL]
 | |
|  * Config4:	M, [VTLBSizeExt, MMUSizeExt]
 | |
|  * Config5:	MRP
 | |
|  */
 | |
| 
 | |
| static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
 | |
| 
 | |
| 	/* Permit FPU to be present if FPU is supported */
 | |
| 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF1_FP;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
 | |
| 		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
 | |
| 
 | |
| 	/* Permit MSA to be present if MSA is supported */
 | |
| 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF3_MSA;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
 | |
| }
 | |
| 
 | |
| static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vz_config6_guest_wrmask(vcpu) |
 | |
| 		LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
 | |
| }
 | |
| 
 | |
| static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
 | |
| {
 | |
| 	/* VZ guest has already converted gva to gpa */
 | |
| 	return gva;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 | |
| {
 | |
| 	set_bit(priority, &vcpu->arch.pending_exceptions);
 | |
| 	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 | |
| }
 | |
| 
 | |
| static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 | |
| {
 | |
| 	clear_bit(priority, &vcpu->arch.pending_exceptions);
 | |
| 	set_bit(priority, &vcpu->arch.pending_exceptions_clr);
 | |
| }
 | |
| 
 | |
| static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 | |
| 	 * cp0 accesses
 | |
| 	 */
 | |
| 	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 | |
| }
 | |
| 
 | |
| static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 | |
| 	 * cp0 accesses
 | |
| 	 */
 | |
| 	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
 | |
| }
 | |
| 
 | |
| static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mips_interrupt *irq)
 | |
| {
 | |
| 	int intr = (int)irq->irq;
 | |
| 
 | |
| 	/*
 | |
| 	 * interrupts are asynchronous to vcpu execution therefore defer guest
 | |
| 	 * cp0 accesses
 | |
| 	 */
 | |
| 	kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
 | |
| }
 | |
| 
 | |
| static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_mips_interrupt *irq)
 | |
| {
 | |
| 	int intr = (int)irq->irq;
 | |
| 
 | |
| 	/*
 | |
| 	 * interrupts are asynchronous to vcpu execution therefore defer guest
 | |
| 	 * cp0 accesses
 | |
| 	 */
 | |
| 	kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
 | |
| }
 | |
| 
 | |
| static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 | |
| 				 u32 cause)
 | |
| {
 | |
| 	u32 irq = (priority < MIPS_EXC_MAX) ?
 | |
| 		kvm_priority_to_irq[priority] : 0;
 | |
| 
 | |
| 	switch (priority) {
 | |
| 	case MIPS_EXC_INT_TIMER:
 | |
| 		set_gc0_cause(C_TI);
 | |
| 		break;
 | |
| 
 | |
| 	case MIPS_EXC_INT_IO_1:
 | |
| 	case MIPS_EXC_INT_IO_2:
 | |
| 	case MIPS_EXC_INT_IPI_1:
 | |
| 	case MIPS_EXC_INT_IPI_2:
 | |
| 		if (cpu_has_guestctl2)
 | |
| 			set_c0_guestctl2(irq);
 | |
| 		else
 | |
| 			set_gc0_cause(irq);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(priority, &vcpu->arch.pending_exceptions);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 | |
| 			       u32 cause)
 | |
| {
 | |
| 	u32 irq = (priority < MIPS_EXC_MAX) ?
 | |
| 		kvm_priority_to_irq[priority] : 0;
 | |
| 
 | |
| 	switch (priority) {
 | |
| 	case MIPS_EXC_INT_TIMER:
 | |
| 		/*
 | |
| 		 * Explicitly clear irq associated with Cause.IP[IPTI]
 | |
| 		 * if GuestCtl2 virtual interrupt register not
 | |
| 		 * supported or if not using GuestCtl2 Hardware Clear.
 | |
| 		 */
 | |
| 		if (cpu_has_guestctl2) {
 | |
| 			if (!(read_c0_guestctl2() & (irq << 14)))
 | |
| 				clear_c0_guestctl2(irq);
 | |
| 		} else {
 | |
| 			clear_gc0_cause(irq);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case MIPS_EXC_INT_IO_1:
 | |
| 	case MIPS_EXC_INT_IO_2:
 | |
| 	case MIPS_EXC_INT_IPI_1:
 | |
| 	case MIPS_EXC_INT_IPI_2:
 | |
| 		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */
 | |
| 		if (cpu_has_guestctl2) {
 | |
| 			if (!(read_c0_guestctl2() & (irq << 14)))
 | |
| 				clear_c0_guestctl2(irq);
 | |
| 		} else {
 | |
| 			clear_gc0_cause(irq);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VZ guest timer handling.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used
 | |
|  *		instead of software emulation of guest timer.
 | |
|  *		false otherwise.
 | |
|  */
 | |
| static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_mips_count_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Chosen frequency must match real frequency */
 | |
| 	if (mips_hpt_frequency != vcpu->arch.count_hz)
 | |
| 		return false;
 | |
| 
 | |
| 	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
 | |
| 	if (current_cpu_data.gtoffset_mask != 0xffffffff)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _kvm_vz_restore_stimer() - Restore soft timer state.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @compare:	CP0_Compare register value, restored by caller.
 | |
|  * @cause:	CP0_Cause register to restore.
 | |
|  *
 | |
|  * Restore VZ state relating to the soft timer. The hard timer can be enabled
 | |
|  * later.
 | |
|  */
 | |
| static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
 | |
| 				   u32 cause)
 | |
| {
 | |
| 	/*
 | |
| 	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
 | |
| 	 * after Guest CP0_Compare.
 | |
| 	 */
 | |
| 	write_c0_gtoffset(compare - read_c0_count());
 | |
| 
 | |
| 	back_to_back_c0_hazard();
 | |
| 	write_gc0_cause(cause);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _kvm_vz_restore_htimer() - Restore hard timer state.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @compare:	CP0_Compare register value, restored by caller.
 | |
|  * @cause:	CP0_Cause register to restore.
 | |
|  *
 | |
|  * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
 | |
|  * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
 | |
|  */
 | |
| static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
 | |
| 				   u32 compare, u32 cause)
 | |
| {
 | |
| 	u32 start_count, after_count;
 | |
| 	ktime_t freeze_time;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
 | |
| 	 * this with interrupts disabled to avoid latency.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
 | |
| 	write_c0_gtoffset(start_count - read_c0_count());
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* restore guest CP0_Cause, as TI may already be set */
 | |
| 	back_to_back_c0_hazard();
 | |
| 	write_gc0_cause(cause);
 | |
| 
 | |
| 	/*
 | |
| 	 * The above sequence isn't atomic and would result in lost timer
 | |
| 	 * interrupts if we're not careful. Detect if a timer interrupt is due
 | |
| 	 * and assert it.
 | |
| 	 */
 | |
| 	back_to_back_c0_hazard();
 | |
| 	after_count = read_gc0_count();
 | |
| 	if (after_count - start_count > compare - start_count - 1)
 | |
| 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_restore_timer() - Restore timer state.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Restore soft timer state from saved context.
 | |
|  */
 | |
| static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	u32 cause, compare;
 | |
| 
 | |
| 	compare = kvm_read_sw_gc0_compare(cop0);
 | |
| 	cause = kvm_read_sw_gc0_cause(cop0);
 | |
| 
 | |
| 	write_gc0_compare(compare);
 | |
| 	_kvm_vz_restore_stimer(vcpu, compare, cause);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_acquire_htimer() - Switch to hard timer state.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Restore hard timer state on top of existing soft timer state if possible.
 | |
|  *
 | |
|  * Since hard timer won't remain active over preemption, preemption should be
 | |
|  * disabled by the caller.
 | |
|  */
 | |
| void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 gctl0;
 | |
| 
 | |
| 	gctl0 = read_c0_guestctl0();
 | |
| 	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
 | |
| 		/* enable guest access to hard timer */
 | |
| 		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
 | |
| 
 | |
| 		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
 | |
| 				       read_gc0_cause());
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @compare:	Pointer to write compare value to.
 | |
|  * @cause:	Pointer to write cause value to.
 | |
|  *
 | |
|  * Save VZ guest timer state and switch to software emulation of guest CP0
 | |
|  * timer. The hard timer must already be in use, so preemption should be
 | |
|  * disabled.
 | |
|  */
 | |
| static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
 | |
| 				u32 *out_compare, u32 *out_cause)
 | |
| {
 | |
| 	u32 cause, compare, before_count, end_count;
 | |
| 	ktime_t before_time;
 | |
| 
 | |
| 	compare = read_gc0_compare();
 | |
| 	*out_compare = compare;
 | |
| 
 | |
| 	before_time = ktime_get();
 | |
| 
 | |
| 	/*
 | |
| 	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
 | |
| 	 * at which no pending timer interrupt is missing.
 | |
| 	 */
 | |
| 	before_count = read_gc0_count();
 | |
| 	back_to_back_c0_hazard();
 | |
| 	cause = read_gc0_cause();
 | |
| 	*out_cause = cause;
 | |
| 
 | |
| 	/*
 | |
| 	 * Record a final CP0_Count which we will transfer to the soft-timer.
 | |
| 	 * This is recorded *after* saving CP0_Cause, so we don't get any timer
 | |
| 	 * interrupts from just after the final CP0_Count point.
 | |
| 	 */
 | |
| 	back_to_back_c0_hazard();
 | |
| 	end_count = read_gc0_count();
 | |
| 
 | |
| 	/*
 | |
| 	 * The above sequence isn't atomic, so we could miss a timer interrupt
 | |
| 	 * between reading CP0_Cause and end_count. Detect and record any timer
 | |
| 	 * interrupt due between before_count and end_count.
 | |
| 	 */
 | |
| 	if (end_count - before_count > compare - before_count - 1)
 | |
| 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore soft-timer, ignoring a small amount of negative drift due to
 | |
| 	 * delay between freeze_hrtimer and setting CP0_GTOffset.
 | |
| 	 */
 | |
| 	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_save_timer() - Save guest timer state.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Save VZ guest timer state and switch to soft guest timer if hard timer was in
 | |
|  * use.
 | |
|  */
 | |
| static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	u32 gctl0, compare, cause;
 | |
| 
 | |
| 	gctl0 = read_c0_guestctl0();
 | |
| 	if (gctl0 & MIPS_GCTL0_GT) {
 | |
| 		/* disable guest use of hard timer */
 | |
| 		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 | |
| 
 | |
| 		/* save hard timer state */
 | |
| 		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 | |
| 	} else {
 | |
| 		compare = read_gc0_compare();
 | |
| 		cause = read_gc0_cause();
 | |
| 	}
 | |
| 
 | |
| 	/* save timer-related state to VCPU context */
 | |
| 	kvm_write_sw_gc0_cause(cop0, cause);
 | |
| 	kvm_write_sw_gc0_compare(cop0, compare);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Transfers the state of the hard guest timer to the soft guest timer, leaving
 | |
|  * guest state intact so it can continue to be used with the soft timer.
 | |
|  */
 | |
| void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 gctl0, compare, cause;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	gctl0 = read_c0_guestctl0();
 | |
| 	if (gctl0 & MIPS_GCTL0_GT) {
 | |
| 		/* disable guest use of timer */
 | |
| 		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 | |
| 
 | |
| 		/* switch to soft timer */
 | |
| 		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 | |
| 
 | |
| 		/* leave soft timer in usable state */
 | |
| 		_kvm_vz_restore_stimer(vcpu, compare, cause);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_eva_access() - Find whether an instruction is an EVA memory accessor.
 | |
|  * @inst:	32-bit instruction encoding.
 | |
|  *
 | |
|  * Finds whether @inst encodes an EVA memory access instruction, which would
 | |
|  * indicate that emulation of it should access the user mode address space
 | |
|  * instead of the kernel mode address space. This matters for MUSUK segments
 | |
|  * which are TLB mapped for user mode but unmapped for kernel mode.
 | |
|  *
 | |
|  * Returns:	Whether @inst encodes an EVA accessor instruction.
 | |
|  */
 | |
| static bool is_eva_access(union mips_instruction inst)
 | |
| {
 | |
| 	if (inst.spec3_format.opcode != spec3_op)
 | |
| 		return false;
 | |
| 
 | |
| 	switch (inst.spec3_format.func) {
 | |
| 	case lwle_op:
 | |
| 	case lwre_op:
 | |
| 	case cachee_op:
 | |
| 	case sbe_op:
 | |
| 	case she_op:
 | |
| 	case sce_op:
 | |
| 	case swe_op:
 | |
| 	case swle_op:
 | |
| 	case swre_op:
 | |
| 	case prefe_op:
 | |
| 	case lbue_op:
 | |
| 	case lhue_op:
 | |
| 	case lbe_op:
 | |
| 	case lhe_op:
 | |
| 	case lle_op:
 | |
| 	case lwe_op:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_eva_am_mapped() - Find whether an access mode is mapped.
 | |
|  * @vcpu:	KVM VCPU state.
 | |
|  * @am:		3-bit encoded access mode.
 | |
|  * @eu:		Segment becomes unmapped and uncached when Status.ERL=1.
 | |
|  *
 | |
|  * Decode @am to find whether it encodes a mapped segment for the current VCPU
 | |
|  * state. Where necessary @eu and the actual instruction causing the fault are
 | |
|  * taken into account to make the decision.
 | |
|  *
 | |
|  * Returns:	Whether the VCPU faulted on a TLB mapped address.
 | |
|  */
 | |
| static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
 | |
| {
 | |
| 	u32 am_lookup;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Interpret access control mode. We assume address errors will already
 | |
| 	 * have been caught by the guest, leaving us with:
 | |
| 	 *      AM      UM  SM  KM  31..24 23..16
 | |
| 	 * UK    0 000          Unm   0      0
 | |
| 	 * MK    1 001          TLB   1
 | |
| 	 * MSK   2 010      TLB TLB   1
 | |
| 	 * MUSK  3 011  TLB TLB TLB   1
 | |
| 	 * MUSUK 4 100  TLB TLB Unm   0      1
 | |
| 	 * USK   5 101      Unm Unm   0      0
 | |
| 	 * -     6 110                0      0
 | |
| 	 * UUSK  7 111  Unm Unm Unm   0      0
 | |
| 	 *
 | |
| 	 * We shift a magic value by AM across the sign bit to find if always
 | |
| 	 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
 | |
| 	 */
 | |
| 	am_lookup = 0x70080000 << am;
 | |
| 	if ((s32)am_lookup < 0) {
 | |
| 		/*
 | |
| 		 * MK, MSK, MUSK
 | |
| 		 * Always TLB mapped, unless SegCtl.EU && ERL
 | |
| 		 */
 | |
| 		if (!eu || !(read_gc0_status() & ST0_ERL))
 | |
| 			return true;
 | |
| 	} else {
 | |
| 		am_lookup <<= 8;
 | |
| 		if ((s32)am_lookup < 0) {
 | |
| 			union mips_instruction inst;
 | |
| 			unsigned int status;
 | |
| 			u32 *opc;
 | |
| 
 | |
| 			/*
 | |
| 			 * MUSUK
 | |
| 			 * TLB mapped if not in kernel mode
 | |
| 			 */
 | |
| 			status = read_gc0_status();
 | |
| 			if (!(status & (ST0_EXL | ST0_ERL)) &&
 | |
| 			    (status & ST0_KSU))
 | |
| 				return true;
 | |
| 			/*
 | |
| 			 * EVA access instructions in kernel
 | |
| 			 * mode access user address space.
 | |
| 			 */
 | |
| 			opc = (u32 *)vcpu->arch.pc;
 | |
| 			if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
 | |
| 				opc += 1;
 | |
| 			err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 			if (!err && is_eva_access(inst))
 | |
| 				return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
 | |
|  * @vcpu:	KVM VCPU state.
 | |
|  * @gva:	Guest virtual address to convert.
 | |
|  * @gpa:	Output guest physical address.
 | |
|  *
 | |
|  * Convert a guest virtual address (GVA) which is valid according to the guest
 | |
|  * context, to a guest physical address (GPA).
 | |
|  *
 | |
|  * Returns:	0 on success.
 | |
|  *		-errno on failure.
 | |
|  */
 | |
| static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 | |
| 			     unsigned long *gpa)
 | |
| {
 | |
| 	u32 gva32 = gva;
 | |
| 	unsigned long segctl;
 | |
| 
 | |
| 	if ((long)gva == (s32)gva32) {
 | |
| 		/* Handle canonical 32-bit virtual address */
 | |
| 		if (cpu_guest_has_segments) {
 | |
| 			unsigned long mask, pa;
 | |
| 
 | |
| 			switch (gva32 >> 29) {
 | |
| 			case 0:
 | |
| 			case 1: /* CFG5 (1GB) */
 | |
| 				segctl = read_gc0_segctl2() >> 16;
 | |
| 				mask = (unsigned long)0xfc0000000ull;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3: /* CFG4 (1GB) */
 | |
| 				segctl = read_gc0_segctl2();
 | |
| 				mask = (unsigned long)0xfc0000000ull;
 | |
| 				break;
 | |
| 			case 4: /* CFG3 (512MB) */
 | |
| 				segctl = read_gc0_segctl1() >> 16;
 | |
| 				mask = (unsigned long)0xfe0000000ull;
 | |
| 				break;
 | |
| 			case 5: /* CFG2 (512MB) */
 | |
| 				segctl = read_gc0_segctl1();
 | |
| 				mask = (unsigned long)0xfe0000000ull;
 | |
| 				break;
 | |
| 			case 6: /* CFG1 (512MB) */
 | |
| 				segctl = read_gc0_segctl0() >> 16;
 | |
| 				mask = (unsigned long)0xfe0000000ull;
 | |
| 				break;
 | |
| 			case 7: /* CFG0 (512MB) */
 | |
| 				segctl = read_gc0_segctl0();
 | |
| 				mask = (unsigned long)0xfe0000000ull;
 | |
| 				break;
 | |
| 			default:
 | |
| 				/*
 | |
| 				 * GCC 4.9 isn't smart enough to figure out that
 | |
| 				 * segctl and mask are always initialised.
 | |
| 				 */
 | |
| 				unreachable();
 | |
| 			}
 | |
| 
 | |
| 			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
 | |
| 					     segctl & 0x0008))
 | |
| 				goto tlb_mapped;
 | |
| 
 | |
| 			/* Unmapped, find guest physical address */
 | |
| 			pa = (segctl << 20) & mask;
 | |
| 			pa |= gva32 & ~mask;
 | |
| 			*gpa = pa;
 | |
| 			return 0;
 | |
| 		} else if ((s32)gva32 < (s32)0xc0000000) {
 | |
| 			/* legacy unmapped KSeg0 or KSeg1 */
 | |
| 			*gpa = gva32 & 0x1fffffff;
 | |
| 			return 0;
 | |
| 		}
 | |
| #ifdef CONFIG_64BIT
 | |
| 	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
 | |
| 		/* XKPHYS */
 | |
| 		if (cpu_guest_has_segments) {
 | |
| 			/*
 | |
| 			 * Each of the 8 regions can be overridden by SegCtl2.XR
 | |
| 			 * to use SegCtl1.XAM.
 | |
| 			 */
 | |
| 			segctl = read_gc0_segctl2();
 | |
| 			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
 | |
| 				segctl = read_gc0_segctl1();
 | |
| 				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
 | |
| 						     0))
 | |
| 					goto tlb_mapped;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Traditionally fully unmapped.
 | |
| 		 * Bits 61:59 specify the CCA, which we can just mask off here.
 | |
| 		 * Bits 58:PABITS should be zero, but we shouldn't have got here
 | |
| 		 * if it wasn't.
 | |
| 		 */
 | |
| 		*gpa = gva & 0x07ffffffffffffff;
 | |
| 		return 0;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| tlb_mapped:
 | |
| 	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
 | |
|  * @vcpu:	KVM VCPU state.
 | |
|  * @badvaddr:	Root BadVAddr.
 | |
|  * @gpa:	Output guest physical address.
 | |
|  *
 | |
|  * VZ implementations are permitted to report guest virtual addresses (GVA) in
 | |
|  * BadVAddr on a root exception during guest execution, instead of the more
 | |
|  * convenient guest physical addresses (GPA). When we get a GVA, this function
 | |
|  * converts it to a GPA, taking into account guest segmentation and guest TLB
 | |
|  * state.
 | |
|  *
 | |
|  * Returns:	0 on success.
 | |
|  *		-errno on failure.
 | |
|  */
 | |
| static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
 | |
| 				  unsigned long *gpa)
 | |
| {
 | |
| 	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
 | |
| 				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 | |
| 
 | |
| 	/* If BadVAddr is GPA, then all is well in the world */
 | |
| 	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
 | |
| 		*gpa = badvaddr;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise we'd expect it to be GVA ... */
 | |
| 	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
 | |
| 		 "Unexpected gexccode %#x\n", gexccode))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* ... and we need to perform the GVA->GPA translation in software */
 | |
| 	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
 | |
| }
 | |
| 
 | |
| static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 *opc = (u32 *) vcpu->arch.pc;
 | |
| 	u32 cause = vcpu->arch.host_cp0_cause;
 | |
| 	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 | |
| 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 | |
| 	u32 inst = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 *  Fetch the instruction.
 | |
| 	 */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 	kvm_get_badinstr(opc, vcpu, &inst);
 | |
| 
 | |
| 	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
 | |
| 		exccode, opc, inst, badvaddr,
 | |
| 		read_gc0_status());
 | |
| 	kvm_arch_vcpu_dump_regs(vcpu);
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 	return RESUME_HOST;
 | |
| }
 | |
| 
 | |
| static unsigned long mips_process_maar(unsigned int op, unsigned long val)
 | |
| {
 | |
| 	/* Mask off unused bits */
 | |
| 	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
 | |
| 
 | |
| 	if (read_gc0_pagegrain() & PG_ELPA)
 | |
| 		mask |= 0x00ffffff00000000ull;
 | |
| 	if (cpu_guest_has_mvh)
 | |
| 		mask |= MIPS_MAAR_VH;
 | |
| 
 | |
| 	/* Set or clear VH */
 | |
| 	if (op == mtc_op) {
 | |
| 		/* clear VH */
 | |
| 		val &= ~MIPS_MAAR_VH;
 | |
| 	} else if (op == dmtc_op) {
 | |
| 		/* set VH to match VL */
 | |
| 		val &= ~MIPS_MAAR_VH;
 | |
| 		if (val & MIPS_MAAR_VL)
 | |
| 			val |= MIPS_MAAR_VH;
 | |
| 	}
 | |
| 
 | |
| 	return val & mask;
 | |
| }
 | |
| 
 | |
| static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	val &= MIPS_MAARI_INDEX;
 | |
| 	if (val == MIPS_MAARI_INDEX)
 | |
| 		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
 | |
| 	else if (val < ARRAY_SIZE(vcpu->arch.maar))
 | |
| 		kvm_write_sw_gc0_maari(cop0, val);
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
 | |
| 					      u32 *opc, u32 cause,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	u32 rt, rd, sel;
 | |
| 	unsigned long curr_pc;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	if (inst.co_format.co) {
 | |
| 		switch (inst.co_format.func) {
 | |
| 		case wait_op:
 | |
| 			er = kvm_mips_emul_wait(vcpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			er = EMULATE_FAIL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rt = inst.c0r_format.rt;
 | |
| 		rd = inst.c0r_format.rd;
 | |
| 		sel = inst.c0r_format.sel;
 | |
| 
 | |
| 		switch (inst.c0r_format.rs) {
 | |
| 		case dmfc_op:
 | |
| 		case mfc_op:
 | |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 | |
| 			cop0->stat[rd][sel]++;
 | |
| #endif
 | |
| 			if (rd == MIPS_CP0_COUNT &&
 | |
| 			    sel == 0) {			/* Count */
 | |
| 				val = kvm_mips_read_count(vcpu);
 | |
| 			} else if (rd == MIPS_CP0_COMPARE &&
 | |
| 				   sel == 0) {		/* Compare */
 | |
| 				val = read_gc0_compare();
 | |
| 			} else if (rd == MIPS_CP0_LLADDR &&
 | |
| 				   sel == 0) {		/* LLAddr */
 | |
| 				if (cpu_guest_has_rw_llb)
 | |
| 					val = read_gc0_lladdr() &
 | |
| 						MIPS_LLADDR_LLB;
 | |
| 				else
 | |
| 					val = 0;
 | |
| 			} else if (rd == MIPS_CP0_LLADDR &&
 | |
| 				   sel == 1 &&		/* MAAR */
 | |
| 				   cpu_guest_has_maar &&
 | |
| 				   !cpu_guest_has_dyn_maar) {
 | |
| 				/* MAARI must be in range */
 | |
| 				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 | |
| 						ARRAY_SIZE(vcpu->arch.maar));
 | |
| 				val = vcpu->arch.maar[
 | |
| 					kvm_read_sw_gc0_maari(cop0)];
 | |
| 			} else if ((rd == MIPS_CP0_PRID &&
 | |
| 				    (sel == 0 ||	/* PRid */
 | |
| 				     sel == 2 ||	/* CDMMBase */
 | |
| 				     sel == 3)) ||	/* CMGCRBase */
 | |
| 				   (rd == MIPS_CP0_STATUS &&
 | |
| 				    (sel == 2 ||	/* SRSCtl */
 | |
| 				     sel == 3)) ||	/* SRSMap */
 | |
| 				   (rd == MIPS_CP0_CONFIG &&
 | |
| 				    (sel == 6 ||	/* Config6 */
 | |
| 				     sel == 7)) ||	/* Config7 */
 | |
| 				   (rd == MIPS_CP0_LLADDR &&
 | |
| 				    (sel == 2) &&	/* MAARI */
 | |
| 				    cpu_guest_has_maar &&
 | |
| 				    !cpu_guest_has_dyn_maar) ||
 | |
| 				   (rd == MIPS_CP0_ERRCTL &&
 | |
| 				    (sel == 0))) {	/* ErrCtl */
 | |
| 				val = cop0->reg[rd][sel];
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| 			} else if (rd == MIPS_CP0_DIAG &&
 | |
| 				   (sel == 0)) {	/* Diag */
 | |
| 				val = cop0->reg[rd][sel];
 | |
| #endif
 | |
| 			} else {
 | |
| 				val = 0;
 | |
| 				er = EMULATE_FAIL;
 | |
| 			}
 | |
| 
 | |
| 			if (er != EMULATE_FAIL) {
 | |
| 				/* Sign extend */
 | |
| 				if (inst.c0r_format.rs == mfc_op)
 | |
| 					val = (int)val;
 | |
| 				vcpu->arch.gprs[rt] = val;
 | |
| 			}
 | |
| 
 | |
| 			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
 | |
| 					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
 | |
| 				      KVM_TRACE_COP0(rd, sel), val);
 | |
| 			break;
 | |
| 
 | |
| 		case dmtc_op:
 | |
| 		case mtc_op:
 | |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 | |
| 			cop0->stat[rd][sel]++;
 | |
| #endif
 | |
| 			val = vcpu->arch.gprs[rt];
 | |
| 			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
 | |
| 					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
 | |
| 				      KVM_TRACE_COP0(rd, sel), val);
 | |
| 
 | |
| 			if (rd == MIPS_CP0_COUNT &&
 | |
| 			    sel == 0) {			/* Count */
 | |
| 				kvm_vz_lose_htimer(vcpu);
 | |
| 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
 | |
| 			} else if (rd == MIPS_CP0_COMPARE &&
 | |
| 				   sel == 0) {		/* Compare */
 | |
| 				kvm_mips_write_compare(vcpu,
 | |
| 						       vcpu->arch.gprs[rt],
 | |
| 						       true);
 | |
| 			} else if (rd == MIPS_CP0_LLADDR &&
 | |
| 				   sel == 0) {		/* LLAddr */
 | |
| 				/*
 | |
| 				 * P5600 generates GPSI on guest MTC0 LLAddr.
 | |
| 				 * Only allow the guest to clear LLB.
 | |
| 				 */
 | |
| 				if (cpu_guest_has_rw_llb &&
 | |
| 				    !(val & MIPS_LLADDR_LLB))
 | |
| 					write_gc0_lladdr(0);
 | |
| 			} else if (rd == MIPS_CP0_LLADDR &&
 | |
| 				   sel == 1 &&		/* MAAR */
 | |
| 				   cpu_guest_has_maar &&
 | |
| 				   !cpu_guest_has_dyn_maar) {
 | |
| 				val = mips_process_maar(inst.c0r_format.rs,
 | |
| 							val);
 | |
| 
 | |
| 				/* MAARI must be in range */
 | |
| 				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 | |
| 						ARRAY_SIZE(vcpu->arch.maar));
 | |
| 				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
 | |
| 									val;
 | |
| 			} else if (rd == MIPS_CP0_LLADDR &&
 | |
| 				   (sel == 2) &&	/* MAARI */
 | |
| 				   cpu_guest_has_maar &&
 | |
| 				   !cpu_guest_has_dyn_maar) {
 | |
| 				kvm_write_maari(vcpu, val);
 | |
| 			} else if (rd == MIPS_CP0_CONFIG &&
 | |
| 				   (sel == 6)) {
 | |
| 				cop0->reg[rd][sel] = (int)val;
 | |
| 			} else if (rd == MIPS_CP0_ERRCTL &&
 | |
| 				   (sel == 0)) {	/* ErrCtl */
 | |
| 				/* ignore the written value */
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| 			} else if (rd == MIPS_CP0_DIAG &&
 | |
| 				   (sel == 0)) {	/* Diag */
 | |
| 				unsigned long flags;
 | |
| 
 | |
| 				local_irq_save(flags);
 | |
| 				if (val & LOONGSON_DIAG_BTB) {
 | |
| 					/* Flush BTB */
 | |
| 					set_c0_diag(LOONGSON_DIAG_BTB);
 | |
| 				}
 | |
| 				if (val & LOONGSON_DIAG_ITLB) {
 | |
| 					/* Flush ITLB */
 | |
| 					set_c0_diag(LOONGSON_DIAG_ITLB);
 | |
| 				}
 | |
| 				if (val & LOONGSON_DIAG_DTLB) {
 | |
| 					/* Flush DTLB */
 | |
| 					set_c0_diag(LOONGSON_DIAG_DTLB);
 | |
| 				}
 | |
| 				if (val & LOONGSON_DIAG_VTLB) {
 | |
| 					/* Flush VTLB */
 | |
| 					kvm_loongson_clear_guest_vtlb();
 | |
| 				}
 | |
| 				if (val & LOONGSON_DIAG_FTLB) {
 | |
| 					/* Flush FTLB */
 | |
| 					kvm_loongson_clear_guest_ftlb();
 | |
| 				}
 | |
| 				local_irq_restore(flags);
 | |
| #endif
 | |
| 			} else {
 | |
| 				er = EMULATE_FAIL;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Rollback PC only if emulation was unsuccessful */
 | |
| 	if (er == EMULATE_FAIL) {
 | |
| 		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
 | |
| 			curr_pc, __func__, inst.word);
 | |
| 
 | |
| 		vcpu->arch.pc = curr_pc;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
 | |
| 					       u32 *opc, u32 cause,
 | |
| 					       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	u32 cache, op_inst, op, base;
 | |
| 	s16 offset;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long va, curr_pc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	base = inst.i_format.rs;
 | |
| 	op_inst = inst.i_format.rt;
 | |
| 	if (cpu_has_mips_r6)
 | |
| 		offset = inst.spec3_format.simmediate;
 | |
| 	else
 | |
| 		offset = inst.i_format.simmediate;
 | |
| 	cache = op_inst & CacheOp_Cache;
 | |
| 	op = op_inst & CacheOp_Op;
 | |
| 
 | |
| 	va = arch->gprs[base] + offset;
 | |
| 
 | |
| 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 		  cache, op, base, arch->gprs[base], offset);
 | |
| 
 | |
| 	/* Secondary or tirtiary cache ops ignored */
 | |
| 	if (cache != Cache_I && cache != Cache_D)
 | |
| 		return EMULATE_DONE;
 | |
| 
 | |
| 	switch (op_inst) {
 | |
| 	case Index_Invalidate_I:
 | |
| 		flush_icache_line_indexed(va);
 | |
| 		return EMULATE_DONE;
 | |
| 	case Index_Writeback_Inv_D:
 | |
| 		flush_dcache_line_indexed(va);
 | |
| 		return EMULATE_DONE;
 | |
| 	case Hit_Invalidate_I:
 | |
| 	case Hit_Invalidate_D:
 | |
| 	case Hit_Writeback_Inv_D:
 | |
| 		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
 | |
| 			/* We can just flush entire icache */
 | |
| 			local_flush_icache_range(0, 0);
 | |
| 			return EMULATE_DONE;
 | |
| 		}
 | |
| 
 | |
| 		/* So far, other platforms support guest hit cache ops */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
 | |
| 		offset);
 | |
| 	/* Rollback PC */
 | |
| 	vcpu->arch.pc = curr_pc;
 | |
| 
 | |
| 	return EMULATE_FAIL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
 | |
| 					      u32 *opc, u32 cause,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int rs, rd;
 | |
| 	unsigned int hostcfg;
 | |
| 	unsigned long curr_pc;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	rs = inst.loongson3_lscsr_format.rs;
 | |
| 	rd = inst.loongson3_lscsr_format.rd;
 | |
| 	switch (inst.loongson3_lscsr_format.fr) {
 | |
| 	case 0x8:  /* Read CPUCFG */
 | |
| 		++vcpu->stat.vz_cpucfg_exits;
 | |
| 		hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
 | |
| 
 | |
| 		switch (vcpu->arch.gprs[rs]) {
 | |
| 		case LOONGSON_CFG0:
 | |
| 			vcpu->arch.gprs[rd] = 0x14c000;
 | |
| 			break;
 | |
| 		case LOONGSON_CFG1:
 | |
| 			hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
 | |
| 				    LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
 | |
| 				    LOONGSON_CFG1_SFBP);
 | |
| 			vcpu->arch.gprs[rd] = hostcfg;
 | |
| 			break;
 | |
| 		case LOONGSON_CFG2:
 | |
| 			hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
 | |
| 				    LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
 | |
| 			vcpu->arch.gprs[rd] = hostcfg;
 | |
| 			break;
 | |
| 		case LOONGSON_CFG3:
 | |
| 			vcpu->arch.gprs[rd] = hostcfg;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Don't export any other advanced features to guest */
 | |
| 			vcpu->arch.gprs[rd] = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
 | |
| 			inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Rollback PC only if emulation was unsuccessful */
 | |
| 	if (er == EMULATE_FAIL) {
 | |
| 		kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
 | |
| 			curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
 | |
| 
 | |
| 		vcpu->arch.pc = curr_pc;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
 | |
| 						     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	union mips_instruction inst;
 | |
| 	int rd, rt, sel;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 *  Fetch the instruction.
 | |
| 	 */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 	if (err)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	switch (inst.r_format.opcode) {
 | |
| 	case cop0_op:
 | |
| 		er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
 | |
| 		break;
 | |
| #ifndef CONFIG_CPU_MIPSR6
 | |
| 	case cache_op:
 | |
| 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
 | |
| 		er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| 	case lwc2_op:
 | |
| 		er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
 | |
| 		break;
 | |
| #endif
 | |
| 	case spec3_op:
 | |
| 		switch (inst.spec3_format.func) {
 | |
| #ifdef CONFIG_CPU_MIPSR6
 | |
| 		case cache6_op:
 | |
| 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
 | |
| 			er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
 | |
| 			break;
 | |
| #endif
 | |
| 		case rdhwr_op:
 | |
| 			if (inst.r_format.rs || (inst.r_format.re >> 3))
 | |
| 				goto unknown;
 | |
| 
 | |
| 			rd = inst.r_format.rd;
 | |
| 			rt = inst.r_format.rt;
 | |
| 			sel = inst.r_format.re & 0x7;
 | |
| 
 | |
| 			switch (rd) {
 | |
| 			case MIPS_HWR_CC:	/* Read count register */
 | |
| 				arch->gprs[rt] =
 | |
| 					(long)(int)kvm_mips_read_count(vcpu);
 | |
| 				break;
 | |
| 			default:
 | |
| 				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
 | |
| 					      KVM_TRACE_HWR(rd, sel), 0);
 | |
| 				goto unknown;
 | |
| 			}
 | |
| 
 | |
| 			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
 | |
| 				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
 | |
| 
 | |
| 			er = update_pc(vcpu, cause);
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto unknown;
 | |
| 		}
 | |
| 		break;
 | |
| unknown:
 | |
| 
 | |
| 	default:
 | |
| 		kvm_err("GPSI exception not supported (%p/%#x)\n",
 | |
| 				opc, inst.word);
 | |
| 		kvm_arch_vcpu_dump_regs(vcpu);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
 | |
| 						     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	union mips_instruction inst;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 *  Fetch the instruction.
 | |
| 	 */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 	if (err)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	/* complete MTC0 on behalf of guest and advance EPC */
 | |
| 	if (inst.c0r_format.opcode == cop0_op &&
 | |
| 	    inst.c0r_format.rs == mtc_op &&
 | |
| 	    inst.c0r_format.z == 0) {
 | |
| 		int rt = inst.c0r_format.rt;
 | |
| 		int rd = inst.c0r_format.rd;
 | |
| 		int sel = inst.c0r_format.sel;
 | |
| 		unsigned int val = arch->gprs[rt];
 | |
| 		unsigned int old_val, change;
 | |
| 
 | |
| 		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
 | |
| 			      val);
 | |
| 
 | |
| 		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
 | |
| 			/* FR bit should read as zero if no FPU */
 | |
| 			if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 | |
| 				val &= ~(ST0_CU1 | ST0_FR);
 | |
| 
 | |
| 			/*
 | |
| 			 * Also don't allow FR to be set if host doesn't support
 | |
| 			 * it.
 | |
| 			 */
 | |
| 			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 | |
| 				val &= ~ST0_FR;
 | |
| 
 | |
| 			old_val = read_gc0_status();
 | |
| 			change = val ^ old_val;
 | |
| 
 | |
| 			if (change & ST0_FR) {
 | |
| 				/*
 | |
| 				 * FPU and Vector register state is made
 | |
| 				 * UNPREDICTABLE by a change of FR, so don't
 | |
| 				 * even bother saving it.
 | |
| 				 */
 | |
| 				kvm_drop_fpu(vcpu);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If MSA state is already live, it is undefined how it
 | |
| 			 * interacts with FR=0 FPU state, and we don't want to
 | |
| 			 * hit reserved instruction exceptions trying to save
 | |
| 			 * the MSA state later when CU=1 && FR=1, so play it
 | |
| 			 * safe and save it first.
 | |
| 			 */
 | |
| 			if (change & ST0_CU1 && !(val & ST0_FR) &&
 | |
| 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
 | |
| 				kvm_lose_fpu(vcpu);
 | |
| 
 | |
| 			write_gc0_status(val);
 | |
| 		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
 | |
| 			u32 old_cause = read_gc0_cause();
 | |
| 			u32 change = old_cause ^ val;
 | |
| 
 | |
| 			/* DC bit enabling/disabling timer? */
 | |
| 			if (change & CAUSEF_DC) {
 | |
| 				if (val & CAUSEF_DC) {
 | |
| 					kvm_vz_lose_htimer(vcpu);
 | |
| 					kvm_mips_count_disable_cause(vcpu);
 | |
| 				} else {
 | |
| 					kvm_mips_count_enable_cause(vcpu);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Only certain bits are RW to the guest */
 | |
| 			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
 | |
| 				   CAUSEF_IP0 | CAUSEF_IP1);
 | |
| 
 | |
| 			/* WP can only be cleared */
 | |
| 			change &= ~CAUSEF_WP | old_cause;
 | |
| 
 | |
| 			write_gc0_cause(old_cause ^ change);
 | |
| 		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
 | |
| 			write_gc0_intctl(val);
 | |
| 		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
 | |
| 			old_val = read_gc0_config5();
 | |
| 			change = val ^ old_val;
 | |
| 			/* Handle changes in FPU/MSA modes */
 | |
| 			preempt_disable();
 | |
| 
 | |
| 			/*
 | |
| 			 * Propagate FRE changes immediately if the FPU
 | |
| 			 * context is already loaded.
 | |
| 			 */
 | |
| 			if (change & MIPS_CONF5_FRE &&
 | |
| 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
 | |
| 				change_c0_config5(MIPS_CONF5_FRE, val);
 | |
| 
 | |
| 			preempt_enable();
 | |
| 
 | |
| 			val = old_val ^
 | |
| 				(change & kvm_vz_config5_guest_wrmask(vcpu));
 | |
| 			write_gc0_config5(val);
 | |
| 		} else {
 | |
| 			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
 | |
| 			    opc, inst.word);
 | |
| 			er = EMULATE_FAIL;
 | |
| 		}
 | |
| 
 | |
| 		if (er != EMULATE_FAIL)
 | |
| 			er = update_pc(vcpu, cause);
 | |
| 	} else {
 | |
| 		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
 | |
| 			opc, inst.word);
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
 | |
| 						     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Presumably this is due to MC (guest mode change), so lets trace some
 | |
| 	 * relevant info.
 | |
| 	 */
 | |
| 	trace_kvm_guest_mode_change(vcpu);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
 | |
| 						   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er;
 | |
| 	union mips_instruction inst;
 | |
| 	unsigned long curr_pc;
 | |
| 	int err;
 | |
| 
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 	if (err)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	er = kvm_mips_emul_hypcall(vcpu, inst);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		vcpu->arch.pc = curr_pc;
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
 | |
| 							u32 cause,
 | |
| 							u32 *opc,
 | |
| 							struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 inst;
 | |
| 
 | |
| 	/*
 | |
| 	 *  Fetch the instruction.
 | |
| 	 */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 	kvm_get_badinstr(opc, vcpu, &inst);
 | |
| 
 | |
| 	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
 | |
| 		gexccode, opc, inst, read_gc0_status());
 | |
| 
 | |
| 	return EMULATE_FAIL;
 | |
| }
 | |
| 
 | |
| static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 *opc = (u32 *) vcpu->arch.pc;
 | |
| 	u32 cause = vcpu->arch.host_cp0_cause;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
 | |
| 			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 | |
| 	int ret = RESUME_GUEST;
 | |
| 
 | |
| 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
 | |
| 	switch (gexccode) {
 | |
| 	case MIPS_GCTL0_GEXC_GPSI:
 | |
| 		++vcpu->stat.vz_gpsi_exits;
 | |
| 		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_GSFC:
 | |
| 		++vcpu->stat.vz_gsfc_exits;
 | |
| 		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_HC:
 | |
| 		++vcpu->stat.vz_hc_exits;
 | |
| 		er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_GRR:
 | |
| 		++vcpu->stat.vz_grr_exits;
 | |
| 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
 | |
| 						       vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_GVA:
 | |
| 		++vcpu->stat.vz_gva_exits;
 | |
| 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
 | |
| 						       vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_GHFC:
 | |
| 		++vcpu->stat.vz_ghfc_exits;
 | |
| 		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
 | |
| 		break;
 | |
| 	case MIPS_GCTL0_GEXC_GPA:
 | |
| 		++vcpu->stat.vz_gpa_exits;
 | |
| 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
 | |
| 						       vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		++vcpu->stat.vz_resvd_exits;
 | |
| 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
 | |
| 						       vcpu);
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (er == EMULATE_DONE) {
 | |
| 		ret = RESUME_GUEST;
 | |
| 	} else if (er == EMULATE_HYPERCALL) {
 | |
| 		ret = kvm_mips_handle_hypcall(vcpu);
 | |
| 	} else {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		ret = RESUME_HOST;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
 | |
|  * @vcpu:	Virtual CPU context.
 | |
|  *
 | |
|  * Handle when the guest attempts to use a coprocessor which hasn't been allowed
 | |
|  * by the root context.
 | |
|  */
 | |
| static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 cause = vcpu->arch.host_cp0_cause;
 | |
| 	enum emulation_result er = EMULATE_FAIL;
 | |
| 	int ret = RESUME_GUEST;
 | |
| 
 | |
| 	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
 | |
| 		/*
 | |
| 		 * If guest FPU not present, the FPU operation should have been
 | |
| 		 * treated as a reserved instruction!
 | |
| 		 * If FPU already in use, we shouldn't get this at all.
 | |
| 		 */
 | |
| 		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
 | |
| 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
 | |
| 			preempt_enable();
 | |
| 			return EMULATE_FAIL;
 | |
| 		}
 | |
| 
 | |
| 		kvm_own_fpu(vcpu);
 | |
| 		er = EMULATE_DONE;
 | |
| 	}
 | |
| 	/* other coprocessors not handled */
 | |
| 
 | |
| 	switch (er) {
 | |
| 	case EMULATE_DONE:
 | |
| 		ret = RESUME_GUEST;
 | |
| 		break;
 | |
| 
 | |
| 	case EMULATE_FAIL:
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		ret = RESUME_HOST;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
 | |
|  * @vcpu:	Virtual CPU context.
 | |
|  *
 | |
|  * Handle when the guest attempts to use MSA when it is disabled in the root
 | |
|  * context.
 | |
|  */
 | |
| static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If MSA not present or not exposed to guest or FR=0, the MSA operation
 | |
| 	 * should have been treated as a reserved instruction!
 | |
| 	 * Same if CU1=1, FR=0.
 | |
| 	 * If MSA already in use, we shouldn't get this at all.
 | |
| 	 */
 | |
| 	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
 | |
| 	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
 | |
| 	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
 | |
| 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		return RESUME_HOST;
 | |
| 	}
 | |
| 
 | |
| 	kvm_own_msa(vcpu);
 | |
| 
 | |
| 	return RESUME_GUEST;
 | |
| }
 | |
| 
 | |
| static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	u32 *opc = (u32 *) vcpu->arch.pc;
 | |
| 	u32 cause = vcpu->arch.host_cp0_cause;
 | |
| 	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
 | |
| 	union mips_instruction inst;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	int err, ret = RESUME_GUEST;
 | |
| 
 | |
| 	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
 | |
| 		/* A code fetch fault doesn't count as an MMIO */
 | |
| 		if (kvm_is_ifetch_fault(&vcpu->arch)) {
 | |
| 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 			return RESUME_HOST;
 | |
| 		}
 | |
| 
 | |
| 		/* Fetch the instruction */
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			opc += 1;
 | |
| 		err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 		if (err) {
 | |
| 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 			return RESUME_HOST;
 | |
| 		}
 | |
| 
 | |
| 		/* Treat as MMIO */
 | |
| 		er = kvm_mips_emulate_load(inst, cause, vcpu);
 | |
| 		if (er == EMULATE_FAIL) {
 | |
| 			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
 | |
| 				opc, badvaddr);
 | |
| 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (er == EMULATE_DONE) {
 | |
| 		ret = RESUME_GUEST;
 | |
| 	} else if (er == EMULATE_DO_MMIO) {
 | |
| 		run->exit_reason = KVM_EXIT_MMIO;
 | |
| 		ret = RESUME_HOST;
 | |
| 	} else {
 | |
| 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		ret = RESUME_HOST;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	u32 *opc = (u32 *) vcpu->arch.pc;
 | |
| 	u32 cause = vcpu->arch.host_cp0_cause;
 | |
| 	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
 | |
| 	union mips_instruction inst;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	int err;
 | |
| 	int ret = RESUME_GUEST;
 | |
| 
 | |
| 	/* Just try the access again if we couldn't do the translation */
 | |
| 	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
 | |
| 		return RESUME_GUEST;
 | |
| 	vcpu->arch.host_cp0_badvaddr = badvaddr;
 | |
| 
 | |
| 	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
 | |
| 		/* Fetch the instruction */
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			opc += 1;
 | |
| 		err = kvm_get_badinstr(opc, vcpu, &inst.word);
 | |
| 		if (err) {
 | |
| 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 			return RESUME_HOST;
 | |
| 		}
 | |
| 
 | |
| 		/* Treat as MMIO */
 | |
| 		er = kvm_mips_emulate_store(inst, cause, vcpu);
 | |
| 		if (er == EMULATE_FAIL) {
 | |
| 			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
 | |
| 				opc, badvaddr);
 | |
| 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (er == EMULATE_DONE) {
 | |
| 		ret = RESUME_GUEST;
 | |
| 	} else if (er == EMULATE_DO_MMIO) {
 | |
| 		run->exit_reason = KVM_EXIT_MMIO;
 | |
| 		ret = RESUME_HOST;
 | |
| 	} else {
 | |
| 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		ret = RESUME_HOST;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 kvm_vz_get_one_regs[] = {
 | |
| 	KVM_REG_MIPS_CP0_INDEX,
 | |
| 	KVM_REG_MIPS_CP0_ENTRYLO0,
 | |
| 	KVM_REG_MIPS_CP0_ENTRYLO1,
 | |
| 	KVM_REG_MIPS_CP0_CONTEXT,
 | |
| 	KVM_REG_MIPS_CP0_PAGEMASK,
 | |
| 	KVM_REG_MIPS_CP0_PAGEGRAIN,
 | |
| 	KVM_REG_MIPS_CP0_WIRED,
 | |
| 	KVM_REG_MIPS_CP0_HWRENA,
 | |
| 	KVM_REG_MIPS_CP0_BADVADDR,
 | |
| 	KVM_REG_MIPS_CP0_COUNT,
 | |
| 	KVM_REG_MIPS_CP0_ENTRYHI,
 | |
| 	KVM_REG_MIPS_CP0_COMPARE,
 | |
| 	KVM_REG_MIPS_CP0_STATUS,
 | |
| 	KVM_REG_MIPS_CP0_INTCTL,
 | |
| 	KVM_REG_MIPS_CP0_CAUSE,
 | |
| 	KVM_REG_MIPS_CP0_EPC,
 | |
| 	KVM_REG_MIPS_CP0_PRID,
 | |
| 	KVM_REG_MIPS_CP0_EBASE,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG1,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG2,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG3,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG4,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG5,
 | |
| 	KVM_REG_MIPS_CP0_CONFIG6,
 | |
| #ifdef CONFIG_64BIT
 | |
| 	KVM_REG_MIPS_CP0_XCONTEXT,
 | |
| #endif
 | |
| 	KVM_REG_MIPS_CP0_ERROREPC,
 | |
| 
 | |
| 	KVM_REG_MIPS_COUNT_CTL,
 | |
| 	KVM_REG_MIPS_COUNT_RESUME,
 | |
| 	KVM_REG_MIPS_COUNT_HZ,
 | |
| };
 | |
| 
 | |
| static u64 kvm_vz_get_one_regs_contextconfig[] = {
 | |
| 	KVM_REG_MIPS_CP0_CONTEXTCONFIG,
 | |
| #ifdef CONFIG_64BIT
 | |
| 	KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static u64 kvm_vz_get_one_regs_segments[] = {
 | |
| 	KVM_REG_MIPS_CP0_SEGCTL0,
 | |
| 	KVM_REG_MIPS_CP0_SEGCTL1,
 | |
| 	KVM_REG_MIPS_CP0_SEGCTL2,
 | |
| };
 | |
| 
 | |
| static u64 kvm_vz_get_one_regs_htw[] = {
 | |
| 	KVM_REG_MIPS_CP0_PWBASE,
 | |
| 	KVM_REG_MIPS_CP0_PWFIELD,
 | |
| 	KVM_REG_MIPS_CP0_PWSIZE,
 | |
| 	KVM_REG_MIPS_CP0_PWCTL,
 | |
| };
 | |
| 
 | |
| static u64 kvm_vz_get_one_regs_kscratch[] = {
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH1,
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH2,
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH3,
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH4,
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH5,
 | |
| 	KVM_REG_MIPS_CP0_KSCRATCH6,
 | |
| };
 | |
| 
 | |
| static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 
 | |
| 	ret = ARRAY_SIZE(kvm_vz_get_one_regs);
 | |
| 	if (cpu_guest_has_userlocal)
 | |
| 		++ret;
 | |
| 	if (cpu_guest_has_badinstr)
 | |
| 		++ret;
 | |
| 	if (cpu_guest_has_badinstrp)
 | |
| 		++ret;
 | |
| 	if (cpu_guest_has_contextconfig)
 | |
| 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
 | |
| 	if (cpu_guest_has_segments)
 | |
| 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
 | |
| 	if (cpu_guest_has_htw || cpu_guest_has_ldpte)
 | |
| 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
 | |
| 	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
 | |
| 		ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
 | |
| 	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 | |
| {
 | |
| 	u64 index;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (copy_to_user(indices, kvm_vz_get_one_regs,
 | |
| 			 sizeof(kvm_vz_get_one_regs)))
 | |
| 		return -EFAULT;
 | |
| 	indices += ARRAY_SIZE(kvm_vz_get_one_regs);
 | |
| 
 | |
| 	if (cpu_guest_has_userlocal) {
 | |
| 		index = KVM_REG_MIPS_CP0_USERLOCAL;
 | |
| 		if (copy_to_user(indices, &index, sizeof(index)))
 | |
| 			return -EFAULT;
 | |
| 		++indices;
 | |
| 	}
 | |
| 	if (cpu_guest_has_badinstr) {
 | |
| 		index = KVM_REG_MIPS_CP0_BADINSTR;
 | |
| 		if (copy_to_user(indices, &index, sizeof(index)))
 | |
| 			return -EFAULT;
 | |
| 		++indices;
 | |
| 	}
 | |
| 	if (cpu_guest_has_badinstrp) {
 | |
| 		index = KVM_REG_MIPS_CP0_BADINSTRP;
 | |
| 		if (copy_to_user(indices, &index, sizeof(index)))
 | |
| 			return -EFAULT;
 | |
| 		++indices;
 | |
| 	}
 | |
| 	if (cpu_guest_has_contextconfig) {
 | |
| 		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
 | |
| 				 sizeof(kvm_vz_get_one_regs_contextconfig)))
 | |
| 			return -EFAULT;
 | |
| 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
 | |
| 	}
 | |
| 	if (cpu_guest_has_segments) {
 | |
| 		if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
 | |
| 				 sizeof(kvm_vz_get_one_regs_segments)))
 | |
| 			return -EFAULT;
 | |
| 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
 | |
| 	}
 | |
| 	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
 | |
| 		if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
 | |
| 				 sizeof(kvm_vz_get_one_regs_htw)))
 | |
| 			return -EFAULT;
 | |
| 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
 | |
| 	}
 | |
| 	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
 | |
| 			index = KVM_REG_MIPS_CP0_MAAR(i);
 | |
| 			if (copy_to_user(indices, &index, sizeof(index)))
 | |
| 				return -EFAULT;
 | |
| 			++indices;
 | |
| 		}
 | |
| 
 | |
| 		index = KVM_REG_MIPS_CP0_MAARI;
 | |
| 		if (copy_to_user(indices, &index, sizeof(index)))
 | |
| 			return -EFAULT;
 | |
| 		++indices;
 | |
| 	}
 | |
| 	for (i = 0; i < 6; ++i) {
 | |
| 		if (!cpu_guest_has_kscr(i + 2))
 | |
| 			continue;
 | |
| 
 | |
| 		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
 | |
| 				 sizeof(kvm_vz_get_one_regs_kscratch[i])))
 | |
| 			return -EFAULT;
 | |
| 		++indices;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline s64 entrylo_kvm_to_user(unsigned long v)
 | |
| {
 | |
| 	s64 mask, ret = v;
 | |
| 
 | |
| 	if (BITS_PER_LONG == 32) {
 | |
| 		/*
 | |
| 		 * KVM API exposes 64-bit version of the register, so move the
 | |
| 		 * RI/XI bits up into place.
 | |
| 		 */
 | |
| 		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
 | |
| 		ret &= ~mask;
 | |
| 		ret |= ((s64)v & mask) << 32;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline unsigned long entrylo_user_to_kvm(s64 v)
 | |
| {
 | |
| 	unsigned long mask, ret = v;
 | |
| 
 | |
| 	if (BITS_PER_LONG == 32) {
 | |
| 		/*
 | |
| 		 * KVM API exposes 64-bit versiono of the register, so move the
 | |
| 		 * RI/XI bits down into place.
 | |
| 		 */
 | |
| 		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
 | |
| 		ret &= ~mask;
 | |
| 		ret |= (v >> 32) & mask;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
 | |
| 			      const struct kvm_one_reg *reg,
 | |
| 			      s64 *v)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	switch (reg->id) {
 | |
| 	case KVM_REG_MIPS_CP0_INDEX:
 | |
| 		*v = (long)read_gc0_index();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYLO0:
 | |
| 		*v = entrylo_kvm_to_user(read_gc0_entrylo0());
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYLO1:
 | |
| 		*v = entrylo_kvm_to_user(read_gc0_entrylo1());
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONTEXT:
 | |
| 		*v = (long)read_gc0_context();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
 | |
| 		if (!cpu_guest_has_contextconfig)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_contextconfig();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_USERLOCAL:
 | |
| 		if (!cpu_guest_has_userlocal)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_userlocal();
 | |
| 		break;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
 | |
| 		if (!cpu_guest_has_contextconfig)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_xcontextconfig();
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_REG_MIPS_CP0_PAGEMASK:
 | |
| 		*v = (long)read_gc0_pagemask();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PAGEGRAIN:
 | |
| 		*v = (long)read_gc0_pagegrain();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL0:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_segctl0();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL1:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_segctl1();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL2:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_segctl2();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWBASE:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_pwbase();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWFIELD:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_pwfield();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWSIZE:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_pwsize();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_WIRED:
 | |
| 		*v = (long)read_gc0_wired();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWCTL:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_pwctl();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_HWRENA:
 | |
| 		*v = (long)read_gc0_hwrena();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADVADDR:
 | |
| 		*v = (long)read_gc0_badvaddr();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADINSTR:
 | |
| 		if (!cpu_guest_has_badinstr)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_badinstr();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADINSTRP:
 | |
| 		if (!cpu_guest_has_badinstrp)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_badinstrp();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_COUNT:
 | |
| 		*v = kvm_mips_read_count(vcpu);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYHI:
 | |
| 		*v = (long)read_gc0_entryhi();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_COMPARE:
 | |
| 		*v = (long)read_gc0_compare();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_STATUS:
 | |
| 		*v = (long)read_gc0_status();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_INTCTL:
 | |
| 		*v = read_gc0_intctl();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CAUSE:
 | |
| 		*v = (long)read_gc0_cause();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_EPC:
 | |
| 		*v = (long)read_gc0_epc();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PRID:
 | |
| 		switch (boot_cpu_type()) {
 | |
| 		case CPU_CAVIUM_OCTEON3:
 | |
| 			/* Octeon III has a read-only guest.PRid */
 | |
| 			*v = read_gc0_prid();
 | |
| 			break;
 | |
| 		default:
 | |
| 			*v = (long)kvm_read_c0_guest_prid(cop0);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_EBASE:
 | |
| 		*v = kvm_vz_read_gc0_ebase();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG:
 | |
| 		*v = read_gc0_config();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG1:
 | |
| 		if (!cpu_guest_has_conf1)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_config1();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG2:
 | |
| 		if (!cpu_guest_has_conf2)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_config2();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG3:
 | |
| 		if (!cpu_guest_has_conf3)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_config3();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG4:
 | |
| 		if (!cpu_guest_has_conf4)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_config4();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG5:
 | |
| 		if (!cpu_guest_has_conf5)
 | |
| 			return -EINVAL;
 | |
| 		*v = read_gc0_config5();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG6:
 | |
| 		*v = kvm_read_sw_gc0_config6(cop0);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
 | |
| 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
 | |
| 			return -EINVAL;
 | |
| 		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
 | |
| 		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
 | |
| 			return -EINVAL;
 | |
| 		*v = vcpu->arch.maar[idx];
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_MAARI:
 | |
| 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
 | |
| 			return -EINVAL;
 | |
| 		*v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
 | |
| 		break;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	case KVM_REG_MIPS_CP0_XCONTEXT:
 | |
| 		*v = read_gc0_xcontext();
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_REG_MIPS_CP0_ERROREPC:
 | |
| 		*v = (long)read_gc0_errorepc();
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
 | |
| 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
 | |
| 		if (!cpu_guest_has_kscr(idx))
 | |
| 			return -EINVAL;
 | |
| 		switch (idx) {
 | |
| 		case 2:
 | |
| 			*v = (long)read_gc0_kscratch1();
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			*v = (long)read_gc0_kscratch2();
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			*v = (long)read_gc0_kscratch3();
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			*v = (long)read_gc0_kscratch4();
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			*v = (long)read_gc0_kscratch5();
 | |
| 			break;
 | |
| 		case 7:
 | |
| 			*v = (long)read_gc0_kscratch6();
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_CTL:
 | |
| 		*v = vcpu->arch.count_ctl;
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_RESUME:
 | |
| 		*v = ktime_to_ns(vcpu->arch.count_resume);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_HZ:
 | |
| 		*v = vcpu->arch.count_hz;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
 | |
| 			      const struct kvm_one_reg *reg,
 | |
| 			      s64 v)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	unsigned int idx;
 | |
| 	int ret = 0;
 | |
| 	unsigned int cur, change;
 | |
| 
 | |
| 	switch (reg->id) {
 | |
| 	case KVM_REG_MIPS_CP0_INDEX:
 | |
| 		write_gc0_index(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYLO0:
 | |
| 		write_gc0_entrylo0(entrylo_user_to_kvm(v));
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYLO1:
 | |
| 		write_gc0_entrylo1(entrylo_user_to_kvm(v));
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONTEXT:
 | |
| 		write_gc0_context(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
 | |
| 		if (!cpu_guest_has_contextconfig)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_contextconfig(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_USERLOCAL:
 | |
| 		if (!cpu_guest_has_userlocal)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_userlocal(v);
 | |
| 		break;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
 | |
| 		if (!cpu_guest_has_contextconfig)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_xcontextconfig(v);
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_REG_MIPS_CP0_PAGEMASK:
 | |
| 		write_gc0_pagemask(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PAGEGRAIN:
 | |
| 		write_gc0_pagegrain(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL0:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_segctl0(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL1:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_segctl1(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_SEGCTL2:
 | |
| 		if (!cpu_guest_has_segments)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_segctl2(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWBASE:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_pwbase(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWFIELD:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_pwfield(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWSIZE:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_pwsize(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_WIRED:
 | |
| 		change_gc0_wired(MIPSR6_WIRED_WIRED, v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PWCTL:
 | |
| 		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_pwctl(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_HWRENA:
 | |
| 		write_gc0_hwrena(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADVADDR:
 | |
| 		write_gc0_badvaddr(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADINSTR:
 | |
| 		if (!cpu_guest_has_badinstr)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_badinstr(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_BADINSTRP:
 | |
| 		if (!cpu_guest_has_badinstrp)
 | |
| 			return -EINVAL;
 | |
| 		write_gc0_badinstrp(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_COUNT:
 | |
| 		kvm_mips_write_count(vcpu, v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_ENTRYHI:
 | |
| 		write_gc0_entryhi(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_COMPARE:
 | |
| 		kvm_mips_write_compare(vcpu, v, false);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_STATUS:
 | |
| 		write_gc0_status(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_INTCTL:
 | |
| 		write_gc0_intctl(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CAUSE:
 | |
| 		/*
 | |
| 		 * If the timer is stopped or started (DC bit) it must look
 | |
| 		 * atomic with changes to the timer interrupt pending bit (TI).
 | |
| 		 * A timer interrupt should not happen in between.
 | |
| 		 */
 | |
| 		if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
 | |
| 			if (v & CAUSEF_DC) {
 | |
| 				/* disable timer first */
 | |
| 				kvm_mips_count_disable_cause(vcpu);
 | |
| 				change_gc0_cause((u32)~CAUSEF_DC, v);
 | |
| 			} else {
 | |
| 				/* enable timer last */
 | |
| 				change_gc0_cause((u32)~CAUSEF_DC, v);
 | |
| 				kvm_mips_count_enable_cause(vcpu);
 | |
| 			}
 | |
| 		} else {
 | |
| 			write_gc0_cause(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_EPC:
 | |
| 		write_gc0_epc(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_PRID:
 | |
| 		switch (boot_cpu_type()) {
 | |
| 		case CPU_CAVIUM_OCTEON3:
 | |
| 			/* Octeon III has a guest.PRid, but its read-only */
 | |
| 			break;
 | |
| 		default:
 | |
| 			kvm_write_c0_guest_prid(cop0, v);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_EBASE:
 | |
| 		kvm_vz_write_gc0_ebase(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG:
 | |
| 		cur = read_gc0_config();
 | |
| 		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG1:
 | |
| 		if (!cpu_guest_has_conf1)
 | |
| 			break;
 | |
| 		cur = read_gc0_config1();
 | |
| 		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config1(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG2:
 | |
| 		if (!cpu_guest_has_conf2)
 | |
| 			break;
 | |
| 		cur = read_gc0_config2();
 | |
| 		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config2(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG3:
 | |
| 		if (!cpu_guest_has_conf3)
 | |
| 			break;
 | |
| 		cur = read_gc0_config3();
 | |
| 		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config3(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG4:
 | |
| 		if (!cpu_guest_has_conf4)
 | |
| 			break;
 | |
| 		cur = read_gc0_config4();
 | |
| 		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config4(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG5:
 | |
| 		if (!cpu_guest_has_conf5)
 | |
| 			break;
 | |
| 		cur = read_gc0_config5();
 | |
| 		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			write_gc0_config5(v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_CONFIG6:
 | |
| 		cur = kvm_read_sw_gc0_config6(cop0);
 | |
| 		change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
 | |
| 		if (change) {
 | |
| 			v = cur ^ change;
 | |
| 			kvm_write_sw_gc0_config6(cop0, (int)v);
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
 | |
| 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
 | |
| 			return -EINVAL;
 | |
| 		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
 | |
| 		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
 | |
| 			return -EINVAL;
 | |
| 		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_MAARI:
 | |
| 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
 | |
| 			return -EINVAL;
 | |
| 		kvm_write_maari(vcpu, v);
 | |
| 		break;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	case KVM_REG_MIPS_CP0_XCONTEXT:
 | |
| 		write_gc0_xcontext(v);
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_REG_MIPS_CP0_ERROREPC:
 | |
| 		write_gc0_errorepc(v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
 | |
| 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
 | |
| 		if (!cpu_guest_has_kscr(idx))
 | |
| 			return -EINVAL;
 | |
| 		switch (idx) {
 | |
| 		case 2:
 | |
| 			write_gc0_kscratch1(v);
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			write_gc0_kscratch2(v);
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			write_gc0_kscratch3(v);
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			write_gc0_kscratch4(v);
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			write_gc0_kscratch5(v);
 | |
| 			break;
 | |
| 		case 7:
 | |
| 			write_gc0_kscratch6(v);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_CTL:
 | |
| 		ret = kvm_mips_set_count_ctl(vcpu, v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_RESUME:
 | |
| 		ret = kvm_mips_set_count_resume(vcpu, v);
 | |
| 		break;
 | |
| 	case KVM_REG_MIPS_COUNT_HZ:
 | |
| 		ret = kvm_mips_set_count_hz(vcpu, v);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache)
 | |
| static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long guestid = guestid_cache(cpu);
 | |
| 
 | |
| 	if (!(++guestid & GUESTID_MASK)) {
 | |
| 		if (cpu_has_vtag_icache)
 | |
| 			flush_icache_all();
 | |
| 
 | |
| 		if (!guestid)		/* fix version if needed */
 | |
| 			guestid = GUESTID_FIRST_VERSION;
 | |
| 
 | |
| 		++guestid;		/* guestid 0 reserved for root */
 | |
| 
 | |
| 		/* start new guestid cycle */
 | |
| 		kvm_vz_local_flush_roottlb_all_guests();
 | |
| 		kvm_vz_local_flush_guesttlb_all();
 | |
| 	}
 | |
| 
 | |
| 	guestid_cache(cpu) = guestid;
 | |
| }
 | |
| 
 | |
| /* Returns 1 if the guest TLB may be clobbered */
 | |
| static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!kvm_request_pending(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
 | |
| 		if (cpu_has_guestid) {
 | |
| 			/* Drop all GuestIDs for this VCPU */
 | |
| 			for_each_possible_cpu(i)
 | |
| 				vcpu->arch.vzguestid[i] = 0;
 | |
| 			/* This will clobber guest TLB contents too */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * For Root ASID Dealias (RAD) we don't do anything here, but we
 | |
| 		 * still need the request to ensure we recheck asid_flush_mask.
 | |
| 		 * We can still return 0 as only the root TLB will be affected
 | |
| 		 * by a root ASID flush.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int wired = read_gc0_wired();
 | |
| 	struct kvm_mips_tlb *tlbs;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Expand the wired TLB array if necessary */
 | |
| 	wired &= MIPSR6_WIRED_WIRED;
 | |
| 	if (wired > vcpu->arch.wired_tlb_limit) {
 | |
| 		tlbs = krealloc(vcpu->arch.wired_tlb, wired *
 | |
| 				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
 | |
| 		if (WARN_ON(!tlbs)) {
 | |
| 			/* Save whatever we can */
 | |
| 			wired = vcpu->arch.wired_tlb_limit;
 | |
| 		} else {
 | |
| 			vcpu->arch.wired_tlb = tlbs;
 | |
| 			vcpu->arch.wired_tlb_limit = wired;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (wired)
 | |
| 		/* Save wired entries from the guest TLB */
 | |
| 		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
 | |
| 	/* Invalidate any dropped entries since last time */
 | |
| 	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
 | |
| 		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
 | |
| 		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
 | |
| 		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
 | |
| 		vcpu->arch.wired_tlb[i].tlb_mask = 0;
 | |
| 	}
 | |
| 	vcpu->arch.wired_tlb_used = wired;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Load wired entries into the guest TLB */
 | |
| 	if (vcpu->arch.wired_tlb)
 | |
| 		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
 | |
| 				     vcpu->arch.wired_tlb_used);
 | |
| }
 | |
| 
 | |
| static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
 | |
| 	bool migrated;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we entering guest context on a different CPU to last time?
 | |
| 	 * If so, the VCPU's guest TLB state on this CPU may be stale.
 | |
| 	 */
 | |
| 	migrated = (vcpu->arch.last_exec_cpu != cpu);
 | |
| 	vcpu->arch.last_exec_cpu = cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
 | |
| 	 * remains set until another vcpu is loaded in.  As a rule GuestRID
 | |
| 	 * remains zeroed when in root context unless the kernel is busy
 | |
| 	 * manipulating guest tlb entries.
 | |
| 	 */
 | |
| 	if (cpu_has_guestid) {
 | |
| 		/*
 | |
| 		 * Check if our GuestID is of an older version and thus invalid.
 | |
| 		 *
 | |
| 		 * We also discard the stored GuestID if we've executed on
 | |
| 		 * another CPU, as the guest mappings may have changed without
 | |
| 		 * hypervisor knowledge.
 | |
| 		 */
 | |
| 		if (migrated ||
 | |
| 		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
 | |
| 					GUESTID_VERSION_MASK) {
 | |
| 			kvm_vz_get_new_guestid(cpu, vcpu);
 | |
| 			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
 | |
| 			trace_kvm_guestid_change(vcpu,
 | |
| 						 vcpu->arch.vzguestid[cpu]);
 | |
| 		}
 | |
| 
 | |
| 		/* Restore GuestID */
 | |
| 		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The Guest TLB only stores a single guest's TLB state, so
 | |
| 		 * flush it if another VCPU has executed on this CPU.
 | |
| 		 *
 | |
| 		 * We also flush if we've executed on another CPU, as the guest
 | |
| 		 * mappings may have changed without hypervisor knowledge.
 | |
| 		 */
 | |
| 		if (migrated || last_exec_vcpu[cpu] != vcpu)
 | |
| 			kvm_vz_local_flush_guesttlb_all();
 | |
| 		last_exec_vcpu[cpu] = vcpu;
 | |
| 
 | |
| 		/*
 | |
| 		 * Root ASID dealiases guest GPA mappings in the root TLB.
 | |
| 		 * Allocate new root ASID if needed.
 | |
| 		 */
 | |
| 		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
 | |
| 			get_new_mmu_context(gpa_mm);
 | |
| 		else
 | |
| 			check_mmu_context(gpa_mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	bool migrated, all;
 | |
| 
 | |
| 	/*
 | |
| 	 * Have we migrated to a different CPU?
 | |
| 	 * If so, any old guest TLB state may be stale.
 | |
| 	 */
 | |
| 	migrated = (vcpu->arch.last_sched_cpu != cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Was this the last VCPU to run on this CPU?
 | |
| 	 * If not, any old guest state from this VCPU will have been clobbered.
 | |
| 	 */
 | |
| 	all = migrated || (last_vcpu[cpu] != vcpu);
 | |
| 	last_vcpu[cpu] = vcpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore CP0_Wired unconditionally as we clear it after use, and
 | |
| 	 * restore wired guest TLB entries (while in guest context).
 | |
| 	 */
 | |
| 	kvm_restore_gc0_wired(cop0);
 | |
| 	if (current->flags & PF_VCPU) {
 | |
| 		tlbw_use_hazard();
 | |
| 		kvm_vz_vcpu_load_tlb(vcpu, cpu);
 | |
| 		kvm_vz_vcpu_load_wired(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore timer state regardless, as e.g. Cause.TI can change over time
 | |
| 	 * if left unmaintained.
 | |
| 	 */
 | |
| 	kvm_vz_restore_timer(vcpu);
 | |
| 
 | |
| 	/* Set MC bit if we want to trace guest mode changes */
 | |
| 	if (kvm_trace_guest_mode_change)
 | |
| 		set_c0_guestctl0(MIPS_GCTL0_MC);
 | |
| 	else
 | |
| 		clear_c0_guestctl0(MIPS_GCTL0_MC);
 | |
| 
 | |
| 	/* Don't bother restoring registers multiple times unless necessary */
 | |
| 	if (!all)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore config registers first, as some implementations restrict
 | |
| 	 * writes to other registers when the corresponding feature bits aren't
 | |
| 	 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
 | |
| 	 */
 | |
| 	kvm_restore_gc0_config(cop0);
 | |
| 	if (cpu_guest_has_conf1)
 | |
| 		kvm_restore_gc0_config1(cop0);
 | |
| 	if (cpu_guest_has_conf2)
 | |
| 		kvm_restore_gc0_config2(cop0);
 | |
| 	if (cpu_guest_has_conf3)
 | |
| 		kvm_restore_gc0_config3(cop0);
 | |
| 	if (cpu_guest_has_conf4)
 | |
| 		kvm_restore_gc0_config4(cop0);
 | |
| 	if (cpu_guest_has_conf5)
 | |
| 		kvm_restore_gc0_config5(cop0);
 | |
| 	if (cpu_guest_has_conf6)
 | |
| 		kvm_restore_gc0_config6(cop0);
 | |
| 	if (cpu_guest_has_conf7)
 | |
| 		kvm_restore_gc0_config7(cop0);
 | |
| 
 | |
| 	kvm_restore_gc0_index(cop0);
 | |
| 	kvm_restore_gc0_entrylo0(cop0);
 | |
| 	kvm_restore_gc0_entrylo1(cop0);
 | |
| 	kvm_restore_gc0_context(cop0);
 | |
| 	if (cpu_guest_has_contextconfig)
 | |
| 		kvm_restore_gc0_contextconfig(cop0);
 | |
| #ifdef CONFIG_64BIT
 | |
| 	kvm_restore_gc0_xcontext(cop0);
 | |
| 	if (cpu_guest_has_contextconfig)
 | |
| 		kvm_restore_gc0_xcontextconfig(cop0);
 | |
| #endif
 | |
| 	kvm_restore_gc0_pagemask(cop0);
 | |
| 	kvm_restore_gc0_pagegrain(cop0);
 | |
| 	kvm_restore_gc0_hwrena(cop0);
 | |
| 	kvm_restore_gc0_badvaddr(cop0);
 | |
| 	kvm_restore_gc0_entryhi(cop0);
 | |
| 	kvm_restore_gc0_status(cop0);
 | |
| 	kvm_restore_gc0_intctl(cop0);
 | |
| 	kvm_restore_gc0_epc(cop0);
 | |
| 	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
 | |
| 	if (cpu_guest_has_userlocal)
 | |
| 		kvm_restore_gc0_userlocal(cop0);
 | |
| 
 | |
| 	kvm_restore_gc0_errorepc(cop0);
 | |
| 
 | |
| 	/* restore KScratch registers if enabled in guest */
 | |
| 	if (cpu_guest_has_conf4) {
 | |
| 		if (cpu_guest_has_kscr(2))
 | |
| 			kvm_restore_gc0_kscratch1(cop0);
 | |
| 		if (cpu_guest_has_kscr(3))
 | |
| 			kvm_restore_gc0_kscratch2(cop0);
 | |
| 		if (cpu_guest_has_kscr(4))
 | |
| 			kvm_restore_gc0_kscratch3(cop0);
 | |
| 		if (cpu_guest_has_kscr(5))
 | |
| 			kvm_restore_gc0_kscratch4(cop0);
 | |
| 		if (cpu_guest_has_kscr(6))
 | |
| 			kvm_restore_gc0_kscratch5(cop0);
 | |
| 		if (cpu_guest_has_kscr(7))
 | |
| 			kvm_restore_gc0_kscratch6(cop0);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_guest_has_badinstr)
 | |
| 		kvm_restore_gc0_badinstr(cop0);
 | |
| 	if (cpu_guest_has_badinstrp)
 | |
| 		kvm_restore_gc0_badinstrp(cop0);
 | |
| 
 | |
| 	if (cpu_guest_has_segments) {
 | |
| 		kvm_restore_gc0_segctl0(cop0);
 | |
| 		kvm_restore_gc0_segctl1(cop0);
 | |
| 		kvm_restore_gc0_segctl2(cop0);
 | |
| 	}
 | |
| 
 | |
| 	/* restore HTW registers */
 | |
| 	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
 | |
| 		kvm_restore_gc0_pwbase(cop0);
 | |
| 		kvm_restore_gc0_pwfield(cop0);
 | |
| 		kvm_restore_gc0_pwsize(cop0);
 | |
| 		kvm_restore_gc0_pwctl(cop0);
 | |
| 	}
 | |
| 
 | |
| 	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */
 | |
| 	if (cpu_has_guestctl2)
 | |
| 		write_c0_guestctl2(
 | |
| 			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should clear linked load bit to break interrupted atomics. This
 | |
| 	 * prevents a SC on the next VCPU from succeeding by matching a LL on
 | |
| 	 * the previous VCPU.
 | |
| 	 */
 | |
| 	if (vcpu->kvm->created_vcpus > 1)
 | |
| 		write_gc0_lladdr(0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	if (current->flags & PF_VCPU)
 | |
| 		kvm_vz_vcpu_save_wired(vcpu);
 | |
| 
 | |
| 	kvm_lose_fpu(vcpu);
 | |
| 
 | |
| 	kvm_save_gc0_index(cop0);
 | |
| 	kvm_save_gc0_entrylo0(cop0);
 | |
| 	kvm_save_gc0_entrylo1(cop0);
 | |
| 	kvm_save_gc0_context(cop0);
 | |
| 	if (cpu_guest_has_contextconfig)
 | |
| 		kvm_save_gc0_contextconfig(cop0);
 | |
| #ifdef CONFIG_64BIT
 | |
| 	kvm_save_gc0_xcontext(cop0);
 | |
| 	if (cpu_guest_has_contextconfig)
 | |
| 		kvm_save_gc0_xcontextconfig(cop0);
 | |
| #endif
 | |
| 	kvm_save_gc0_pagemask(cop0);
 | |
| 	kvm_save_gc0_pagegrain(cop0);
 | |
| 	kvm_save_gc0_wired(cop0);
 | |
| 	/* allow wired TLB entries to be overwritten */
 | |
| 	clear_gc0_wired(MIPSR6_WIRED_WIRED);
 | |
| 	kvm_save_gc0_hwrena(cop0);
 | |
| 	kvm_save_gc0_badvaddr(cop0);
 | |
| 	kvm_save_gc0_entryhi(cop0);
 | |
| 	kvm_save_gc0_status(cop0);
 | |
| 	kvm_save_gc0_intctl(cop0);
 | |
| 	kvm_save_gc0_epc(cop0);
 | |
| 	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
 | |
| 	if (cpu_guest_has_userlocal)
 | |
| 		kvm_save_gc0_userlocal(cop0);
 | |
| 
 | |
| 	/* only save implemented config registers */
 | |
| 	kvm_save_gc0_config(cop0);
 | |
| 	if (cpu_guest_has_conf1)
 | |
| 		kvm_save_gc0_config1(cop0);
 | |
| 	if (cpu_guest_has_conf2)
 | |
| 		kvm_save_gc0_config2(cop0);
 | |
| 	if (cpu_guest_has_conf3)
 | |
| 		kvm_save_gc0_config3(cop0);
 | |
| 	if (cpu_guest_has_conf4)
 | |
| 		kvm_save_gc0_config4(cop0);
 | |
| 	if (cpu_guest_has_conf5)
 | |
| 		kvm_save_gc0_config5(cop0);
 | |
| 	if (cpu_guest_has_conf6)
 | |
| 		kvm_save_gc0_config6(cop0);
 | |
| 	if (cpu_guest_has_conf7)
 | |
| 		kvm_save_gc0_config7(cop0);
 | |
| 
 | |
| 	kvm_save_gc0_errorepc(cop0);
 | |
| 
 | |
| 	/* save KScratch registers if enabled in guest */
 | |
| 	if (cpu_guest_has_conf4) {
 | |
| 		if (cpu_guest_has_kscr(2))
 | |
| 			kvm_save_gc0_kscratch1(cop0);
 | |
| 		if (cpu_guest_has_kscr(3))
 | |
| 			kvm_save_gc0_kscratch2(cop0);
 | |
| 		if (cpu_guest_has_kscr(4))
 | |
| 			kvm_save_gc0_kscratch3(cop0);
 | |
| 		if (cpu_guest_has_kscr(5))
 | |
| 			kvm_save_gc0_kscratch4(cop0);
 | |
| 		if (cpu_guest_has_kscr(6))
 | |
| 			kvm_save_gc0_kscratch5(cop0);
 | |
| 		if (cpu_guest_has_kscr(7))
 | |
| 			kvm_save_gc0_kscratch6(cop0);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_guest_has_badinstr)
 | |
| 		kvm_save_gc0_badinstr(cop0);
 | |
| 	if (cpu_guest_has_badinstrp)
 | |
| 		kvm_save_gc0_badinstrp(cop0);
 | |
| 
 | |
| 	if (cpu_guest_has_segments) {
 | |
| 		kvm_save_gc0_segctl0(cop0);
 | |
| 		kvm_save_gc0_segctl1(cop0);
 | |
| 		kvm_save_gc0_segctl2(cop0);
 | |
| 	}
 | |
| 
 | |
| 	/* save HTW registers if enabled in guest */
 | |
| 	if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
 | |
| 	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
 | |
| 		kvm_save_gc0_pwbase(cop0);
 | |
| 		kvm_save_gc0_pwfield(cop0);
 | |
| 		kvm_save_gc0_pwsize(cop0);
 | |
| 		kvm_save_gc0_pwctl(cop0);
 | |
| 	}
 | |
| 
 | |
| 	kvm_vz_save_timer(vcpu);
 | |
| 
 | |
| 	/* save Root.GuestCtl2 in unused Guest guestctl2 register */
 | |
| 	if (cpu_has_guestctl2)
 | |
| 		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
 | |
| 			read_c0_guestctl2();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
 | |
|  * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries).
 | |
|  *
 | |
|  * Attempt to resize the guest VTLB by writing guest Config registers. This is
 | |
|  * necessary for cores with a shared root/guest TLB to avoid overlap with wired
 | |
|  * entries in the root VTLB.
 | |
|  *
 | |
|  * Returns:	The resulting guest VTLB size.
 | |
|  */
 | |
| static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
 | |
| {
 | |
| 	unsigned int config4 = 0, ret = 0, limit;
 | |
| 
 | |
| 	/* Write MMUSize - 1 into guest Config registers */
 | |
| 	if (cpu_guest_has_conf1)
 | |
| 		change_gc0_config1(MIPS_CONF1_TLBS,
 | |
| 				   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
 | |
| 	if (cpu_guest_has_conf4) {
 | |
| 		config4 = read_gc0_config4();
 | |
| 		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
 | |
| 		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
 | |
| 			config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
 | |
| 			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
 | |
| 				MIPS_CONF4_VTLBSIZEEXT_SHIFT;
 | |
| 		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
 | |
| 			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
 | |
| 			config4 &= ~MIPS_CONF4_MMUSIZEEXT;
 | |
| 			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
 | |
| 				MIPS_CONF4_MMUSIZEEXT_SHIFT;
 | |
| 		}
 | |
| 		write_gc0_config4(config4);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
 | |
| 	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
 | |
| 	 * not dropped)
 | |
| 	 */
 | |
| 	if (cpu_has_mips_r6) {
 | |
| 		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
 | |
| 						MIPSR6_WIRED_LIMIT_SHIFT;
 | |
| 		if (size - 1 <= limit)
 | |
| 			limit = 0;
 | |
| 		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* Read back MMUSize - 1 */
 | |
| 	back_to_back_c0_hazard();
 | |
| 	if (cpu_guest_has_conf1)
 | |
| 		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
 | |
| 						MIPS_CONF1_TLBS_SHIFT;
 | |
| 	if (config4) {
 | |
| 		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
 | |
| 		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
 | |
| 			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 | |
| 				MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
 | |
| 				MIPS_CONF1_TLBS_SIZE;
 | |
| 		else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
 | |
| 			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
 | |
| 			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
 | |
| 				MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
 | |
| 				MIPS_CONF1_TLBS_SIZE;
 | |
| 	}
 | |
| 	return ret + 1;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_hardware_enable(void)
 | |
| {
 | |
| 	unsigned int mmu_size, guest_mmu_size, ftlb_size;
 | |
| 	u64 guest_cvmctl, cvmvmconfig;
 | |
| 
 | |
| 	switch (current_cpu_type()) {
 | |
| 	case CPU_CAVIUM_OCTEON3:
 | |
| 		/* Set up guest timer/perfcount IRQ lines */
 | |
| 		guest_cvmctl = read_gc0_cvmctl();
 | |
| 		guest_cvmctl &= ~CVMCTL_IPTI;
 | |
| 		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
 | |
| 		guest_cvmctl &= ~CVMCTL_IPPCI;
 | |
| 		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
 | |
| 		write_gc0_cvmctl(guest_cvmctl);
 | |
| 
 | |
| 		cvmvmconfig = read_c0_cvmvmconfig();
 | |
| 		/* No I/O hole translation. */
 | |
| 		cvmvmconfig |= CVMVMCONF_DGHT;
 | |
| 		/* Halve the root MMU size */
 | |
| 		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
 | |
| 			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
 | |
| 		guest_mmu_size = mmu_size / 2;
 | |
| 		mmu_size -= guest_mmu_size;
 | |
| 		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
 | |
| 		cvmvmconfig |= mmu_size - 1;
 | |
| 		write_c0_cvmvmconfig(cvmvmconfig);
 | |
| 
 | |
| 		/* Update our records */
 | |
| 		current_cpu_data.tlbsize = mmu_size;
 | |
| 		current_cpu_data.tlbsizevtlb = mmu_size;
 | |
| 		current_cpu_data.guest.tlbsize = guest_mmu_size;
 | |
| 
 | |
| 		/* Flush moved entries in new (guest) context */
 | |
| 		kvm_vz_local_flush_guesttlb_all();
 | |
| 		break;
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * ImgTec cores tend to use a shared root/guest TLB. To avoid
 | |
| 		 * overlap of root wired and guest entries, the guest TLB may
 | |
| 		 * need resizing.
 | |
| 		 */
 | |
| 		mmu_size = current_cpu_data.tlbsizevtlb;
 | |
| 		ftlb_size = current_cpu_data.tlbsize - mmu_size;
 | |
| 
 | |
| 		/* Try switching to maximum guest VTLB size for flush */
 | |
| 		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
 | |
| 		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
 | |
| 		kvm_vz_local_flush_guesttlb_all();
 | |
| 
 | |
| 		/*
 | |
| 		 * Reduce to make space for root wired entries and at least 2
 | |
| 		 * root non-wired entries. This does assume that long-term wired
 | |
| 		 * entries won't be added later.
 | |
| 		 */
 | |
| 		guest_mmu_size = mmu_size - num_wired_entries() - 2;
 | |
| 		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
 | |
| 		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Write the VTLB size, but if another CPU has already written,
 | |
| 		 * check it matches or we won't provide a consistent view to the
 | |
| 		 * guest. If this ever happens it suggests an asymmetric number
 | |
| 		 * of wired entries.
 | |
| 		 */
 | |
| 		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
 | |
| 		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
 | |
| 			 "Available guest VTLB size mismatch"))
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable virtualization features granting guest direct control of
 | |
| 	 * certain features:
 | |
| 	 * CP0=1:	Guest coprocessor 0 context.
 | |
| 	 * AT=Guest:	Guest MMU.
 | |
| 	 * CG=1:	Hit (virtual address) CACHE operations (optional).
 | |
| 	 * CF=1:	Guest Config registers.
 | |
| 	 * CGI=1:	Indexed flush CACHE operations (optional).
 | |
| 	 */
 | |
| 	write_c0_guestctl0(MIPS_GCTL0_CP0 |
 | |
| 			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
 | |
| 			   MIPS_GCTL0_CG | MIPS_GCTL0_CF);
 | |
| 	if (cpu_has_guestctl0ext) {
 | |
| 		if (current_cpu_type() != CPU_LOONGSON64)
 | |
| 			set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
 | |
| 		else
 | |
| 			clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_guestid) {
 | |
| 		write_c0_guestctl1(0);
 | |
| 		kvm_vz_local_flush_roottlb_all_guests();
 | |
| 
 | |
| 		GUESTID_MASK = current_cpu_data.guestid_mask;
 | |
| 		GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
 | |
| 		GUESTID_VERSION_MASK = ~GUESTID_MASK;
 | |
| 
 | |
| 		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
 | |
| 	}
 | |
| 
 | |
| 	/* clear any pending injected virtual guest interrupts */
 | |
| 	if (cpu_has_guestctl2)
 | |
| 		clear_c0_guestctl2(0x3f << 10);
 | |
| 
 | |
| #ifdef CONFIG_CPU_LOONGSON64
 | |
| 	/* Control guest CCA attribute */
 | |
| 	if (cpu_has_csr())
 | |
| 		csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_hardware_disable(void)
 | |
| {
 | |
| 	u64 cvmvmconfig;
 | |
| 	unsigned int mmu_size;
 | |
| 
 | |
| 	/* Flush any remaining guest TLB entries */
 | |
| 	kvm_vz_local_flush_guesttlb_all();
 | |
| 
 | |
| 	switch (current_cpu_type()) {
 | |
| 	case CPU_CAVIUM_OCTEON3:
 | |
| 		/*
 | |
| 		 * Allocate whole TLB for root. Existing guest TLB entries will
 | |
| 		 * change ownership to the root TLB. We should be safe though as
 | |
| 		 * they've already been flushed above while in guest TLB.
 | |
| 		 */
 | |
| 		cvmvmconfig = read_c0_cvmvmconfig();
 | |
| 		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
 | |
| 			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
 | |
| 		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
 | |
| 		cvmvmconfig |= mmu_size - 1;
 | |
| 		write_c0_cvmvmconfig(cvmvmconfig);
 | |
| 
 | |
| 		/* Update our records */
 | |
| 		current_cpu_data.tlbsize = mmu_size;
 | |
| 		current_cpu_data.tlbsizevtlb = mmu_size;
 | |
| 		current_cpu_data.guest.tlbsize = 0;
 | |
| 
 | |
| 		/* Flush moved entries in new (root) context */
 | |
| 		local_flush_tlb_all();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_guestid) {
 | |
| 		write_c0_guestctl1(0);
 | |
| 		kvm_vz_local_flush_roottlb_all_guests();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_vz_check_extension(struct kvm *kvm, long ext)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	switch (ext) {
 | |
| 	case KVM_CAP_MIPS_VZ:
 | |
| 		/* we wouldn't be here unless cpu_has_vz */
 | |
| 		r = 1;
 | |
| 		break;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	case KVM_CAP_MIPS_64BIT:
 | |
| 		/* We support 64-bit registers/operations and addresses */
 | |
| 		r = 2;
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_CAP_IOEVENTFD:
 | |
| 		r = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		vcpu->arch.vzguestid[i] = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the VCPU is freed and reused as another VCPU, we don't want the
 | |
| 	 * matching pointer wrongly hanging around in last_vcpu[] or
 | |
| 	 * last_exec_vcpu[].
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (last_vcpu[cpu] == vcpu)
 | |
| 			last_vcpu[cpu] = NULL;
 | |
| 		if (last_exec_vcpu[cpu] == vcpu)
 | |
| 			last_exec_vcpu[cpu] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
 | |
| 
 | |
| 	/*
 | |
| 	 * Start off the timer at the same frequency as the host timer, but the
 | |
| 	 * soft timer doesn't handle frequencies greater than 1GHz yet.
 | |
| 	 */
 | |
| 	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
 | |
| 		count_hz = mips_hpt_frequency;
 | |
| 	kvm_mips_init_count(vcpu, count_hz);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize guest register state to valid architectural reset state.
 | |
| 	 */
 | |
| 
 | |
| 	/* PageGrain */
 | |
| 	if (cpu_has_mips_r5 || cpu_has_mips_r6)
 | |
| 		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
 | |
| 	/* Wired */
 | |
| 	if (cpu_has_mips_r6)
 | |
| 		kvm_write_sw_gc0_wired(cop0,
 | |
| 				       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
 | |
| 	/* Status */
 | |
| 	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
 | |
| 	if (cpu_has_mips_r5 || cpu_has_mips_r6)
 | |
| 		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
 | |
| 	/* IntCtl */
 | |
| 	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
 | |
| 				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
 | |
| 	/* PRId */
 | |
| 	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
 | |
| 	/* EBase */
 | |
| 	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
 | |
| 	/* Config */
 | |
| 	kvm_save_gc0_config(cop0);
 | |
| 	/* architecturally writable (e.g. from guest) */
 | |
| 	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
 | |
| 				 _page_cachable_default >> _CACHE_SHIFT);
 | |
| 	/* architecturally read only, but maybe writable from root */
 | |
| 	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
 | |
| 	if (cpu_guest_has_conf1) {
 | |
| 		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
 | |
| 		/* Config1 */
 | |
| 		kvm_save_gc0_config1(cop0);
 | |
| 		/* architecturally read only, but maybe writable from root */
 | |
| 		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	|
 | |
| 					       MIPS_CONF1_MD	|
 | |
| 					       MIPS_CONF1_PC	|
 | |
| 					       MIPS_CONF1_WR	|
 | |
| 					       MIPS_CONF1_CA	|
 | |
| 					       MIPS_CONF1_FP);
 | |
| 	}
 | |
| 	if (cpu_guest_has_conf2) {
 | |
| 		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
 | |
| 		/* Config2 */
 | |
| 		kvm_save_gc0_config2(cop0);
 | |
| 	}
 | |
| 	if (cpu_guest_has_conf3) {
 | |
| 		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
 | |
| 		/* Config3 */
 | |
| 		kvm_save_gc0_config3(cop0);
 | |
| 		/* architecturally writable (e.g. from guest) */
 | |
| 		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
 | |
| 		/* architecturally read only, but maybe writable from root */
 | |
| 		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	|
 | |
| 					       MIPS_CONF3_BPG	|
 | |
| 					       MIPS_CONF3_ULRI	|
 | |
| 					       MIPS_CONF3_DSP	|
 | |
| 					       MIPS_CONF3_CTXTC	|
 | |
| 					       MIPS_CONF3_ITL	|
 | |
| 					       MIPS_CONF3_LPA	|
 | |
| 					       MIPS_CONF3_VEIC	|
 | |
| 					       MIPS_CONF3_VINT	|
 | |
| 					       MIPS_CONF3_SP	|
 | |
| 					       MIPS_CONF3_CDMM	|
 | |
| 					       MIPS_CONF3_MT	|
 | |
| 					       MIPS_CONF3_SM	|
 | |
| 					       MIPS_CONF3_TL);
 | |
| 	}
 | |
| 	if (cpu_guest_has_conf4) {
 | |
| 		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
 | |
| 		/* Config4 */
 | |
| 		kvm_save_gc0_config4(cop0);
 | |
| 	}
 | |
| 	if (cpu_guest_has_conf5) {
 | |
| 		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
 | |
| 		/* Config5 */
 | |
| 		kvm_save_gc0_config5(cop0);
 | |
| 		/* architecturally writable (e.g. from guest) */
 | |
| 		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	|
 | |
| 					       MIPS_CONF5_CV	|
 | |
| 					       MIPS_CONF5_MSAEN	|
 | |
| 					       MIPS_CONF5_UFE	|
 | |
| 					       MIPS_CONF5_FRE	|
 | |
| 					       MIPS_CONF5_SBRI	|
 | |
| 					       MIPS_CONF5_UFR);
 | |
| 		/* architecturally read only, but maybe writable from root */
 | |
| 		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_guest_has_contextconfig) {
 | |
| 		/* ContextConfig */
 | |
| 		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
 | |
| #ifdef CONFIG_64BIT
 | |
| 		/* XContextConfig */
 | |
| 		/* bits SEGBITS-13+3:4 set */
 | |
| 		kvm_write_sw_gc0_xcontextconfig(cop0,
 | |
| 					((1ull << (cpu_vmbits - 13)) - 1) << 4);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Implementation dependent, use the legacy layout */
 | |
| 	if (cpu_guest_has_segments) {
 | |
| 		/* SegCtl0, SegCtl1, SegCtl2 */
 | |
| 		kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
 | |
| 		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
 | |
| 				(_page_cachable_default >> _CACHE_SHIFT) <<
 | |
| 						(16 + MIPS_SEGCFG_C_SHIFT));
 | |
| 		kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
 | |
| 	}
 | |
| 
 | |
| 	/* reset HTW registers */
 | |
| 	if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
 | |
| 		/* PWField */
 | |
| 		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
 | |
| 		/* PWSize */
 | |
| 		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* start with no pending virtual guest interrupts */
 | |
| 	if (cpu_has_guestctl2)
 | |
| 		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
 | |
| 
 | |
| 	/* Put PC at reset vector */
 | |
| 	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vz_prepare_flush_shadow(struct kvm *kvm)
 | |
| {
 | |
| 	if (!cpu_has_guestid) {
 | |
| 		/*
 | |
| 		 * For each CPU there is a single GPA ASID used by all VCPUs in
 | |
| 		 * the VM, so it doesn't make sense for the VCPUs to handle
 | |
| 		 * invalidation of these ASIDs individually.
 | |
| 		 *
 | |
| 		 * Instead mark all CPUs as needing ASID invalidation in
 | |
| 		 * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will
 | |
| 		 * kick any running VCPUs so they check asid_flush_mask.
 | |
| 		 */
 | |
| 		cpumask_setall(&kvm->arch.asid_flush_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int preserve_guest_tlb;
 | |
| 
 | |
| 	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
 | |
| 
 | |
| 	if (preserve_guest_tlb)
 | |
| 		kvm_vz_vcpu_save_wired(vcpu);
 | |
| 
 | |
| 	kvm_vz_vcpu_load_tlb(vcpu, cpu);
 | |
| 
 | |
| 	if (preserve_guest_tlb)
 | |
| 		kvm_vz_vcpu_load_wired(vcpu);
 | |
| }
 | |
| 
 | |
| static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int r;
 | |
| 
 | |
| 	kvm_vz_acquire_htimer(vcpu);
 | |
| 	/* Check if we have any exceptions/interrupts pending */
 | |
| 	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
 | |
| 
 | |
| 	kvm_vz_check_requests(vcpu, cpu);
 | |
| 	kvm_vz_vcpu_load_tlb(vcpu, cpu);
 | |
| 	kvm_vz_vcpu_load_wired(vcpu);
 | |
| 
 | |
| 	r = vcpu->arch.vcpu_run(vcpu);
 | |
| 
 | |
| 	kvm_vz_vcpu_save_wired(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static struct kvm_mips_callbacks kvm_vz_callbacks = {
 | |
| 	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
 | |
| 	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
 | |
| 	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
 | |
| 	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
 | |
| 	.handle_addr_err_st = kvm_trap_vz_no_handler,
 | |
| 	.handle_addr_err_ld = kvm_trap_vz_no_handler,
 | |
| 	.handle_syscall = kvm_trap_vz_no_handler,
 | |
| 	.handle_res_inst = kvm_trap_vz_no_handler,
 | |
| 	.handle_break = kvm_trap_vz_no_handler,
 | |
| 	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
 | |
| 	.handle_guest_exit = kvm_trap_vz_handle_guest_exit,
 | |
| 
 | |
| 	.hardware_enable = kvm_vz_hardware_enable,
 | |
| 	.hardware_disable = kvm_vz_hardware_disable,
 | |
| 	.check_extension = kvm_vz_check_extension,
 | |
| 	.vcpu_init = kvm_vz_vcpu_init,
 | |
| 	.vcpu_uninit = kvm_vz_vcpu_uninit,
 | |
| 	.vcpu_setup = kvm_vz_vcpu_setup,
 | |
| 	.prepare_flush_shadow = kvm_vz_prepare_flush_shadow,
 | |
| 	.gva_to_gpa = kvm_vz_gva_to_gpa_cb,
 | |
| 	.queue_timer_int = kvm_vz_queue_timer_int_cb,
 | |
| 	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
 | |
| 	.queue_io_int = kvm_vz_queue_io_int_cb,
 | |
| 	.dequeue_io_int = kvm_vz_dequeue_io_int_cb,
 | |
| 	.irq_deliver = kvm_vz_irq_deliver_cb,
 | |
| 	.irq_clear = kvm_vz_irq_clear_cb,
 | |
| 	.num_regs = kvm_vz_num_regs,
 | |
| 	.copy_reg_indices = kvm_vz_copy_reg_indices,
 | |
| 	.get_one_reg = kvm_vz_get_one_reg,
 | |
| 	.set_one_reg = kvm_vz_set_one_reg,
 | |
| 	.vcpu_load = kvm_vz_vcpu_load,
 | |
| 	.vcpu_put = kvm_vz_vcpu_put,
 | |
| 	.vcpu_run = kvm_vz_vcpu_run,
 | |
| 	.vcpu_reenter = kvm_vz_vcpu_reenter,
 | |
| };
 | |
| 
 | |
| /* FIXME: Get rid of the callbacks now that trap-and-emulate is gone. */
 | |
| struct kvm_mips_callbacks *kvm_mips_callbacks = &kvm_vz_callbacks;
 | |
| 
 | |
| int kvm_mips_emulation_init(void)
 | |
| {
 | |
| 	if (!cpu_has_vz)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * VZ requires at least 2 KScratch registers, so it should have been
 | |
| 	 * possible to allocate pgd_reg.
 | |
| 	 */
 | |
| 	if (WARN(pgd_reg == -1,
 | |
| 		 "pgd_reg not allocated even though cpu_has_vz\n"))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	pr_info("Starting KVM with MIPS VZ extensions\n");
 | |
| 	return 0;
 | |
| }
 |