865 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			865 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
 | |
|  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
 | |
|  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
 | |
|  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
 | |
|  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
 | |
|  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
 | |
|  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
 | |
|  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
 | |
|  *	<http://rt2x00.serialmonkey.com>
 | |
|  *
 | |
|  *	This program is free software; you can redistribute it and/or modify
 | |
|  *	it under the terms of the GNU General Public License as published by
 | |
|  *	the Free Software Foundation; either version 2 of the License, or
 | |
|  *	(at your option) any later version.
 | |
|  *
 | |
|  *	This program is distributed in the hope that it will be useful,
 | |
|  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
|  *	GNU General Public License for more details.
 | |
|  *
 | |
|  *	You should have received a copy of the GNU General Public License
 | |
|  *	along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /*	Module: rt2800mmio
 | |
|  *	Abstract: rt2800 MMIO device routines.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2x00mmio.h"
 | |
| #include "rt2800.h"
 | |
| #include "rt2800lib.h"
 | |
| #include "rt2800mmio.h"
 | |
| 
 | |
| unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	struct queue_entry *entry;
 | |
| 	int idx, qid;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		qid = queue->qid;
 | |
| 		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
 | |
| 		break;
 | |
| 	case QID_MGMT:
 | |
| 		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
 | |
| 		break;
 | |
| 	case QID_RX:
 | |
| 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
 | |
| 		idx = entry->entry_idx;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		idx = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
 | |
| 
 | |
| /*
 | |
|  * TX descriptor initialization
 | |
|  */
 | |
| __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
 | |
| {
 | |
| 	return (__le32 *) entry->skb->data;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
 | |
| 
 | |
| void rt2800mmio_write_tx_desc(struct queue_entry *entry,
 | |
| 			      struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	__le32 *txd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 	const unsigned int txwi_size = entry->queue->winfo_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
 | |
| 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
 | |
| 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
 | |
| 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
 | |
| 	 * data. It means that LAST_SEC0 is always 0.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize TX descriptor
 | |
| 	 */
 | |
| 	word = 0;
 | |
| 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
 | |
| 	rt2x00_desc_write(txd, 0, word);
 | |
| 
 | |
| 	word = 0;
 | |
| 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
 | |
| 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W1_BURST,
 | |
| 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
 | |
| 	rt2x00_desc_write(txd, 1, word);
 | |
| 
 | |
| 	word = 0;
 | |
| 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
 | |
| 			   skbdesc->skb_dma + txwi_size);
 | |
| 	rt2x00_desc_write(txd, 2, word);
 | |
| 
 | |
| 	word = 0;
 | |
| 	rt2x00_set_field32(&word, TXD_W3_WIV,
 | |
| 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
 | |
| 	rt2x00_desc_write(txd, 3, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->desc = txd;
 | |
| 	skbdesc->desc_len = TXD_DESC_SIZE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
 | |
| 
 | |
| /*
 | |
|  * RX control handlers
 | |
|  */
 | |
| void rt2800mmio_fill_rxdone(struct queue_entry *entry,
 | |
| 			    struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	__le32 *rxd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	word = rt2x00_desc_read(rxd, 3);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unfortunately we don't know the cipher type used during
 | |
| 	 * decryption. This prevents us from correct providing
 | |
| 	 * correct statistics through debugfs.
 | |
| 	 */
 | |
| 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
 | |
| 		/*
 | |
| 		 * Hardware has stripped IV/EIV data from 802.11 frame during
 | |
| 		 * decryption. Unfortunately the descriptor doesn't contain
 | |
| 		 * any fields with the EIV/IV data either, so they can't
 | |
| 		 * be restored by rt2x00lib.
 | |
| 		 */
 | |
| 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
 | |
| 
 | |
| 		/*
 | |
| 		 * The hardware has already checked the Michael Mic and has
 | |
| 		 * stripped it from the frame. Signal this to mac80211.
 | |
| 		 */
 | |
| 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
 | |
| 
 | |
| 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
 | |
| 			rxdesc->flags |= RX_FLAG_DECRYPTED;
 | |
| 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
 | |
| 			/*
 | |
| 			 * In order to check the Michael Mic, the packet must have
 | |
| 			 * been decrypted.  Mac80211 doesnt check the MMIC failure 
 | |
| 			 * flag to initiate MMIC countermeasures if the decoded flag
 | |
| 			 * has not been set.
 | |
| 			 */
 | |
| 			rxdesc->flags |= RX_FLAG_DECRYPTED;
 | |
| 
 | |
| 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
 | |
| 		rxdesc->dev_flags |= RXDONE_MY_BSS;
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
 | |
| 		rxdesc->dev_flags |= RXDONE_L2PAD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Process the RXWI structure that is at the start of the buffer.
 | |
| 	 */
 | |
| 	rt2800_process_rxwi(entry, rxdesc);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
 | |
| 
 | |
| /*
 | |
|  * Interrupt functions.
 | |
|  */
 | |
| static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct ieee80211_conf conf = { .flags = 0 };
 | |
| 	struct rt2x00lib_conf libconf = { .conf = &conf };
 | |
| 
 | |
| 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
 | |
| }
 | |
| 
 | |
| static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
 | |
| 					       struct rt2x00_field32 irq_field)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable a single interrupt. The interrupt mask register
 | |
| 	 * access needs locking.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rt2x00dev->irqmask_lock);
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
 | |
| 	rt2x00_set_field32(®, irq_field, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
 | |
| }
 | |
| 
 | |
| void rt2800mmio_pretbtt_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	rt2x00lib_pretbtt(rt2x00dev);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
 | |
| 
 | |
| void rt2800mmio_tbtt_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00lib_beacondone(rt2x00dev);
 | |
| 
 | |
| 	if (rt2x00dev->intf_ap_count) {
 | |
| 		/*
 | |
| 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
 | |
| 		 * causing beacon skew and as a result causing problems with
 | |
| 		 * some powersaving clients over time. Shorten the beacon
 | |
| 		 * interval every 64 beacons by 64us to mitigate this effect.
 | |
| 		 */
 | |
| 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
 | |
| 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
 | |
| 			rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
 | |
| 					   (rt2x00dev->beacon_int * 16) - 1);
 | |
| 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
 | |
| 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
 | |
| 			rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
 | |
| 					   (rt2x00dev->beacon_int * 16));
 | |
| 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 		}
 | |
| 		drv_data->tbtt_tick++;
 | |
| 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
 | |
| 
 | |
| void rt2800mmio_rxdone_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	if (rt2x00mmio_rxdone(rt2x00dev))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
 | |
| 
 | |
| void rt2800mmio_autowake_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	rt2800mmio_wakeup(rt2x00dev);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt2800mmio_enable_interrupt(rt2x00dev,
 | |
| 					    INT_MASK_CSR_AUTO_WAKEUP);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
 | |
| 
 | |
| static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 status;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * The TX_FIFO_STATUS interrupt needs special care. We should
 | |
| 	 * read TX_STA_FIFO but we should do it immediately as otherwise
 | |
| 	 * the register can overflow and we would lose status reports.
 | |
| 	 *
 | |
| 	 * Hence, read the TX_STA_FIFO register and copy all tx status
 | |
| 	 * reports into a kernel FIFO which is handled in the txstatus
 | |
| 	 * tasklet. We use a tasklet to process the tx status reports
 | |
| 	 * because we can schedule the tasklet multiple times (when the
 | |
| 	 * interrupt fires again during tx status processing).
 | |
| 	 *
 | |
| 	 * We also read statuses from tx status timeout timer, use
 | |
| 	 * lock to prevent concurent writes to fifo.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
 | |
| 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
 | |
| 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
 | |
| 			break;
 | |
| 
 | |
| 		kfifo_put(&rt2x00dev->txstatus_fifo, status);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 | |
| }
 | |
| 
 | |
| void rt2800mmio_txstatus_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 
 | |
| 	rt2800_txdone(rt2x00dev, 16);
 | |
| 
 | |
| 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
 | |
| 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
 | |
| 
 | |
| irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = dev_instance;
 | |
| 	u32 reg, mask;
 | |
| 
 | |
| 	/* Read status and ACK all interrupts */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 
 | |
| 	if (!reg)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
 | |
| 	 * for interrupts and interrupt masks we can just use the value of
 | |
| 	 * INT_SOURCE_CSR to create the interrupt mask.
 | |
| 	 */
 | |
| 	mask = ~reg;
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
 | |
| 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
 | |
| 		rt2800mmio_fetch_txstatus(rt2x00dev);
 | |
| 		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
 | |
| 			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
 | |
| 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
 | |
| 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
 | |
| 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable all interrupts for which a tasklet was scheduled right now,
 | |
| 	 * the tasklet will reenable the appropriate interrupts.
 | |
| 	 */
 | |
| 	spin_lock(&rt2x00dev->irqmask_lock);
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
 | |
| 	reg &= mask;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 	spin_unlock(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
 | |
| 
 | |
| void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
 | |
| 			   enum dev_state state)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * When interrupts are being enabled, the interrupt registers
 | |
| 	 * should clear the register to assure a clean state.
 | |
| 	 */
 | |
| 	if (state == STATE_RADIO_IRQ_ON) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 | |
| 	reg = 0;
 | |
| 	if (state == STATE_RADIO_IRQ_ON) {
 | |
| 		rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1);
 | |
| 		rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1);
 | |
| 		rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1);
 | |
| 		rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
 | |
| 		rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1);
 | |
| 	}
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	if (state == STATE_RADIO_IRQ_OFF) {
 | |
| 		/*
 | |
| 		 * Wait for possibly running tasklets to finish.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->autowake_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
 | |
| 
 | |
| /*
 | |
|  * Queue handlers.
 | |
|  */
 | |
| void rt2800mmio_start_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
 | |
| 		rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
 | |
| 		rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
 | |
| 
 | |
| /* 200 ms */
 | |
| #define TXSTATUS_TIMEOUT 200000000
 | |
| 
 | |
| void rt2800mmio_kick_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	struct queue_entry *entry;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		WARN_ON_ONCE(rt2x00queue_empty(queue));
 | |
| 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
 | |
| 					  entry->entry_idx);
 | |
| 		hrtimer_start(&rt2x00dev->txstatus_timer,
 | |
| 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
 | |
| 		break;
 | |
| 	case QID_MGMT:
 | |
| 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
 | |
| 					  entry->entry_idx);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
 | |
| 
 | |
| void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	bool tx_queue = false;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		tx_queue = true;
 | |
| 		break;
 | |
| 	case QID_RX:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 5; i++) {
 | |
| 		/*
 | |
| 		 * Check if the driver is already done, otherwise we
 | |
| 		 * have to sleep a little while to give the driver/hw
 | |
| 		 * the oppurtunity to complete interrupt process itself.
 | |
| 		 */
 | |
| 		if (rt2x00queue_empty(queue))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * For TX queues schedule completion tasklet to catch
 | |
| 		 * tx status timeouts, othewise just wait.
 | |
| 		 */
 | |
| 		if (tx_queue)
 | |
| 			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for a little while to give the driver
 | |
| 		 * the oppurtunity to recover itself.
 | |
| 		 */
 | |
| 		msleep(50);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
 | |
| 
 | |
| void rt2800mmio_stop_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
 | |
| 		rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
 | |
| 		rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for current invocation to finish. The tasklet
 | |
| 		 * won't be scheduled anymore afterwards since we disabled
 | |
| 		 * the TBTT and PRE TBTT timer.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
 | |
| 
 | |
| void rt2800mmio_queue_init(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	unsigned short txwi_size, rxwi_size;
 | |
| 
 | |
| 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		queue->limit = 128;
 | |
| 		queue->data_size = AGGREGATION_SIZE;
 | |
| 		queue->desc_size = RXD_DESC_SIZE;
 | |
| 		queue->winfo_size = rxwi_size;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		queue->limit = 64;
 | |
| 		queue->data_size = AGGREGATION_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->winfo_size = txwi_size;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_BEACON:
 | |
| 		queue->limit = 8;
 | |
| 		queue->data_size = 0; /* No DMA required for beacons */
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->winfo_size = txwi_size;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_ATIM:
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| bool rt2800mmio_get_entry_state(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 1);
 | |
| 
 | |
| 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
 | |
| 	} else {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 1);
 | |
| 
 | |
| 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
 | |
| 
 | |
| void rt2800mmio_clear_entry(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 0);
 | |
| 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 1);
 | |
| 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 1, word);
 | |
| 
 | |
| 		/*
 | |
| 		 * Set RX IDX in register to inform hardware that we have
 | |
| 		 * handled this entry and it is available for reuse again.
 | |
| 		 */
 | |
| 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
 | |
| 					  entry->entry_idx);
 | |
| 	} else {
 | |
| 		word = rt2x00_desc_read(entry_priv->desc, 1);
 | |
| 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 1, word);
 | |
| 
 | |
| 		/* If last entry stop txstatus timer */
 | |
| 		if (entry->queue->length == 1)
 | |
| 			hrtimer_cancel(&rt2x00dev->txstatus_timer);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
 | |
| 
 | |
| int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize registers.
 | |
| 	 */
 | |
| 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
 | |
| 				  entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
 | |
| 				  rt2x00dev->tx[0].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
 | |
| 				  entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
 | |
| 				  rt2x00dev->tx[1].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
 | |
| 				  entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
 | |
| 				  rt2x00dev->tx[2].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
 | |
| 				  entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
 | |
| 				  rt2x00dev->tx[3].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
 | |
| 				  entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
 | |
| 				  rt2x00dev->rx[0].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
 | |
| 				  rt2x00dev->rx[0].limit - 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
 | |
| 
 | |
| 	rt2800_disable_wpdma(rt2x00dev);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
 | |
| 
 | |
| int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset DMA indexes
 | |
| 	 */
 | |
| 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
 | |
| 
 | |
| 	if (rt2x00_is_pcie(rt2x00dev) &&
 | |
| 	    (rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT3390) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT3572) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT3593) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT5390) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT5392) ||
 | |
| 	     rt2x00_rt(rt2x00dev, RT5592))) {
 | |
| 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
 | |
| 		rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
 | |
| 		rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
 | |
| 
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
 | |
| 
 | |
| /*
 | |
|  * Device state switch handlers.
 | |
|  */
 | |
| int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/* Wait for DMA, ignore error until we initialize queues. */
 | |
| 	rt2800_wait_wpdma_ready(rt2x00dev);
 | |
| 
 | |
| 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return rt2800_enable_radio(rt2x00dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
 | |
| 
 | |
| static void rt2800mmio_work_txdone(struct work_struct *work)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev =
 | |
| 	    container_of(work, struct rt2x00_dev, txdone_work);
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		return;
 | |
| 
 | |
| 	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
 | |
| 	       rt2800_txstatus_timeout(rt2x00dev)) {
 | |
| 
 | |
| 		tasklet_disable(&rt2x00dev->txstatus_tasklet);
 | |
| 		rt2800_txdone(rt2x00dev, UINT_MAX);
 | |
| 		rt2800_txdone_nostatus(rt2x00dev);
 | |
| 		tasklet_enable(&rt2x00dev->txstatus_tasklet);
 | |
| 	}
 | |
| 
 | |
| 	if (rt2800_txstatus_pending(rt2x00dev))
 | |
| 		hrtimer_start(&rt2x00dev->txstatus_timer,
 | |
| 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev =
 | |
| 	    container_of(timer, struct rt2x00_dev, txstatus_timer);
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!rt2800_txstatus_pending(rt2x00dev))
 | |
| 		goto out;
 | |
| 
 | |
| 	rt2800mmio_fetch_txstatus(rt2x00dev);
 | |
| 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
 | |
| 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
 | |
| 	else
 | |
| 		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
 | |
| out:
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = rt2800_probe_hw(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set txstatus timer function.
 | |
| 	 */
 | |
| 	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
 | |
| 
 | |
| 	/*
 | |
| 	 * Overwrite TX done handler
 | |
| 	 */
 | |
| 	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("rt2800 MMIO library");
 | |
| MODULE_LICENSE("GPL");
 |