1625 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1625 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011 Red Hat, Inc.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-btree-internal.h"
 | |
| #include "dm-space-map.h"
 | |
| #include "dm-transaction-manager.h"
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/device-mapper.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "btree"
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Array manipulation
 | |
|  *--------------------------------------------------------------*/
 | |
| static void memcpy_disk(void *dest, const void *src, size_t len)
 | |
| 	__dm_written_to_disk(src)
 | |
| {
 | |
| 	memcpy(dest, src, len);
 | |
| 	__dm_unbless_for_disk(src);
 | |
| }
 | |
| 
 | |
| static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
 | |
| 			 unsigned index, void *elt)
 | |
| 	__dm_written_to_disk(elt)
 | |
| {
 | |
| 	if (index < nr_elts)
 | |
| 		memmove(base + (elt_size * (index + 1)),
 | |
| 			base + (elt_size * index),
 | |
| 			(nr_elts - index) * elt_size);
 | |
| 
 | |
| 	memcpy_disk(base + (elt_size * index), elt, elt_size);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /* makes the assumption that no two keys are the same. */
 | |
| static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
 | |
| {
 | |
| 	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	while (hi - lo > 1) {
 | |
| 		int mid = lo + ((hi - lo) / 2);
 | |
| 		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
 | |
| 
 | |
| 		if (mid_key == key)
 | |
| 			return mid;
 | |
| 
 | |
| 		if (mid_key < key)
 | |
| 			lo = mid;
 | |
| 		else
 | |
| 			hi = mid;
 | |
| 	}
 | |
| 
 | |
| 	return want_hi ? hi : lo;
 | |
| }
 | |
| 
 | |
| int lower_bound(struct btree_node *n, uint64_t key)
 | |
| {
 | |
| 	return bsearch(n, key, 0);
 | |
| }
 | |
| 
 | |
| static int upper_bound(struct btree_node *n, uint64_t key)
 | |
| {
 | |
| 	return bsearch(n, key, 1);
 | |
| }
 | |
| 
 | |
| void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
 | |
| 		  struct dm_btree_value_type *vt)
 | |
| {
 | |
| 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
 | |
| 		dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
 | |
| 
 | |
| 	else if (vt->inc)
 | |
| 		vt->inc(vt->context, value_ptr(n, 0), nr_entries);
 | |
| }
 | |
| 
 | |
| static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
 | |
| 		     uint64_t key, void *value)
 | |
| 	__dm_written_to_disk(value)
 | |
| {
 | |
| 	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
 | |
| 	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
 | |
| 	__le64 key_le = cpu_to_le64(key);
 | |
| 
 | |
| 	if (index > nr_entries ||
 | |
| 	    index >= max_entries ||
 | |
| 	    nr_entries >= max_entries) {
 | |
| 		DMERR("too many entries in btree node for insert");
 | |
| 		__dm_unbless_for_disk(value);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	__dm_bless_for_disk(&key_le);
 | |
| 
 | |
| 	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 | |
| 	array_insert(value_base(node), value_size, nr_entries, index, value);
 | |
| 	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * We want 3n entries (for some n).  This works more nicely for repeated
 | |
|  * insert remove loops than (2n + 1).
 | |
|  */
 | |
| static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 | |
| {
 | |
| 	uint32_t total, n;
 | |
| 	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 | |
| 
 | |
| 	block_size -= sizeof(struct node_header);
 | |
| 	total = block_size / elt_size;
 | |
| 	n = total / 3;		/* rounds down */
 | |
| 
 | |
| 	return 3 * n;
 | |
| }
 | |
| 
 | |
| int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *b;
 | |
| 	struct btree_node *n;
 | |
| 	size_t block_size;
 | |
| 	uint32_t max_entries;
 | |
| 
 | |
| 	r = new_block(info, &b);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 | |
| 	max_entries = calc_max_entries(info->value_type.size, block_size);
 | |
| 
 | |
| 	n = dm_block_data(b);
 | |
| 	memset(n, 0, block_size);
 | |
| 	n->header.flags = cpu_to_le32(LEAF_NODE);
 | |
| 	n->header.nr_entries = cpu_to_le32(0);
 | |
| 	n->header.max_entries = cpu_to_le32(max_entries);
 | |
| 	n->header.value_size = cpu_to_le32(info->value_type.size);
 | |
| 
 | |
| 	*root = dm_block_location(b);
 | |
| 	unlock_block(info, b);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_empty);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Deletion uses a recursive algorithm, since we have limited stack space
 | |
|  * we explicitly manage our own stack on the heap.
 | |
|  */
 | |
| #define MAX_SPINE_DEPTH 64
 | |
| struct frame {
 | |
| 	struct dm_block *b;
 | |
| 	struct btree_node *n;
 | |
| 	unsigned level;
 | |
| 	unsigned nr_children;
 | |
| 	unsigned current_child;
 | |
| };
 | |
| 
 | |
| struct del_stack {
 | |
| 	struct dm_btree_info *info;
 | |
| 	struct dm_transaction_manager *tm;
 | |
| 	int top;
 | |
| 	struct frame spine[MAX_SPINE_DEPTH];
 | |
| };
 | |
| 
 | |
| static int top_frame(struct del_stack *s, struct frame **f)
 | |
| {
 | |
| 	if (s->top < 0) {
 | |
| 		DMERR("btree deletion stack empty");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*f = s->spine + s->top;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unprocessed_frames(struct del_stack *s)
 | |
| {
 | |
| 	return s->top >= 0;
 | |
| }
 | |
| 
 | |
| static void prefetch_children(struct del_stack *s, struct frame *f)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 | |
| 
 | |
| 	for (i = 0; i < f->nr_children; i++)
 | |
| 		dm_bm_prefetch(bm, value64(f->n, i));
 | |
| }
 | |
| 
 | |
| static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 | |
| {
 | |
| 	return f->level < (info->levels - 1);
 | |
| }
 | |
| 
 | |
| static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 | |
| {
 | |
| 	int r;
 | |
| 	uint32_t ref_count;
 | |
| 
 | |
| 	if (s->top >= MAX_SPINE_DEPTH - 1) {
 | |
| 		DMERR("btree deletion stack out of memory");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_tm_ref(s->tm, b, &ref_count);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (ref_count > 1)
 | |
| 		/*
 | |
| 		 * This is a shared node, so we can just decrement it's
 | |
| 		 * reference counter and leave the children.
 | |
| 		 */
 | |
| 		dm_tm_dec(s->tm, b);
 | |
| 
 | |
| 	else {
 | |
| 		uint32_t flags;
 | |
| 		struct frame *f = s->spine + ++s->top;
 | |
| 
 | |
| 		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 | |
| 		if (r) {
 | |
| 			s->top--;
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		f->n = dm_block_data(f->b);
 | |
| 		f->level = level;
 | |
| 		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 | |
| 		f->current_child = 0;
 | |
| 
 | |
| 		flags = le32_to_cpu(f->n->header.flags);
 | |
| 		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 | |
| 			prefetch_children(s, f);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pop_frame(struct del_stack *s)
 | |
| {
 | |
| 	struct frame *f = s->spine + s->top--;
 | |
| 
 | |
| 	dm_tm_dec(s->tm, dm_block_location(f->b));
 | |
| 	dm_tm_unlock(s->tm, f->b);
 | |
| }
 | |
| 
 | |
| static void unlock_all_frames(struct del_stack *s)
 | |
| {
 | |
| 	struct frame *f;
 | |
| 
 | |
| 	while (unprocessed_frames(s)) {
 | |
| 		f = s->spine + s->top--;
 | |
| 		dm_tm_unlock(s->tm, f->b);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 | |
| {
 | |
| 	int r;
 | |
| 	struct del_stack *s;
 | |
| 
 | |
| 	/*
 | |
| 	 * dm_btree_del() is called via an ioctl, as such should be
 | |
| 	 * considered an FS op.  We can't recurse back into the FS, so we
 | |
| 	 * allocate GFP_NOFS.
 | |
| 	 */
 | |
| 	s = kmalloc(sizeof(*s), GFP_NOFS);
 | |
| 	if (!s)
 | |
| 		return -ENOMEM;
 | |
| 	s->info = info;
 | |
| 	s->tm = info->tm;
 | |
| 	s->top = -1;
 | |
| 
 | |
| 	r = push_frame(s, root, 0);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (unprocessed_frames(s)) {
 | |
| 		uint32_t flags;
 | |
| 		struct frame *f;
 | |
| 		dm_block_t b;
 | |
| 
 | |
| 		r = top_frame(s, &f);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (f->current_child >= f->nr_children) {
 | |
| 			pop_frame(s);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		flags = le32_to_cpu(f->n->header.flags);
 | |
| 		if (flags & INTERNAL_NODE) {
 | |
| 			b = value64(f->n, f->current_child);
 | |
| 			f->current_child++;
 | |
| 			r = push_frame(s, b, f->level);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 		} else if (is_internal_level(info, f)) {
 | |
| 			b = value64(f->n, f->current_child);
 | |
| 			f->current_child++;
 | |
| 			r = push_frame(s, b, f->level + 1);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 		} else {
 | |
| 			if (info->value_type.dec)
 | |
| 				info->value_type.dec(info->value_type.context,
 | |
| 						     value_ptr(f->n, 0), f->nr_children);
 | |
| 			pop_frame(s);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (r) {
 | |
| 		/* cleanup all frames of del_stack */
 | |
| 		unlock_all_frames(s);
 | |
| 	}
 | |
| 	kfree(s);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_del);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 | |
| 			    int (*search_fn)(struct btree_node *, uint64_t),
 | |
| 			    uint64_t *result_key, void *v, size_t value_size)
 | |
| {
 | |
| 	int i, r;
 | |
| 	uint32_t flags, nr_entries;
 | |
| 
 | |
| 	do {
 | |
| 		r = ro_step(s, block);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		i = search_fn(ro_node(s), key);
 | |
| 
 | |
| 		flags = le32_to_cpu(ro_node(s)->header.flags);
 | |
| 		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 | |
| 		if (i < 0 || i >= nr_entries)
 | |
| 			return -ENODATA;
 | |
| 
 | |
| 		if (flags & INTERNAL_NODE)
 | |
| 			block = value64(ro_node(s), i);
 | |
| 
 | |
| 	} while (!(flags & LEAF_NODE));
 | |
| 
 | |
| 	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 | |
| 	if (v)
 | |
| 		memcpy(v, value_ptr(ro_node(s), i), value_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 | |
| 		    uint64_t *keys, void *value_le)
 | |
| {
 | |
| 	unsigned level, last_level = info->levels - 1;
 | |
| 	int r = -ENODATA;
 | |
| 	uint64_t rkey;
 | |
| 	__le64 internal_value_le;
 | |
| 	struct ro_spine spine;
 | |
| 
 | |
| 	init_ro_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels; level++) {
 | |
| 		size_t size;
 | |
| 		void *value_p;
 | |
| 
 | |
| 		if (level == last_level) {
 | |
| 			value_p = value_le;
 | |
| 			size = info->value_type.size;
 | |
| 
 | |
| 		} else {
 | |
| 			value_p = &internal_value_le;
 | |
| 			size = sizeof(uint64_t);
 | |
| 		}
 | |
| 
 | |
| 		r = btree_lookup_raw(&spine, root, keys[level],
 | |
| 				     lower_bound, &rkey,
 | |
| 				     value_p, size);
 | |
| 
 | |
| 		if (!r) {
 | |
| 			if (rkey != keys[level]) {
 | |
| 				exit_ro_spine(&spine);
 | |
| 				return -ENODATA;
 | |
| 			}
 | |
| 		} else {
 | |
| 			exit_ro_spine(&spine);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		root = le64_to_cpu(internal_value_le);
 | |
| 	}
 | |
| 	exit_ro_spine(&spine);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_lookup);
 | |
| 
 | |
| static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 | |
| 				       uint64_t key, uint64_t *rkey, void *value_le)
 | |
| {
 | |
| 	int r, i;
 | |
| 	uint32_t flags, nr_entries;
 | |
| 	struct dm_block *node;
 | |
| 	struct btree_node *n;
 | |
| 
 | |
| 	r = bn_read_lock(info, root, &node);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	n = dm_block_data(node);
 | |
| 	flags = le32_to_cpu(n->header.flags);
 | |
| 	nr_entries = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	if (flags & INTERNAL_NODE) {
 | |
| 		i = lower_bound(n, key);
 | |
| 		if (i < 0) {
 | |
| 			/*
 | |
| 			 * avoid early -ENODATA return when all entries are
 | |
| 			 * higher than the search @key.
 | |
| 			 */
 | |
| 			i = 0;
 | |
| 		}
 | |
| 		if (i >= nr_entries) {
 | |
| 			r = -ENODATA;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 | |
| 		if (r == -ENODATA && i < (nr_entries - 1)) {
 | |
| 			i++;
 | |
| 			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		i = upper_bound(n, key);
 | |
| 		if (i < 0 || i >= nr_entries) {
 | |
| 			r = -ENODATA;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		*rkey = le64_to_cpu(n->keys[i]);
 | |
| 		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 | |
| 	}
 | |
| out:
 | |
| 	dm_tm_unlock(info->tm, node);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 | |
| 			 uint64_t *keys, uint64_t *rkey, void *value_le)
 | |
| {
 | |
| 	unsigned level;
 | |
| 	int r = -ENODATA;
 | |
| 	__le64 internal_value_le;
 | |
| 	struct ro_spine spine;
 | |
| 
 | |
| 	init_ro_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels - 1u; level++) {
 | |
| 		r = btree_lookup_raw(&spine, root, keys[level],
 | |
| 				     lower_bound, rkey,
 | |
| 				     &internal_value_le, sizeof(uint64_t));
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (*rkey != keys[level]) {
 | |
| 			r = -ENODATA;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		root = le64_to_cpu(internal_value_le);
 | |
| 	}
 | |
| 
 | |
| 	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 | |
| out:
 | |
| 	exit_ro_spine(&spine);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Copies entries from one region of a btree node to another.  The regions
 | |
|  * must not overlap.
 | |
|  */
 | |
| static void copy_entries(struct btree_node *dest, unsigned dest_offset,
 | |
| 			 struct btree_node *src, unsigned src_offset,
 | |
| 			 unsigned count)
 | |
| {
 | |
| 	size_t value_size = le32_to_cpu(dest->header.value_size);
 | |
| 	memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 | |
| 	memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Moves entries from one region fo a btree node to another.  The regions
 | |
|  * may overlap.
 | |
|  */
 | |
| static void move_entries(struct btree_node *dest, unsigned dest_offset,
 | |
| 			 struct btree_node *src, unsigned src_offset,
 | |
| 			 unsigned count)
 | |
| {
 | |
| 	size_t value_size = le32_to_cpu(dest->header.value_size);
 | |
| 	memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 | |
| 	memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erases the first 'count' entries of a btree node, shifting following
 | |
|  * entries down into their place.
 | |
|  */
 | |
| static void shift_down(struct btree_node *n, unsigned count)
 | |
| {
 | |
| 	move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Moves entries in a btree node up 'count' places, making space for
 | |
|  * new entries at the start of the node.
 | |
|  */
 | |
| static void shift_up(struct btree_node *n, unsigned count)
 | |
| {
 | |
| 	move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Redistributes entries between two btree nodes to make them
 | |
|  * have similar numbers of entries.
 | |
|  */
 | |
| static void redistribute2(struct btree_node *left, struct btree_node *right)
 | |
| {
 | |
| 	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
 | |
| 	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
 | |
| 	unsigned total = nr_left + nr_right;
 | |
| 	unsigned target_left = total / 2;
 | |
| 	unsigned target_right = total - target_left;
 | |
| 
 | |
| 	if (nr_left < target_left) {
 | |
| 		unsigned delta = target_left - nr_left;
 | |
| 		copy_entries(left, nr_left, right, 0, delta);
 | |
| 		shift_down(right, delta);
 | |
| 	} else if (nr_left > target_left) {
 | |
| 		unsigned delta = nr_left - target_left;
 | |
| 		if (nr_right)
 | |
| 			shift_up(right, delta);
 | |
| 		copy_entries(right, 0, left, target_left, delta);
 | |
| 	}
 | |
| 
 | |
| 	left->header.nr_entries = cpu_to_le32(target_left);
 | |
| 	right->header.nr_entries = cpu_to_le32(target_right);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Redistribute entries between three nodes.  Assumes the central
 | |
|  * node is empty.
 | |
|  */
 | |
| static void redistribute3(struct btree_node *left, struct btree_node *center,
 | |
| 			  struct btree_node *right)
 | |
| {
 | |
| 	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
 | |
| 	unsigned nr_center = le32_to_cpu(center->header.nr_entries);
 | |
| 	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
 | |
| 	unsigned total, target_left, target_center, target_right;
 | |
| 
 | |
| 	BUG_ON(nr_center);
 | |
| 
 | |
| 	total = nr_left + nr_right;
 | |
| 	target_left = total / 3;
 | |
| 	target_center = (total - target_left) / 2;
 | |
| 	target_right = (total - target_left - target_center);
 | |
| 
 | |
| 	if (nr_left < target_left) {
 | |
| 		unsigned left_short = target_left - nr_left;
 | |
| 		copy_entries(left, nr_left, right, 0, left_short);
 | |
| 		copy_entries(center, 0, right, left_short, target_center);
 | |
| 		shift_down(right, nr_right - target_right);
 | |
| 
 | |
| 	} else if (nr_left < (target_left + target_center)) {
 | |
| 		unsigned left_to_center = nr_left - target_left;
 | |
| 		copy_entries(center, 0, left, target_left, left_to_center);
 | |
| 		copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
 | |
| 		shift_down(right, nr_right - target_right);
 | |
| 
 | |
| 	} else {
 | |
| 		unsigned right_short = target_right - nr_right;
 | |
| 		shift_up(right, right_short);
 | |
| 		copy_entries(right, 0, left, nr_left - right_short, right_short);
 | |
| 		copy_entries(center, 0, left, target_left, nr_left - target_left);
 | |
| 	}
 | |
| 
 | |
| 	left->header.nr_entries = cpu_to_le32(target_left);
 | |
| 	center->header.nr_entries = cpu_to_le32(target_center);
 | |
| 	right->header.nr_entries = cpu_to_le32(target_right);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Splits a node by creating a sibling node and shifting half the nodes
 | |
|  * contents across.  Assumes there is a parent node, and it has room for
 | |
|  * another child.
 | |
|  *
 | |
|  * Before:
 | |
|  *	  +--------+
 | |
|  *	  | Parent |
 | |
|  *	  +--------+
 | |
|  *	     |
 | |
|  *	     v
 | |
|  *	+----------+
 | |
|  *	| A ++++++ |
 | |
|  *	+----------+
 | |
|  *
 | |
|  *
 | |
|  * After:
 | |
|  *		+--------+
 | |
|  *		| Parent |
 | |
|  *		+--------+
 | |
|  *		  |	|
 | |
|  *		  v	+------+
 | |
|  *	    +---------+	       |
 | |
|  *	    | A* +++  |	       v
 | |
|  *	    +---------+	  +-------+
 | |
|  *			  | B +++ |
 | |
|  *			  +-------+
 | |
|  *
 | |
|  * Where A* is a shadow of A.
 | |
|  */
 | |
| static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
 | |
| 			      struct dm_btree_value_type *vt, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *left, *right, *parent;
 | |
| 	struct btree_node *ln, *rn, *pn;
 | |
| 	__le64 location;
 | |
| 
 | |
| 	left = shadow_current(s);
 | |
| 
 | |
| 	r = new_block(s->info, &right);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	ln = dm_block_data(left);
 | |
| 	rn = dm_block_data(right);
 | |
| 
 | |
| 	rn->header.flags = ln->header.flags;
 | |
| 	rn->header.nr_entries = cpu_to_le32(0);
 | |
| 	rn->header.max_entries = ln->header.max_entries;
 | |
| 	rn->header.value_size = ln->header.value_size;
 | |
| 	redistribute2(ln, rn);
 | |
| 
 | |
| 	/* patch up the parent */
 | |
| 	parent = shadow_parent(s);
 | |
| 	pn = dm_block_data(parent);
 | |
| 
 | |
| 	location = cpu_to_le64(dm_block_location(right));
 | |
| 	__dm_bless_for_disk(&location);
 | |
| 	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 | |
| 		      le64_to_cpu(rn->keys[0]), &location);
 | |
| 	if (r) {
 | |
| 		unlock_block(s->info, right);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	/* patch up the spine */
 | |
| 	if (key < le64_to_cpu(rn->keys[0])) {
 | |
| 		unlock_block(s->info, right);
 | |
| 		s->nodes[1] = left;
 | |
| 	} else {
 | |
| 		unlock_block(s->info, left);
 | |
| 		s->nodes[1] = right;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We often need to modify a sibling node.  This function shadows a particular
 | |
|  * child of the given parent node.  Making sure to update the parent to point
 | |
|  * to the new shadow.
 | |
|  */
 | |
| static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
 | |
| 			struct btree_node *parent, unsigned index,
 | |
| 			struct dm_block **result)
 | |
| {
 | |
| 	int r, inc;
 | |
| 	dm_block_t root;
 | |
| 	struct btree_node *node;
 | |
| 
 | |
| 	root = value64(parent, index);
 | |
| 
 | |
| 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
 | |
| 			       result, &inc);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	node = dm_block_data(*result);
 | |
| 
 | |
| 	if (inc)
 | |
| 		inc_children(info->tm, node, vt);
 | |
| 
 | |
| 	*((__le64 *) value_ptr(parent, index)) =
 | |
| 		cpu_to_le64(dm_block_location(*result));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Splits two nodes into three.  This is more work, but results in fuller
 | |
|  * nodes, so saves metadata space.
 | |
|  */
 | |
| static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
 | |
|                                 struct dm_btree_value_type *vt, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned middle_index;
 | |
| 	struct dm_block *left, *middle, *right, *parent;
 | |
| 	struct btree_node *ln, *rn, *mn, *pn;
 | |
| 	__le64 location;
 | |
| 
 | |
| 	parent = shadow_parent(s);
 | |
| 	pn = dm_block_data(parent);
 | |
| 
 | |
| 	if (parent_index == 0) {
 | |
| 		middle_index = 1;
 | |
| 		left = shadow_current(s);
 | |
| 		r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	} else {
 | |
| 		middle_index = parent_index;
 | |
| 		right = shadow_current(s);
 | |
| 		r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	r = new_block(s->info, &middle);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	ln = dm_block_data(left);
 | |
| 	mn = dm_block_data(middle);
 | |
| 	rn = dm_block_data(right);
 | |
| 
 | |
| 	mn->header.nr_entries = cpu_to_le32(0);
 | |
| 	mn->header.flags = ln->header.flags;
 | |
| 	mn->header.max_entries = ln->header.max_entries;
 | |
| 	mn->header.value_size = ln->header.value_size;
 | |
| 
 | |
| 	redistribute3(ln, mn, rn);
 | |
| 
 | |
| 	/* patch up the parent */
 | |
| 	pn->keys[middle_index] = rn->keys[0];
 | |
| 	location = cpu_to_le64(dm_block_location(middle));
 | |
| 	__dm_bless_for_disk(&location);
 | |
| 	r = insert_at(sizeof(__le64), pn, middle_index,
 | |
| 		      le64_to_cpu(mn->keys[0]), &location);
 | |
| 	if (r) {
 | |
| 		if (shadow_current(s) != left)
 | |
| 			unlock_block(s->info, left);
 | |
| 
 | |
| 		unlock_block(s->info, middle);
 | |
| 
 | |
| 		if (shadow_current(s) != right)
 | |
| 			unlock_block(s->info, right);
 | |
| 
 | |
| 	        return r;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* patch up the spine */
 | |
| 	if (key < le64_to_cpu(mn->keys[0])) {
 | |
| 		unlock_block(s->info, middle);
 | |
| 		unlock_block(s->info, right);
 | |
| 		s->nodes[1] = left;
 | |
| 	} else if (key < le64_to_cpu(rn->keys[0])) {
 | |
| 		unlock_block(s->info, left);
 | |
| 		unlock_block(s->info, right);
 | |
| 		s->nodes[1] = middle;
 | |
| 	} else {
 | |
| 		unlock_block(s->info, left);
 | |
| 		unlock_block(s->info, middle);
 | |
| 		s->nodes[1] = right;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Splits a node by creating two new children beneath the given node.
 | |
|  *
 | |
|  * Before:
 | |
|  *	  +----------+
 | |
|  *	  | A ++++++ |
 | |
|  *	  +----------+
 | |
|  *
 | |
|  *
 | |
|  * After:
 | |
|  *	+------------+
 | |
|  *	| A (shadow) |
 | |
|  *	+------------+
 | |
|  *	    |	|
 | |
|  *   +------+	+----+
 | |
|  *   |		     |
 | |
|  *   v		     v
 | |
|  * +-------+	 +-------+
 | |
|  * | B +++ |	 | C +++ |
 | |
|  * +-------+	 +-------+
 | |
|  */
 | |
| static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	size_t size;
 | |
| 	unsigned nr_left, nr_right;
 | |
| 	struct dm_block *left, *right, *new_parent;
 | |
| 	struct btree_node *pn, *ln, *rn;
 | |
| 	__le64 val;
 | |
| 
 | |
| 	new_parent = shadow_current(s);
 | |
| 
 | |
| 	pn = dm_block_data(new_parent);
 | |
| 	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 | |
| 		sizeof(__le64) : s->info->value_type.size;
 | |
| 
 | |
| 	/* create & init the left block */
 | |
| 	r = new_block(s->info, &left);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	ln = dm_block_data(left);
 | |
| 	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 | |
| 
 | |
| 	ln->header.flags = pn->header.flags;
 | |
| 	ln->header.nr_entries = cpu_to_le32(nr_left);
 | |
| 	ln->header.max_entries = pn->header.max_entries;
 | |
| 	ln->header.value_size = pn->header.value_size;
 | |
| 	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 | |
| 	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 | |
| 
 | |
| 	/* create & init the right block */
 | |
| 	r = new_block(s->info, &right);
 | |
| 	if (r < 0) {
 | |
| 		unlock_block(s->info, left);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	rn = dm_block_data(right);
 | |
| 	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 | |
| 
 | |
| 	rn->header.flags = pn->header.flags;
 | |
| 	rn->header.nr_entries = cpu_to_le32(nr_right);
 | |
| 	rn->header.max_entries = pn->header.max_entries;
 | |
| 	rn->header.value_size = pn->header.value_size;
 | |
| 	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 | |
| 	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 | |
| 	       nr_right * size);
 | |
| 
 | |
| 	/* new_parent should just point to l and r now */
 | |
| 	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 | |
| 	pn->header.nr_entries = cpu_to_le32(2);
 | |
| 	pn->header.max_entries = cpu_to_le32(
 | |
| 		calc_max_entries(sizeof(__le64),
 | |
| 				 dm_bm_block_size(
 | |
| 					 dm_tm_get_bm(s->info->tm))));
 | |
| 	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 | |
| 
 | |
| 	val = cpu_to_le64(dm_block_location(left));
 | |
| 	__dm_bless_for_disk(&val);
 | |
| 	pn->keys[0] = ln->keys[0];
 | |
| 	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 | |
| 
 | |
| 	val = cpu_to_le64(dm_block_location(right));
 | |
| 	__dm_bless_for_disk(&val);
 | |
| 	pn->keys[1] = rn->keys[0];
 | |
| 	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 | |
| 
 | |
| 	unlock_block(s->info, left);
 | |
| 	unlock_block(s->info, right);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Redistributes a node's entries with its left sibling.
 | |
|  */
 | |
| static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
 | |
| 			  unsigned parent_index, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *sib;
 | |
| 	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 | |
| 
 | |
| 	r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	left = dm_block_data(sib);
 | |
| 	right = dm_block_data(shadow_current(s));
 | |
| 	redistribute2(left, right);
 | |
| 	*key_ptr(parent, parent_index) = right->keys[0];
 | |
| 
 | |
| 	if (key < le64_to_cpu(right->keys[0])) {
 | |
| 		unlock_block(s->info, s->nodes[1]);
 | |
| 		s->nodes[1] = sib;
 | |
| 	} else {
 | |
| 		unlock_block(s->info, sib);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Redistributes a nodes entries with its right sibling.
 | |
|  */
 | |
| static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
 | |
| 			   unsigned parent_index, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *sib;
 | |
| 	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 | |
| 
 | |
| 	r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	left = dm_block_data(shadow_current(s));
 | |
| 	right = dm_block_data(sib);
 | |
| 	redistribute2(left, right);
 | |
| 	*key_ptr(parent, parent_index + 1) = right->keys[0];
 | |
| 
 | |
| 	if (key < le64_to_cpu(right->keys[0])) {
 | |
| 		unlock_block(s->info, sib);
 | |
| 	} else {
 | |
| 		unlock_block(s->info, s->nodes[1]);
 | |
| 		s->nodes[1] = sib;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of spare entries in a node.
 | |
|  */
 | |
| static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned nr_entries;
 | |
| 	struct dm_block *block;
 | |
| 	struct btree_node *node;
 | |
| 
 | |
| 	r = bn_read_lock(info, b, &block);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	node = dm_block_data(block);
 | |
| 	nr_entries = le32_to_cpu(node->header.nr_entries);
 | |
| 	*space = le32_to_cpu(node->header.max_entries) - nr_entries;
 | |
| 
 | |
| 	unlock_block(info, block);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make space in a node, either by moving some entries to a sibling,
 | |
|  * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
 | |
|  * number of free entries that must be in the sibling to make the move
 | |
|  * worth while.  If the siblings are shared (eg, part of a snapshot),
 | |
|  * then they are not touched, since this break sharing and so consume
 | |
|  * more space than we save.
 | |
|  */
 | |
| #define SPACE_THRESHOLD 8
 | |
| static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
 | |
| 			      unsigned parent_index, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	struct btree_node *parent = dm_block_data(shadow_parent(s));
 | |
| 	unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
 | |
| 	unsigned free_space;
 | |
| 	int left_shared = 0, right_shared = 0;
 | |
| 
 | |
| 	/* Should we move entries to the left sibling? */
 | |
| 	if (parent_index > 0) {
 | |
| 		dm_block_t left_b = value64(parent, parent_index - 1);
 | |
| 		r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		if (!left_shared) {
 | |
| 			r = get_node_free_space(s->info, left_b, &free_space);
 | |
| 			if (r)
 | |
| 				return r;
 | |
| 
 | |
| 			if (free_space >= SPACE_THRESHOLD)
 | |
| 				return rebalance_left(s, vt, parent_index, key);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Should we move entries to the right sibling? */
 | |
| 	if (parent_index < (nr_parent - 1)) {
 | |
| 		dm_block_t right_b = value64(parent, parent_index + 1);
 | |
| 		r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		if (!right_shared) {
 | |
| 			r = get_node_free_space(s->info, right_b, &free_space);
 | |
| 			if (r)
 | |
| 				return r;
 | |
| 
 | |
| 			if (free_space >= SPACE_THRESHOLD)
 | |
| 				return rebalance_right(s, vt, parent_index, key);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to split the node, normally we split two nodes
 | |
| 	 * into three.	But when inserting a sequence that is either
 | |
| 	 * monotonically increasing or decreasing it's better to split
 | |
| 	 * a single node into two.
 | |
| 	 */
 | |
| 	if (left_shared || right_shared || (nr_parent <= 2) ||
 | |
| 	    (parent_index == 0) || (parent_index + 1 == nr_parent)) {
 | |
| 		return split_one_into_two(s, parent_index, vt, key);
 | |
| 	} else {
 | |
| 		return split_two_into_three(s, parent_index, vt, key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does the node contain a particular key?
 | |
|  */
 | |
| static bool contains_key(struct btree_node *node, uint64_t key)
 | |
| {
 | |
| 	int i = lower_bound(node, key);
 | |
| 
 | |
| 	if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In general we preemptively make sure there's a free entry in every
 | |
|  * node on the spine when doing an insert.  But we can avoid that with
 | |
|  * leaf nodes if we know it's an overwrite.
 | |
|  */
 | |
| static bool has_space_for_insert(struct btree_node *node, uint64_t key)
 | |
| {
 | |
| 	if (node->header.nr_entries == node->header.max_entries) {
 | |
| 		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
 | |
| 			/* we don't need space if it's an overwrite */
 | |
| 			return contains_key(node, key);
 | |
| 		}
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 | |
| 			    struct dm_btree_value_type *vt,
 | |
| 			    uint64_t key, unsigned *index)
 | |
| {
 | |
| 	int r, i = *index, top = 1;
 | |
| 	struct btree_node *node;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		r = shadow_step(s, root, vt);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to patch up the parent node, ugly, but I don't
 | |
| 		 * see a way to do this automatically as part of the spine
 | |
| 		 * op.
 | |
| 		 */
 | |
| 		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 | |
| 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 | |
| 
 | |
| 			__dm_bless_for_disk(&location);
 | |
| 			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 | |
| 				    &location, sizeof(__le64));
 | |
| 		}
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		if (!has_space_for_insert(node, key)) {
 | |
| 			if (top)
 | |
| 				r = btree_split_beneath(s, key);
 | |
| 			else
 | |
| 				r = rebalance_or_split(s, vt, i, key);
 | |
| 
 | |
| 			if (r < 0)
 | |
| 				return r;
 | |
| 
 | |
| 			/* making space can cause the current node to change */
 | |
| 			node = dm_block_data(shadow_current(s));
 | |
| 		}
 | |
| 
 | |
| 		i = lower_bound(node, key);
 | |
| 
 | |
| 		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 | |
| 			break;
 | |
| 
 | |
| 		if (i < 0) {
 | |
| 			/* change the bounds on the lowest key */
 | |
| 			node->keys[0] = cpu_to_le64(key);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 
 | |
| 		root = value64(node, i);
 | |
| 		top = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 | |
| 		i++;
 | |
| 
 | |
| 	*index = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
 | |
| 				      uint64_t key, int *index)
 | |
| {
 | |
| 	int r, i = -1;
 | |
| 	struct btree_node *node;
 | |
| 
 | |
| 	*index = 0;
 | |
| 	for (;;) {
 | |
| 		r = shadow_step(s, root, &s->info->value_type);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to patch up the parent node, ugly, but I don't
 | |
| 		 * see a way to do this automatically as part of the spine
 | |
| 		 * op.
 | |
| 		 */
 | |
| 		if (shadow_has_parent(s) && i >= 0) {
 | |
| 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 | |
| 
 | |
| 			__dm_bless_for_disk(&location);
 | |
| 			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 | |
| 				    &location, sizeof(__le64));
 | |
| 		}
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 		i = lower_bound(node, key);
 | |
| 
 | |
| 		BUG_ON(i < 0);
 | |
| 		BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
 | |
| 
 | |
| 		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
 | |
| 			if (key != le64_to_cpu(node->keys[i]))
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		root = value64(node, i);
 | |
| 	}
 | |
| 
 | |
| 	*index = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
 | |
| 			     uint64_t key, int *index,
 | |
| 			     dm_block_t *new_root, struct dm_block **leaf)
 | |
| {
 | |
| 	int r;
 | |
| 	struct shadow_spine spine;
 | |
| 
 | |
| 	BUG_ON(info->levels > 1);
 | |
| 	init_shadow_spine(&spine, info);
 | |
| 	r = __btree_get_overwrite_leaf(&spine, root, key, index);
 | |
| 	if (!r) {
 | |
| 		*new_root = shadow_root(&spine);
 | |
| 		*leaf = shadow_current(&spine);
 | |
| 
 | |
| 		/*
 | |
| 		 * Decrement the count so exit_shadow_spine() doesn't
 | |
| 		 * unlock the leaf.
 | |
| 		 */
 | |
| 		spine.count--;
 | |
| 	}
 | |
| 	exit_shadow_spine(&spine);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool need_insert(struct btree_node *node, uint64_t *keys,
 | |
| 			unsigned level, unsigned index)
 | |
| {
 | |
|         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 | |
| 		(le64_to_cpu(node->keys[index]) != keys[level]));
 | |
| }
 | |
| 
 | |
| static int insert(struct dm_btree_info *info, dm_block_t root,
 | |
| 		  uint64_t *keys, void *value, dm_block_t *new_root,
 | |
| 		  int *inserted)
 | |
| 		  __dm_written_to_disk(value)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned level, index = -1, last_level = info->levels - 1;
 | |
| 	dm_block_t block = root;
 | |
| 	struct shadow_spine spine;
 | |
| 	struct btree_node *n;
 | |
| 	struct dm_btree_value_type le64_type;
 | |
| 
 | |
| 	init_le64_type(info->tm, &le64_type);
 | |
| 	init_shadow_spine(&spine, info);
 | |
| 
 | |
| 	for (level = 0; level < (info->levels - 1); level++) {
 | |
| 		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 | |
| 		if (r < 0)
 | |
| 			goto bad;
 | |
| 
 | |
| 		n = dm_block_data(shadow_current(&spine));
 | |
| 
 | |
| 		if (need_insert(n, keys, level, index)) {
 | |
| 			dm_block_t new_tree;
 | |
| 			__le64 new_le;
 | |
| 
 | |
| 			r = dm_btree_empty(info, &new_tree);
 | |
| 			if (r < 0)
 | |
| 				goto bad;
 | |
| 
 | |
| 			new_le = cpu_to_le64(new_tree);
 | |
| 			__dm_bless_for_disk(&new_le);
 | |
| 
 | |
| 			r = insert_at(sizeof(uint64_t), n, index,
 | |
| 				      keys[level], &new_le);
 | |
| 			if (r)
 | |
| 				goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (level < last_level)
 | |
| 			block = value64(n, index);
 | |
| 	}
 | |
| 
 | |
| 	r = btree_insert_raw(&spine, block, &info->value_type,
 | |
| 			     keys[level], &index);
 | |
| 	if (r < 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	n = dm_block_data(shadow_current(&spine));
 | |
| 
 | |
| 	if (need_insert(n, keys, level, index)) {
 | |
| 		if (inserted)
 | |
| 			*inserted = 1;
 | |
| 
 | |
| 		r = insert_at(info->value_type.size, n, index,
 | |
| 			      keys[level], value);
 | |
| 		if (r)
 | |
| 			goto bad_unblessed;
 | |
| 	} else {
 | |
| 		if (inserted)
 | |
| 			*inserted = 0;
 | |
| 
 | |
| 		if (info->value_type.dec &&
 | |
| 		    (!info->value_type.equal ||
 | |
| 		     !info->value_type.equal(
 | |
| 			     info->value_type.context,
 | |
| 			     value_ptr(n, index),
 | |
| 			     value))) {
 | |
| 			info->value_type.dec(info->value_type.context,
 | |
| 					     value_ptr(n, index), 1);
 | |
| 		}
 | |
| 		memcpy_disk(value_ptr(n, index),
 | |
| 			    value, info->value_type.size);
 | |
| 	}
 | |
| 
 | |
| 	*new_root = shadow_root(&spine);
 | |
| 	exit_shadow_spine(&spine);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	__dm_unbless_for_disk(value);
 | |
| bad_unblessed:
 | |
| 	exit_shadow_spine(&spine);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 | |
| 		    uint64_t *keys, void *value, dm_block_t *new_root)
 | |
| 		    __dm_written_to_disk(value)
 | |
| {
 | |
| 	return insert(info, root, keys, value, new_root, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_insert);
 | |
| 
 | |
| int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 | |
| 			   uint64_t *keys, void *value, dm_block_t *new_root,
 | |
| 			   int *inserted)
 | |
| 			   __dm_written_to_disk(value)
 | |
| {
 | |
| 	return insert(info, root, keys, value, new_root, inserted);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 | |
| 		    uint64_t *result_key, dm_block_t *next_block)
 | |
| {
 | |
| 	int i, r;
 | |
| 	uint32_t flags;
 | |
| 
 | |
| 	do {
 | |
| 		r = ro_step(s, block);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		flags = le32_to_cpu(ro_node(s)->header.flags);
 | |
| 		i = le32_to_cpu(ro_node(s)->header.nr_entries);
 | |
| 		if (!i)
 | |
| 			return -ENODATA;
 | |
| 		else
 | |
| 			i--;
 | |
| 
 | |
| 		if (find_highest)
 | |
| 			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 | |
| 		else
 | |
| 			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
 | |
| 
 | |
| 		if (next_block || flags & INTERNAL_NODE) {
 | |
| 			if (find_highest)
 | |
| 				block = value64(ro_node(s), i);
 | |
| 			else
 | |
| 				block = value64(ro_node(s), 0);
 | |
| 		}
 | |
| 
 | |
| 	} while (flags & INTERNAL_NODE);
 | |
| 
 | |
| 	if (next_block)
 | |
| 		*next_block = block;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 | |
| 			     bool find_highest, uint64_t *result_keys)
 | |
| {
 | |
| 	int r = 0, count = 0, level;
 | |
| 	struct ro_spine spine;
 | |
| 
 | |
| 	init_ro_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels; level++) {
 | |
| 		r = find_key(&spine, root, find_highest, result_keys + level,
 | |
| 			     level == info->levels - 1 ? NULL : &root);
 | |
| 		if (r == -ENODATA) {
 | |
| 			r = 0;
 | |
| 			break;
 | |
| 
 | |
| 		} else if (r)
 | |
| 			break;
 | |
| 
 | |
| 		count++;
 | |
| 	}
 | |
| 	exit_ro_spine(&spine);
 | |
| 
 | |
| 	return r ? r : count;
 | |
| }
 | |
| 
 | |
| int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 | |
| 			      uint64_t *result_keys)
 | |
| {
 | |
| 	return dm_btree_find_key(info, root, true, result_keys);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 | |
| 
 | |
| int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 | |
| 			     uint64_t *result_keys)
 | |
| {
 | |
| 	return dm_btree_find_key(info, root, false, result_keys);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 | |
|  * space.  Also this only works for single level trees.
 | |
|  */
 | |
| static int walk_node(struct dm_btree_info *info, dm_block_t block,
 | |
| 		     int (*fn)(void *context, uint64_t *keys, void *leaf),
 | |
| 		     void *context)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned i, nr;
 | |
| 	struct dm_block *node;
 | |
| 	struct btree_node *n;
 | |
| 	uint64_t keys;
 | |
| 
 | |
| 	r = bn_read_lock(info, block, &node);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	n = dm_block_data(node);
 | |
| 
 | |
| 	nr = le32_to_cpu(n->header.nr_entries);
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 | |
| 			r = walk_node(info, value64(n, i), fn, context);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			keys = le64_to_cpu(*key_ptr(n, i));
 | |
| 			r = fn(context, &keys, value_ptr(n, i));
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	dm_tm_unlock(info->tm, node);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 | |
| 		  int (*fn)(void *context, uint64_t *keys, void *leaf),
 | |
| 		  void *context)
 | |
| {
 | |
| 	BUG_ON(info->levels > 1);
 | |
| 	return walk_node(info, root, fn, context);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_walk);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static void prefetch_values(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	unsigned i, nr;
 | |
| 	__le64 value_le;
 | |
| 	struct cursor_node *n = c->nodes + c->depth - 1;
 | |
| 	struct btree_node *bn = dm_block_data(n->b);
 | |
| 	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
 | |
| 
 | |
| 	BUG_ON(c->info->value_type.size != sizeof(value_le));
 | |
| 
 | |
| 	nr = le32_to_cpu(bn->header.nr_entries);
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
 | |
| 		dm_bm_prefetch(bm, le64_to_cpu(value_le));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool leaf_node(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	struct cursor_node *n = c->nodes + c->depth - 1;
 | |
| 	struct btree_node *bn = dm_block_data(n->b);
 | |
| 
 | |
| 	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
 | |
| }
 | |
| 
 | |
| static int push_node(struct dm_btree_cursor *c, dm_block_t b)
 | |
| {
 | |
| 	int r;
 | |
| 	struct cursor_node *n = c->nodes + c->depth;
 | |
| 
 | |
| 	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
 | |
| 		DMERR("couldn't push cursor node, stack depth too high");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	r = bn_read_lock(c->info, b, &n->b);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	n->index = 0;
 | |
| 	c->depth++;
 | |
| 
 | |
| 	if (c->prefetch_leaves || !leaf_node(c))
 | |
| 		prefetch_values(c);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pop_node(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	c->depth--;
 | |
| 	unlock_block(c->info, c->nodes[c->depth].b);
 | |
| }
 | |
| 
 | |
| static int inc_or_backtrack(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	struct cursor_node *n;
 | |
| 	struct btree_node *bn;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (!c->depth)
 | |
| 			return -ENODATA;
 | |
| 
 | |
| 		n = c->nodes + c->depth - 1;
 | |
| 		bn = dm_block_data(n->b);
 | |
| 
 | |
| 		n->index++;
 | |
| 		if (n->index < le32_to_cpu(bn->header.nr_entries))
 | |
| 			break;
 | |
| 
 | |
| 		pop_node(c);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int find_leaf(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	int r = 0;
 | |
| 	struct cursor_node *n;
 | |
| 	struct btree_node *bn;
 | |
| 	__le64 value_le;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		n = c->nodes + c->depth - 1;
 | |
| 		bn = dm_block_data(n->b);
 | |
| 
 | |
| 		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
 | |
| 			break;
 | |
| 
 | |
| 		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
 | |
| 		r = push_node(c, le64_to_cpu(value_le));
 | |
| 		if (r) {
 | |
| 			DMERR("push_node failed");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
 | |
| 			  bool prefetch_leaves, struct dm_btree_cursor *c)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	c->info = info;
 | |
| 	c->root = root;
 | |
| 	c->depth = 0;
 | |
| 	c->prefetch_leaves = prefetch_leaves;
 | |
| 
 | |
| 	r = push_node(c, root);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	return find_leaf(c);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
 | |
| 
 | |
| void dm_btree_cursor_end(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	while (c->depth)
 | |
| 		pop_node(c);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
 | |
| 
 | |
| int dm_btree_cursor_next(struct dm_btree_cursor *c)
 | |
| {
 | |
| 	int r = inc_or_backtrack(c);
 | |
| 	if (!r) {
 | |
| 		r = find_leaf(c);
 | |
| 		if (r)
 | |
| 			DMERR("find_leaf failed");
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
 | |
| 
 | |
| int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	while (count-- && !r)
 | |
| 		r = dm_btree_cursor_next(c);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
 | |
| 
 | |
| int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
 | |
| {
 | |
| 	if (c->depth) {
 | |
| 		struct cursor_node *n = c->nodes + c->depth - 1;
 | |
| 		struct btree_node *bn = dm_block_data(n->b);
 | |
| 
 | |
| 		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		*key = le64_to_cpu(*key_ptr(bn, n->index));
 | |
| 		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
 | |
| 		return 0;
 | |
| 
 | |
| 	} else
 | |
| 		return -ENODATA;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
 |