3098 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3098 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006 ARM Ltd.
 | |
|  * Copyright (c) 2010 ST-Ericsson SA
 | |
|  * Copyirght (c) 2017 Linaro Ltd.
 | |
|  *
 | |
|  * Author: Peter Pearse <peter.pearse@arm.com>
 | |
|  * Author: Linus Walleij <linus.walleij@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the Free
 | |
|  * Software Foundation; either version 2 of the License, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * The full GNU General Public License is in this distribution in the file
 | |
|  * called COPYING.
 | |
|  *
 | |
|  * Documentation: ARM DDI 0196G == PL080
 | |
|  * Documentation: ARM DDI 0218E == PL081
 | |
|  * Documentation: S3C6410 User's Manual == PL080S
 | |
|  *
 | |
|  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 | |
|  * channel.
 | |
|  *
 | |
|  * The PL080 has 8 channels available for simultaneous use, and the PL081
 | |
|  * has only two channels. So on these DMA controllers the number of channels
 | |
|  * and the number of incoming DMA signals are two totally different things.
 | |
|  * It is usually not possible to theoretically handle all physical signals,
 | |
|  * so a multiplexing scheme with possible denial of use is necessary.
 | |
|  *
 | |
|  * The PL080 has a dual bus master, PL081 has a single master.
 | |
|  *
 | |
|  * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
 | |
|  * It differs in following aspects:
 | |
|  * - CH_CONFIG register at different offset,
 | |
|  * - separate CH_CONTROL2 register for transfer size,
 | |
|  * - bigger maximum transfer size,
 | |
|  * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
 | |
|  * - no support for peripheral flow control.
 | |
|  *
 | |
|  * Memory to peripheral transfer may be visualized as
 | |
|  *	Get data from memory to DMAC
 | |
|  *	Until no data left
 | |
|  *		On burst request from peripheral
 | |
|  *			Destination burst from DMAC to peripheral
 | |
|  *			Clear burst request
 | |
|  *	Raise terminal count interrupt
 | |
|  *
 | |
|  * For peripherals with a FIFO:
 | |
|  * Source      burst size == half the depth of the peripheral FIFO
 | |
|  * Destination burst size == the depth of the peripheral FIFO
 | |
|  *
 | |
|  * (Bursts are irrelevant for mem to mem transfers - there are no burst
 | |
|  * signals, the DMA controller will simply facilitate its AHB master.)
 | |
|  *
 | |
|  * ASSUMES default (little) endianness for DMA transfers
 | |
|  *
 | |
|  * The PL08x has two flow control settings:
 | |
|  *  - DMAC flow control: the transfer size defines the number of transfers
 | |
|  *    which occur for the current LLI entry, and the DMAC raises TC at the
 | |
|  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 | |
|  *    to both the BREQ and SREQ signals (contrary to documented),
 | |
|  *    transferring data if either is active.  The LBREQ and LSREQ signals
 | |
|  *    are ignored.
 | |
|  *
 | |
|  *  - Peripheral flow control: the transfer size is ignored (and should be
 | |
|  *    zero).  The data is transferred from the current LLI entry, until
 | |
|  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 | |
|  *    will then move to the next LLI entry. Unsupported by PL080S.
 | |
|  */
 | |
| #include <linux/amba/bus.h>
 | |
| #include <linux/amba/pl08x.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_dma.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/amba/pl080.h>
 | |
| 
 | |
| #include "dmaengine.h"
 | |
| #include "virt-dma.h"
 | |
| 
 | |
| #define DRIVER_NAME	"pl08xdmac"
 | |
| 
 | |
| #define PL80X_DMA_BUSWIDTHS \
 | |
| 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 | |
| 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 | |
| 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 | |
| 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 | |
| 
 | |
| static struct amba_driver pl08x_amba_driver;
 | |
| struct pl08x_driver_data;
 | |
| 
 | |
| /**
 | |
|  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 | |
|  * @config_offset: offset to the configuration register
 | |
|  * @channels: the number of channels available in this variant
 | |
|  * @signals: the number of request signals available from the hardware
 | |
|  * @dualmaster: whether this version supports dual AHB masters or not.
 | |
|  * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
 | |
|  *	channels have Nomadik security extension bits that need to be checked
 | |
|  *	for permission before use and some registers are missing
 | |
|  * @pl080s: whether this variant is a Samsung PL080S, which has separate
 | |
|  *	register and LLI word for transfer size.
 | |
|  * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
 | |
|  * @max_transfer_size: the maximum single element transfer size for this
 | |
|  *	PL08x variant.
 | |
|  */
 | |
| struct vendor_data {
 | |
| 	u8 config_offset;
 | |
| 	u8 channels;
 | |
| 	u8 signals;
 | |
| 	bool dualmaster;
 | |
| 	bool nomadik;
 | |
| 	bool pl080s;
 | |
| 	bool ftdmac020;
 | |
| 	u32 max_transfer_size;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_bus_data - information of source or destination
 | |
|  * busses for a transfer
 | |
|  * @addr: current address
 | |
|  * @maxwidth: the maximum width of a transfer on this bus
 | |
|  * @buswidth: the width of this bus in bytes: 1, 2 or 4
 | |
|  */
 | |
| struct pl08x_bus_data {
 | |
| 	dma_addr_t addr;
 | |
| 	u8 maxwidth;
 | |
| 	u8 buswidth;
 | |
| };
 | |
| 
 | |
| #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_phy_chan - holder for the physical channels
 | |
|  * @id: physical index to this channel
 | |
|  * @base: memory base address for this physical channel
 | |
|  * @reg_config: configuration address for this physical channel
 | |
|  * @reg_control: control address for this physical channel
 | |
|  * @reg_src: transfer source address register
 | |
|  * @reg_dst: transfer destination address register
 | |
|  * @reg_lli: transfer LLI address register
 | |
|  * @reg_busy: if the variant has a special per-channel busy register,
 | |
|  * this contains a pointer to it
 | |
|  * @lock: a lock to use when altering an instance of this struct
 | |
|  * @serving: the virtual channel currently being served by this physical
 | |
|  * channel
 | |
|  * @locked: channel unavailable for the system, e.g. dedicated to secure
 | |
|  * world
 | |
|  * @ftdmac020: channel is on a FTDMAC020
 | |
|  * @pl080s: channel is on a PL08s
 | |
|  */
 | |
| struct pl08x_phy_chan {
 | |
| 	unsigned int id;
 | |
| 	void __iomem *base;
 | |
| 	void __iomem *reg_config;
 | |
| 	void __iomem *reg_control;
 | |
| 	void __iomem *reg_src;
 | |
| 	void __iomem *reg_dst;
 | |
| 	void __iomem *reg_lli;
 | |
| 	void __iomem *reg_busy;
 | |
| 	spinlock_t lock;
 | |
| 	struct pl08x_dma_chan *serving;
 | |
| 	bool locked;
 | |
| 	bool ftdmac020;
 | |
| 	bool pl080s;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_sg - structure containing data per sg
 | |
|  * @src_addr: src address of sg
 | |
|  * @dst_addr: dst address of sg
 | |
|  * @len: transfer len in bytes
 | |
|  * @node: node for txd's dsg_list
 | |
|  */
 | |
| struct pl08x_sg {
 | |
| 	dma_addr_t src_addr;
 | |
| 	dma_addr_t dst_addr;
 | |
| 	size_t len;
 | |
| 	struct list_head node;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 | |
|  * @vd: virtual DMA descriptor
 | |
|  * @dsg_list: list of children sg's
 | |
|  * @llis_bus: DMA memory address (physical) start for the LLIs
 | |
|  * @llis_va: virtual memory address start for the LLIs
 | |
|  * @cctl: control reg values for current txd
 | |
|  * @ccfg: config reg values for current txd
 | |
|  * @done: this marks completed descriptors, which should not have their
 | |
|  *   mux released.
 | |
|  * @cyclic: indicate cyclic transfers
 | |
|  */
 | |
| struct pl08x_txd {
 | |
| 	struct virt_dma_desc vd;
 | |
| 	struct list_head dsg_list;
 | |
| 	dma_addr_t llis_bus;
 | |
| 	u32 *llis_va;
 | |
| 	/* Default cctl value for LLIs */
 | |
| 	u32 cctl;
 | |
| 	/*
 | |
| 	 * Settings to be put into the physical channel when we
 | |
| 	 * trigger this txd.  Other registers are in llis_va[0].
 | |
| 	 */
 | |
| 	u32 ccfg;
 | |
| 	bool done;
 | |
| 	bool cyclic;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
 | |
|  * states
 | |
|  * @PL08X_CHAN_IDLE: the channel is idle
 | |
|  * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 | |
|  * channel and is running a transfer on it
 | |
|  * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 | |
|  * channel, but the transfer is currently paused
 | |
|  * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 | |
|  * channel to become available (only pertains to memcpy channels)
 | |
|  */
 | |
| enum pl08x_dma_chan_state {
 | |
| 	PL08X_CHAN_IDLE,
 | |
| 	PL08X_CHAN_RUNNING,
 | |
| 	PL08X_CHAN_PAUSED,
 | |
| 	PL08X_CHAN_WAITING,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 | |
|  * @vc: wrappped virtual channel
 | |
|  * @phychan: the physical channel utilized by this channel, if there is one
 | |
|  * @name: name of channel
 | |
|  * @cd: channel platform data
 | |
|  * @cfg: slave configuration
 | |
|  * @at: active transaction on this channel
 | |
|  * @host: a pointer to the host (internal use)
 | |
|  * @state: whether the channel is idle, paused, running etc
 | |
|  * @slave: whether this channel is a device (slave) or for memcpy
 | |
|  * @signal: the physical DMA request signal which this channel is using
 | |
|  * @mux_use: count of descriptors using this DMA request signal setting
 | |
|  */
 | |
| struct pl08x_dma_chan {
 | |
| 	struct virt_dma_chan vc;
 | |
| 	struct pl08x_phy_chan *phychan;
 | |
| 	const char *name;
 | |
| 	struct pl08x_channel_data *cd;
 | |
| 	struct dma_slave_config cfg;
 | |
| 	struct pl08x_txd *at;
 | |
| 	struct pl08x_driver_data *host;
 | |
| 	enum pl08x_dma_chan_state state;
 | |
| 	bool slave;
 | |
| 	int signal;
 | |
| 	unsigned mux_use;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl08x_driver_data - the local state holder for the PL08x
 | |
|  * @slave: optional slave engine for this instance
 | |
|  * @memcpy: memcpy engine for this instance
 | |
|  * @has_slave: the PL08x has a slave engine (routed signals)
 | |
|  * @base: virtual memory base (remapped) for the PL08x
 | |
|  * @adev: the corresponding AMBA (PrimeCell) bus entry
 | |
|  * @vd: vendor data for this PL08x variant
 | |
|  * @pd: platform data passed in from the platform/machine
 | |
|  * @phy_chans: array of data for the physical channels
 | |
|  * @pool: a pool for the LLI descriptors
 | |
|  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 | |
|  * fetches
 | |
|  * @mem_buses: set to indicate memory transfers on AHB2.
 | |
|  * @lli_words: how many words are used in each LLI item for this variant
 | |
|  */
 | |
| struct pl08x_driver_data {
 | |
| 	struct dma_device slave;
 | |
| 	struct dma_device memcpy;
 | |
| 	bool has_slave;
 | |
| 	void __iomem *base;
 | |
| 	struct amba_device *adev;
 | |
| 	const struct vendor_data *vd;
 | |
| 	struct pl08x_platform_data *pd;
 | |
| 	struct pl08x_phy_chan *phy_chans;
 | |
| 	struct dma_pool *pool;
 | |
| 	u8 lli_buses;
 | |
| 	u8 mem_buses;
 | |
| 	u8 lli_words;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PL08X specific defines
 | |
|  */
 | |
| 
 | |
| /* The order of words in an LLI. */
 | |
| #define PL080_LLI_SRC		0
 | |
| #define PL080_LLI_DST		1
 | |
| #define PL080_LLI_LLI		2
 | |
| #define PL080_LLI_CCTL		3
 | |
| #define PL080S_LLI_CCTL2	4
 | |
| 
 | |
| /* Total words in an LLI. */
 | |
| #define PL080_LLI_WORDS		4
 | |
| #define PL080S_LLI_WORDS	8
 | |
| 
 | |
| /*
 | |
|  * Number of LLIs in each LLI buffer allocated for one transfer
 | |
|  * (maximum times we call dma_pool_alloc on this pool without freeing)
 | |
|  */
 | |
| #define MAX_NUM_TSFR_LLIS	512
 | |
| #define PL08X_ALIGN		8
 | |
| 
 | |
| static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 | |
| {
 | |
| 	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 | |
| }
 | |
| 
 | |
| static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	return container_of(tx, struct pl08x_txd, vd.tx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mux handling.
 | |
|  *
 | |
|  * This gives us the DMA request input to the PL08x primecell which the
 | |
|  * peripheral described by the channel data will be routed to, possibly
 | |
|  * via a board/SoC specific external MUX.  One important point to note
 | |
|  * here is that this does not depend on the physical channel.
 | |
|  */
 | |
| static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	const struct pl08x_platform_data *pd = plchan->host->pd;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 | |
| 		ret = pd->get_xfer_signal(plchan->cd);
 | |
| 		if (ret < 0) {
 | |
| 			plchan->mux_use = 0;
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		plchan->signal = ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	const struct pl08x_platform_data *pd = plchan->host->pd;
 | |
| 
 | |
| 	if (plchan->signal >= 0) {
 | |
| 		WARN_ON(plchan->mux_use == 0);
 | |
| 
 | |
| 		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 | |
| 			pd->put_xfer_signal(plchan->cd, plchan->signal);
 | |
| 			plchan->signal = -1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Physical channel handling
 | |
|  */
 | |
| 
 | |
| /* Whether a certain channel is busy or not */
 | |
| static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	/* If we have a special busy register, take a shortcut */
 | |
| 	if (ch->reg_busy) {
 | |
| 		val = readl(ch->reg_busy);
 | |
| 		return !!(val & BIT(ch->id));
 | |
| 	}
 | |
| 	val = readl(ch->reg_config);
 | |
| 	return val & PL080_CONFIG_ACTIVE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pl08x_write_lli() - Write an LLI into the DMA controller.
 | |
|  *
 | |
|  * The PL08x derivatives support linked lists, but the first item of the
 | |
|  * list containing the source, destination, control word and next LLI is
 | |
|  * ignored. Instead the driver has to write those values directly into the
 | |
|  * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
 | |
|  * register need to be set up for the first transfer.
 | |
|  */
 | |
| static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 | |
| 		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 | |
| {
 | |
| 	if (pl08x->vd->pl080s)
 | |
| 		dev_vdbg(&pl08x->adev->dev,
 | |
| 			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 | |
| 			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 | |
| 			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 | |
| 			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 | |
| 			lli[PL080S_LLI_CCTL2], ccfg);
 | |
| 	else
 | |
| 		dev_vdbg(&pl08x->adev->dev,
 | |
| 			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 | |
| 			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 | |
| 			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 | |
| 			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 | |
| 
 | |
| 	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
 | |
| 	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
 | |
| 	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
 | |
| 
 | |
| 	/*
 | |
| 	 * The FTMAC020 has a different layout in the CCTL word of the LLI
 | |
| 	 * and the CCTL register which is split in CSR and SIZE registers.
 | |
| 	 * Convert the LLI item CCTL into the proper values to write into
 | |
| 	 * the CSR and SIZE registers.
 | |
| 	 */
 | |
| 	if (phychan->ftdmac020) {
 | |
| 		u32 llictl = lli[PL080_LLI_CCTL];
 | |
| 		u32 val = 0;
 | |
| 
 | |
| 		/* Write the transfer size (12 bits) to the size register */
 | |
| 		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
 | |
| 			       phychan->base + FTDMAC020_CH_SIZE);
 | |
| 		/*
 | |
| 		 * Then write the control bits 28..16 to the control register
 | |
| 		 * by shuffleing the bits around to where they are in the
 | |
| 		 * main register. The mapping is as follows:
 | |
| 		 * Bit 28: TC_MSK - mask on all except last LLI
 | |
| 		 * Bit 27..25: SRC_WIDTH
 | |
| 		 * Bit 24..22: DST_WIDTH
 | |
| 		 * Bit 21..20: SRCAD_CTRL
 | |
| 		 * Bit 19..17: DSTAD_CTRL
 | |
| 		 * Bit 17: SRC_SEL
 | |
| 		 * Bit 16: DST_SEL
 | |
| 		 */
 | |
| 		if (llictl & FTDMAC020_LLI_TC_MSK)
 | |
| 			val |= FTDMAC020_CH_CSR_TC_MSK;
 | |
| 		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 | |
| 			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
 | |
| 			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
 | |
| 		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 | |
| 			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
 | |
| 			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
 | |
| 		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
 | |
| 			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
 | |
| 			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
 | |
| 		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
 | |
| 			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
 | |
| 			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
 | |
| 		if (llictl & FTDMAC020_LLI_SRC_SEL)
 | |
| 			val |= FTDMAC020_CH_CSR_SRC_SEL;
 | |
| 		if (llictl & FTDMAC020_LLI_DST_SEL)
 | |
| 			val |= FTDMAC020_CH_CSR_DST_SEL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set up the bits that exist in the CSR but are not
 | |
| 		 * part the LLI, i.e. only gets written to the control
 | |
| 		 * register right here.
 | |
| 		 *
 | |
| 		 * FIXME: do not just handle memcpy, also handle slave DMA.
 | |
| 		 */
 | |
| 		switch (pl08x->pd->memcpy_burst_size) {
 | |
| 		default:
 | |
| 		case PL08X_BURST_SZ_1:
 | |
| 			val |= PL080_BSIZE_1 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_4:
 | |
| 			val |= PL080_BSIZE_4 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_8:
 | |
| 			val |= PL080_BSIZE_8 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_16:
 | |
| 			val |= PL080_BSIZE_16 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_32:
 | |
| 			val |= PL080_BSIZE_32 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_64:
 | |
| 			val |= PL080_BSIZE_64 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_128:
 | |
| 			val |= PL080_BSIZE_128 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		case PL08X_BURST_SZ_256:
 | |
| 			val |= PL080_BSIZE_256 <<
 | |
| 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Protection flags */
 | |
| 		if (pl08x->pd->memcpy_prot_buff)
 | |
| 			val |= FTDMAC020_CH_CSR_PROT2;
 | |
| 		if (pl08x->pd->memcpy_prot_cache)
 | |
| 			val |= FTDMAC020_CH_CSR_PROT3;
 | |
| 		/* We are the kernel, so we are in privileged mode */
 | |
| 		val |= FTDMAC020_CH_CSR_PROT1;
 | |
| 
 | |
| 		writel_relaxed(val, phychan->reg_control);
 | |
| 	} else {
 | |
| 		/* Bits are just identical */
 | |
| 		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
 | |
| 	}
 | |
| 
 | |
| 	/* Second control word on the PL080s */
 | |
| 	if (pl08x->vd->pl080s)
 | |
| 		writel_relaxed(lli[PL080S_LLI_CCTL2],
 | |
| 				phychan->base + PL080S_CH_CONTROL2);
 | |
| 
 | |
| 	writel(ccfg, phychan->reg_config);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the initial DMA register values i.e. those for the first LLI
 | |
|  * The next LLI pointer and the configuration interrupt bit have
 | |
|  * been set when the LLIs were constructed.  Poke them into the hardware
 | |
|  * and start the transfer.
 | |
|  */
 | |
| static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_phy_chan *phychan = plchan->phychan;
 | |
| 	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 | |
| 	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 | |
| 	u32 val;
 | |
| 
 | |
| 	list_del(&txd->vd.node);
 | |
| 
 | |
| 	plchan->at = txd;
 | |
| 
 | |
| 	/* Wait for channel inactive */
 | |
| 	while (pl08x_phy_channel_busy(phychan))
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 | |
| 
 | |
| 	/* Enable the DMA channel */
 | |
| 	/* Do not access config register until channel shows as disabled */
 | |
| 	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	/* Do not access config register until channel shows as inactive */
 | |
| 	if (phychan->ftdmac020) {
 | |
| 		val = readl(phychan->reg_config);
 | |
| 		while (val & FTDMAC020_CH_CFG_BUSY)
 | |
| 			val = readl(phychan->reg_config);
 | |
| 
 | |
| 		val = readl(phychan->reg_control);
 | |
| 		while (val & FTDMAC020_CH_CSR_EN)
 | |
| 			val = readl(phychan->reg_control);
 | |
| 
 | |
| 		writel(val | FTDMAC020_CH_CSR_EN,
 | |
| 		       phychan->reg_control);
 | |
| 	} else {
 | |
| 		val = readl(phychan->reg_config);
 | |
| 		while ((val & PL080_CONFIG_ACTIVE) ||
 | |
| 		       (val & PL080_CONFIG_ENABLE))
 | |
| 			val = readl(phychan->reg_config);
 | |
| 
 | |
| 		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pause the channel by setting the HALT bit.
 | |
|  *
 | |
|  * For M->P transfers, pause the DMAC first and then stop the peripheral -
 | |
|  * the FIFO can only drain if the peripheral is still requesting data.
 | |
|  * (note: this can still timeout if the DMAC FIFO never drains of data.)
 | |
|  *
 | |
|  * For P->M transfers, disable the peripheral first to stop it filling
 | |
|  * the DMAC FIFO, and then pause the DMAC.
 | |
|  */
 | |
| static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int timeout;
 | |
| 
 | |
| 	if (ch->ftdmac020) {
 | |
| 		/* Use the enable bit on the FTDMAC020 */
 | |
| 		val = readl(ch->reg_control);
 | |
| 		val &= ~FTDMAC020_CH_CSR_EN;
 | |
| 		writel(val, ch->reg_control);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the HALT bit and wait for the FIFO to drain */
 | |
| 	val = readl(ch->reg_config);
 | |
| 	val |= PL080_CONFIG_HALT;
 | |
| 	writel(val, ch->reg_config);
 | |
| 
 | |
| 	/* Wait for channel inactive */
 | |
| 	for (timeout = 1000; timeout; timeout--) {
 | |
| 		if (!pl08x_phy_channel_busy(ch))
 | |
| 			break;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	if (pl08x_phy_channel_busy(ch))
 | |
| 		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 | |
| }
 | |
| 
 | |
| static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Use the enable bit on the FTDMAC020 */
 | |
| 	if (ch->ftdmac020) {
 | |
| 		val = readl(ch->reg_control);
 | |
| 		val |= FTDMAC020_CH_CSR_EN;
 | |
| 		writel(val, ch->reg_control);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the HALT bit */
 | |
| 	val = readl(ch->reg_config);
 | |
| 	val &= ~PL080_CONFIG_HALT;
 | |
| 	writel(val, ch->reg_config);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 | |
|  * clears any pending interrupt status.  This should not be used for
 | |
|  * an on-going transfer, but as a method of shutting down a channel
 | |
|  * (eg, when it's no longer used) or terminating a transfer.
 | |
|  */
 | |
| static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 | |
| 	struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* The layout for the FTDMAC020 is different */
 | |
| 	if (ch->ftdmac020) {
 | |
| 		/* Disable all interrupts */
 | |
| 		val = readl(ch->reg_config);
 | |
| 		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
 | |
| 			FTDMAC020_CH_CFG_INT_ERR_MASK |
 | |
| 			FTDMAC020_CH_CFG_INT_TC_MASK);
 | |
| 		writel(val, ch->reg_config);
 | |
| 
 | |
| 		/* Abort and disable channel */
 | |
| 		val = readl(ch->reg_control);
 | |
| 		val &= ~FTDMAC020_CH_CSR_EN;
 | |
| 		val |= FTDMAC020_CH_CSR_ABT;
 | |
| 		writel(val, ch->reg_control);
 | |
| 
 | |
| 		/* Clear ABT and ERR interrupt flags */
 | |
| 		writel(BIT(ch->id) | BIT(ch->id + 16),
 | |
| 		       pl08x->base + PL080_ERR_CLEAR);
 | |
| 		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	val = readl(ch->reg_config);
 | |
| 	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 | |
| 		 PL080_CONFIG_TC_IRQ_MASK);
 | |
| 	writel(val, ch->reg_config);
 | |
| 
 | |
| 	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
 | |
| 	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 | |
| }
 | |
| 
 | |
| static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 bytes;
 | |
| 
 | |
| 	if (ch->ftdmac020) {
 | |
| 		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
 | |
| 
 | |
| 		val = readl(ch->reg_control);
 | |
| 		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
 | |
| 		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
 | |
| 	} else if (ch->pl080s) {
 | |
| 		val = readl(ch->base + PL080S_CH_CONTROL2);
 | |
| 		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		val = readl(ch->reg_control);
 | |
| 		val &= PL080_CONTROL_SWIDTH_MASK;
 | |
| 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 	} else {
 | |
| 		/* Plain PL08x */
 | |
| 		val = readl(ch->reg_control);
 | |
| 		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		val &= PL080_CONTROL_SWIDTH_MASK;
 | |
| 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case PL080_WIDTH_8BIT:
 | |
| 		break;
 | |
| 	case PL080_WIDTH_16BIT:
 | |
| 		bytes *= 2;
 | |
| 		break;
 | |
| 	case PL080_WIDTH_32BIT:
 | |
| 		bytes *= 4;
 | |
| 		break;
 | |
| 	}
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 bytes;
 | |
| 
 | |
| 	if (ch->ftdmac020) {
 | |
| 		val = llis_va[PL080_LLI_CCTL];
 | |
| 		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		val = llis_va[PL080_LLI_CCTL];
 | |
| 		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
 | |
| 		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 | |
| 	} else if (ch->pl080s) {
 | |
| 		val = llis_va[PL080S_LLI_CCTL2];
 | |
| 		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		val = llis_va[PL080_LLI_CCTL];
 | |
| 		val &= PL080_CONTROL_SWIDTH_MASK;
 | |
| 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 	} else {
 | |
| 		/* Plain PL08x */
 | |
| 		val = llis_va[PL080_LLI_CCTL];
 | |
| 		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		val &= PL080_CONTROL_SWIDTH_MASK;
 | |
| 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case PL080_WIDTH_8BIT:
 | |
| 		break;
 | |
| 	case PL080_WIDTH_16BIT:
 | |
| 		bytes *= 2;
 | |
| 		break;
 | |
| 	case PL080_WIDTH_32BIT:
 | |
| 		bytes *= 4;
 | |
| 		break;
 | |
| 	}
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /* The channel should be paused when calling this */
 | |
| static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	const u32 *llis_va, *llis_va_limit;
 | |
| 	struct pl08x_phy_chan *ch;
 | |
| 	dma_addr_t llis_bus;
 | |
| 	struct pl08x_txd *txd;
 | |
| 	u32 llis_max_words;
 | |
| 	size_t bytes;
 | |
| 	u32 clli;
 | |
| 
 | |
| 	ch = plchan->phychan;
 | |
| 	txd = plchan->at;
 | |
| 
 | |
| 	if (!ch || !txd)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Follow the LLIs to get the number of remaining
 | |
| 	 * bytes in the currently active transaction.
 | |
| 	 */
 | |
| 	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
 | |
| 
 | |
| 	/* First get the remaining bytes in the active transfer */
 | |
| 	bytes = get_bytes_in_phy_channel(ch);
 | |
| 
 | |
| 	if (!clli)
 | |
| 		return bytes;
 | |
| 
 | |
| 	llis_va = txd->llis_va;
 | |
| 	llis_bus = txd->llis_bus;
 | |
| 
 | |
| 	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 | |
| 	BUG_ON(clli < llis_bus || clli >= llis_bus +
 | |
| 						sizeof(u32) * llis_max_words);
 | |
| 
 | |
| 	/*
 | |
| 	 * Locate the next LLI - as this is an array,
 | |
| 	 * it's simple maths to find.
 | |
| 	 */
 | |
| 	llis_va += (clli - llis_bus) / sizeof(u32);
 | |
| 
 | |
| 	llis_va_limit = llis_va + llis_max_words;
 | |
| 
 | |
| 	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 | |
| 		bytes += get_bytes_in_lli(ch, llis_va);
 | |
| 
 | |
| 		/*
 | |
| 		 * A LLI pointer going backward terminates the LLI list
 | |
| 		 */
 | |
| 		if (llis_va[PL080_LLI_LLI] <= clli)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a physical channel for a virtual channel
 | |
|  *
 | |
|  * Try to locate a physical channel to be used for this transfer. If all
 | |
|  * are taken return NULL and the requester will have to cope by using
 | |
|  * some fallback PIO mode or retrying later.
 | |
|  */
 | |
| static struct pl08x_phy_chan *
 | |
| pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 | |
| 		      struct pl08x_dma_chan *virt_chan)
 | |
| {
 | |
| 	struct pl08x_phy_chan *ch = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < pl08x->vd->channels; i++) {
 | |
| 		ch = &pl08x->phy_chans[i];
 | |
| 
 | |
| 		spin_lock_irqsave(&ch->lock, flags);
 | |
| 
 | |
| 		if (!ch->locked && !ch->serving) {
 | |
| 			ch->serving = virt_chan;
 | |
| 			spin_unlock_irqrestore(&ch->lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irqrestore(&ch->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (i == pl08x->vd->channels) {
 | |
| 		/* No physical channel available, cope with it */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return ch;
 | |
| }
 | |
| 
 | |
| /* Mark the physical channel as free.  Note, this write is atomic. */
 | |
| static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 | |
| 					 struct pl08x_phy_chan *ch)
 | |
| {
 | |
| 	ch->serving = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to allocate a physical channel.  When successful, assign it to
 | |
|  * this virtual channel, and initiate the next descriptor.  The
 | |
|  * virtual channel lock must be held at this point.
 | |
|  */
 | |
| static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_phy_chan *ch;
 | |
| 
 | |
| 	ch = pl08x_get_phy_channel(pl08x, plchan);
 | |
| 	if (!ch) {
 | |
| 		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 | |
| 		plchan->state = PL08X_CHAN_WAITING;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 | |
| 		ch->id, plchan->name);
 | |
| 
 | |
| 	plchan->phychan = ch;
 | |
| 	plchan->state = PL08X_CHAN_RUNNING;
 | |
| 	pl08x_start_next_txd(plchan);
 | |
| }
 | |
| 
 | |
| static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 | |
| 	struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 
 | |
| 	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 | |
| 		ch->id, plchan->name);
 | |
| 
 | |
| 	/*
 | |
| 	 * We do this without taking the lock; we're really only concerned
 | |
| 	 * about whether this pointer is NULL or not, and we're guaranteed
 | |
| 	 * that this will only be called when it _already_ is non-NULL.
 | |
| 	 */
 | |
| 	ch->serving = plchan;
 | |
| 	plchan->phychan = ch;
 | |
| 	plchan->state = PL08X_CHAN_RUNNING;
 | |
| 	pl08x_start_next_txd(plchan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a physical DMA channel, potentially reallocating it to another
 | |
|  * virtual channel if we have any pending.
 | |
|  */
 | |
| static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_dma_chan *p, *next;
 | |
| 
 | |
|  retry:
 | |
| 	next = NULL;
 | |
| 
 | |
| 	/* Find a waiting virtual channel for the next transfer. */
 | |
| 	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 | |
| 		if (p->state == PL08X_CHAN_WAITING) {
 | |
| 			next = p;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (!next && pl08x->has_slave) {
 | |
| 		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 | |
| 			if (p->state == PL08X_CHAN_WAITING) {
 | |
| 				next = p;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure that the physical channel is stopped */
 | |
| 	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 | |
| 
 | |
| 	if (next) {
 | |
| 		bool success;
 | |
| 
 | |
| 		/*
 | |
| 		 * Eww.  We know this isn't going to deadlock
 | |
| 		 * but lockdep probably doesn't.
 | |
| 		 */
 | |
| 		spin_lock(&next->vc.lock);
 | |
| 		/* Re-check the state now that we have the lock */
 | |
| 		success = next->state == PL08X_CHAN_WAITING;
 | |
| 		if (success)
 | |
| 			pl08x_phy_reassign_start(plchan->phychan, next);
 | |
| 		spin_unlock(&next->vc.lock);
 | |
| 
 | |
| 		/* If the state changed, try to find another channel */
 | |
| 		if (!success)
 | |
| 			goto retry;
 | |
| 	} else {
 | |
| 		/* No more jobs, so free up the physical channel */
 | |
| 		pl08x_put_phy_channel(pl08x, plchan->phychan);
 | |
| 	}
 | |
| 
 | |
| 	plchan->phychan = NULL;
 | |
| 	plchan->state = PL08X_CHAN_IDLE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * LLI handling
 | |
|  */
 | |
| 
 | |
| static inline unsigned int
 | |
| pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
 | |
| 			u32 cctl,
 | |
| 			bool source)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		if (source)
 | |
| 			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 | |
| 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 | |
| 		else
 | |
| 			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 | |
| 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 	} else {
 | |
| 		if (source)
 | |
| 			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
 | |
| 				PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 		else
 | |
| 			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
 | |
| 				PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case PL080_WIDTH_8BIT:
 | |
| 		return 1;
 | |
| 	case PL080_WIDTH_16BIT:
 | |
| 		return 2;
 | |
| 	case PL080_WIDTH_32BIT:
 | |
| 		return 4;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
 | |
| 					 u32 cctl,
 | |
| 					 u8 srcwidth, u8 dstwidth,
 | |
| 					 size_t tsize)
 | |
| {
 | |
| 	u32 retbits = cctl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove all src, dst and transfer size bits, then set the
 | |
| 	 * width and size according to the parameters. The bit offsets
 | |
| 	 * are different in the FTDMAC020 so we need to accound for this.
 | |
| 	 */
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
 | |
| 		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
 | |
| 		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		switch (srcwidth) {
 | |
| 		case 1:
 | |
| 			retbits |= PL080_WIDTH_8BIT <<
 | |
| 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			retbits |= PL080_WIDTH_16BIT <<
 | |
| 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			retbits |= PL080_WIDTH_32BIT <<
 | |
| 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (dstwidth) {
 | |
| 		case 1:
 | |
| 			retbits |= PL080_WIDTH_8BIT <<
 | |
| 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			retbits |= PL080_WIDTH_16BIT <<
 | |
| 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			retbits |= PL080_WIDTH_32BIT <<
 | |
| 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 | |
| 		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
 | |
| 	} else {
 | |
| 		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 | |
| 		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 | |
| 		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 
 | |
| 		switch (srcwidth) {
 | |
| 		case 1:
 | |
| 			retbits |= PL080_WIDTH_8BIT <<
 | |
| 				PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			retbits |= PL080_WIDTH_16BIT <<
 | |
| 				PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			retbits |= PL080_WIDTH_32BIT <<
 | |
| 				PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (dstwidth) {
 | |
| 		case 1:
 | |
| 			retbits |= PL080_WIDTH_8BIT <<
 | |
| 				PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			retbits |= PL080_WIDTH_16BIT <<
 | |
| 				PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			retbits |= PL080_WIDTH_32BIT <<
 | |
| 				PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 | |
| 		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	return retbits;
 | |
| }
 | |
| 
 | |
| struct pl08x_lli_build_data {
 | |
| 	struct pl08x_txd *txd;
 | |
| 	struct pl08x_bus_data srcbus;
 | |
| 	struct pl08x_bus_data dstbus;
 | |
| 	size_t remainder;
 | |
| 	u32 lli_bus;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 | |
|  * victim in case src & dest are not similarly aligned. i.e. If after aligning
 | |
|  * masters address with width requirements of transfer (by sending few byte by
 | |
|  * byte data), slave is still not aligned, then its width will be reduced to
 | |
|  * BYTE.
 | |
|  * - prefers the destination bus if both available
 | |
|  * - prefers bus with fixed address (i.e. peripheral)
 | |
|  */
 | |
| static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
 | |
| 				    struct pl08x_lli_build_data *bd,
 | |
| 				    struct pl08x_bus_data **mbus,
 | |
| 				    struct pl08x_bus_data **sbus,
 | |
| 				    u32 cctl)
 | |
| {
 | |
| 	bool dst_incr;
 | |
| 	bool src_incr;
 | |
| 
 | |
| 	/*
 | |
| 	 * The FTDMAC020 only supports memory-to-memory transfer, so
 | |
| 	 * source and destination always increase.
 | |
| 	 */
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		dst_incr = true;
 | |
| 		src_incr = true;
 | |
| 	} else {
 | |
| 		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
 | |
| 		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If either bus is not advancing, i.e. it is a peripheral, that
 | |
| 	 * one becomes master
 | |
| 	 */
 | |
| 	if (!dst_incr) {
 | |
| 		*mbus = &bd->dstbus;
 | |
| 		*sbus = &bd->srcbus;
 | |
| 	} else if (!src_incr) {
 | |
| 		*mbus = &bd->srcbus;
 | |
| 		*sbus = &bd->dstbus;
 | |
| 	} else {
 | |
| 		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 | |
| 			*mbus = &bd->dstbus;
 | |
| 			*sbus = &bd->srcbus;
 | |
| 		} else {
 | |
| 			*mbus = &bd->srcbus;
 | |
| 			*sbus = &bd->dstbus;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fills in one LLI for a certain transfer descriptor and advance the counter
 | |
|  */
 | |
| static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 | |
| 				    struct pl08x_lli_build_data *bd,
 | |
| 				    int num_llis, int len, u32 cctl, u32 cctl2)
 | |
| {
 | |
| 	u32 offset = num_llis * pl08x->lli_words;
 | |
| 	u32 *llis_va = bd->txd->llis_va + offset;
 | |
| 	dma_addr_t llis_bus = bd->txd->llis_bus;
 | |
| 
 | |
| 	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 | |
| 
 | |
| 	/* Advance the offset to next LLI. */
 | |
| 	offset += pl08x->lli_words;
 | |
| 
 | |
| 	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 | |
| 	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 | |
| 	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 | |
| 	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 | |
| 	llis_va[PL080_LLI_CCTL] = cctl;
 | |
| 	if (pl08x->vd->pl080s)
 | |
| 		llis_va[PL080S_LLI_CCTL2] = cctl2;
 | |
| 
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		/* FIXME: only memcpy so far so both increase */
 | |
| 		bd->srcbus.addr += len;
 | |
| 		bd->dstbus.addr += len;
 | |
| 	} else {
 | |
| 		if (cctl & PL080_CONTROL_SRC_INCR)
 | |
| 			bd->srcbus.addr += len;
 | |
| 		if (cctl & PL080_CONTROL_DST_INCR)
 | |
| 			bd->dstbus.addr += len;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(bd->remainder < len);
 | |
| 
 | |
| 	bd->remainder -= len;
 | |
| }
 | |
| 
 | |
| static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 | |
| 			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 | |
| 			int num_llis, size_t *total_bytes)
 | |
| {
 | |
| 	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
 | |
| 	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 | |
| 	(*total_bytes) += len;
 | |
| }
 | |
| 
 | |
| #if 1
 | |
| static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 | |
| 			   const u32 *llis_va, int num_llis)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (pl08x->vd->pl080s) {
 | |
| 		dev_vdbg(&pl08x->adev->dev,
 | |
| 			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 | |
| 			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 | |
| 		for (i = 0; i < num_llis; i++) {
 | |
| 			dev_vdbg(&pl08x->adev->dev,
 | |
| 				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				i, llis_va, llis_va[PL080_LLI_SRC],
 | |
| 				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 | |
| 				llis_va[PL080_LLI_CCTL],
 | |
| 				llis_va[PL080S_LLI_CCTL2]);
 | |
| 			llis_va += pl08x->lli_words;
 | |
| 		}
 | |
| 	} else {
 | |
| 		dev_vdbg(&pl08x->adev->dev,
 | |
| 			"%-3s %-9s  %-10s %-10s %-10s %s\n",
 | |
| 			"lli", "", "csrc", "cdst", "clli", "cctl");
 | |
| 		for (i = 0; i < num_llis; i++) {
 | |
| 			dev_vdbg(&pl08x->adev->dev,
 | |
| 				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				i, llis_va, llis_va[PL080_LLI_SRC],
 | |
| 				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 | |
| 				llis_va[PL080_LLI_CCTL]);
 | |
| 			llis_va += pl08x->lli_words;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 | |
| 				  const u32 *llis_va, int num_llis) {}
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This fills in the table of LLIs for the transfer descriptor
 | |
|  * Note that we assume we never have to change the burst sizes
 | |
|  * Return 0 for error
 | |
|  */
 | |
| static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 | |
| 			      struct pl08x_txd *txd)
 | |
| {
 | |
| 	struct pl08x_bus_data *mbus, *sbus;
 | |
| 	struct pl08x_lli_build_data bd;
 | |
| 	int num_llis = 0;
 | |
| 	u32 cctl, early_bytes = 0;
 | |
| 	size_t max_bytes_per_lli, total_bytes;
 | |
| 	u32 *llis_va, *last_lli;
 | |
| 	struct pl08x_sg *dsg;
 | |
| 
 | |
| 	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 | |
| 	if (!txd->llis_va) {
 | |
| 		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bd.txd = txd;
 | |
| 	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 | |
| 	cctl = txd->cctl;
 | |
| 
 | |
| 	/* Find maximum width of the source bus */
 | |
| 	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
 | |
| 
 | |
| 	/* Find maximum width of the destination bus */
 | |
| 	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
 | |
| 
 | |
| 	list_for_each_entry(dsg, &txd->dsg_list, node) {
 | |
| 		total_bytes = 0;
 | |
| 		cctl = txd->cctl;
 | |
| 
 | |
| 		bd.srcbus.addr = dsg->src_addr;
 | |
| 		bd.dstbus.addr = dsg->dst_addr;
 | |
| 		bd.remainder = dsg->len;
 | |
| 		bd.srcbus.buswidth = bd.srcbus.maxwidth;
 | |
| 		bd.dstbus.buswidth = bd.dstbus.maxwidth;
 | |
| 
 | |
| 		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
 | |
| 
 | |
| 		dev_vdbg(&pl08x->adev->dev,
 | |
| 			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 | |
| 			(u64)bd.srcbus.addr,
 | |
| 			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 | |
| 			bd.srcbus.buswidth,
 | |
| 			(u64)bd.dstbus.addr,
 | |
| 			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 | |
| 			bd.dstbus.buswidth,
 | |
| 			bd.remainder);
 | |
| 		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 | |
| 			mbus == &bd.srcbus ? "src" : "dst",
 | |
| 			sbus == &bd.srcbus ? "src" : "dst");
 | |
| 
 | |
| 		/*
 | |
| 		 * Zero length is only allowed if all these requirements are
 | |
| 		 * met:
 | |
| 		 * - flow controller is peripheral.
 | |
| 		 * - src.addr is aligned to src.width
 | |
| 		 * - dst.addr is aligned to dst.width
 | |
| 		 *
 | |
| 		 * sg_len == 1 should be true, as there can be two cases here:
 | |
| 		 *
 | |
| 		 * - Memory addresses are contiguous and are not scattered.
 | |
| 		 *   Here, Only one sg will be passed by user driver, with
 | |
| 		 *   memory address and zero length. We pass this to controller
 | |
| 		 *   and after the transfer it will receive the last burst
 | |
| 		 *   request from peripheral and so transfer finishes.
 | |
| 		 *
 | |
| 		 * - Memory addresses are scattered and are not contiguous.
 | |
| 		 *   Here, Obviously as DMA controller doesn't know when a lli's
 | |
| 		 *   transfer gets over, it can't load next lli. So in this
 | |
| 		 *   case, there has to be an assumption that only one lli is
 | |
| 		 *   supported. Thus, we can't have scattered addresses.
 | |
| 		 */
 | |
| 		if (!bd.remainder) {
 | |
| 			u32 fc;
 | |
| 
 | |
| 			/* FTDMAC020 only does memory-to-memory */
 | |
| 			if (pl08x->vd->ftdmac020)
 | |
| 				fc = PL080_FLOW_MEM2MEM;
 | |
| 			else
 | |
| 				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
 | |
| 					PL080_CONFIG_FLOW_CONTROL_SHIFT;
 | |
| 			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
 | |
| 					(fc <= PL080_FLOW_SRC2DST_SRC))) {
 | |
| 				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
 | |
| 					__func__);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
 | |
| 				!IS_BUS_ALIGNED(&bd.dstbus)) {
 | |
| 				dev_err(&pl08x->adev->dev,
 | |
| 					"%s src & dst address must be aligned to src"
 | |
| 					" & dst width if peripheral is flow controller",
 | |
| 					__func__);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			cctl = pl08x_lli_control_bits(pl08x, cctl,
 | |
| 					bd.srcbus.buswidth, bd.dstbus.buswidth,
 | |
| 					0);
 | |
| 			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
 | |
| 					0, cctl, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Send byte by byte for following cases
 | |
| 		 * - Less than a bus width available
 | |
| 		 * - until master bus is aligned
 | |
| 		 */
 | |
| 		if (bd.remainder < mbus->buswidth)
 | |
| 			early_bytes = bd.remainder;
 | |
| 		else if (!IS_BUS_ALIGNED(mbus)) {
 | |
| 			early_bytes = mbus->buswidth -
 | |
| 				(mbus->addr & (mbus->buswidth - 1));
 | |
| 			if ((bd.remainder - early_bytes) < mbus->buswidth)
 | |
| 				early_bytes = bd.remainder;
 | |
| 		}
 | |
| 
 | |
| 		if (early_bytes) {
 | |
| 			dev_vdbg(&pl08x->adev->dev,
 | |
| 				"%s byte width LLIs (remain 0x%08zx)\n",
 | |
| 				__func__, bd.remainder);
 | |
| 			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
 | |
| 				num_llis++, &total_bytes);
 | |
| 		}
 | |
| 
 | |
| 		if (bd.remainder) {
 | |
| 			/*
 | |
| 			 * Master now aligned
 | |
| 			 * - if slave is not then we must set its width down
 | |
| 			 */
 | |
| 			if (!IS_BUS_ALIGNED(sbus)) {
 | |
| 				dev_dbg(&pl08x->adev->dev,
 | |
| 					"%s set down bus width to one byte\n",
 | |
| 					__func__);
 | |
| 
 | |
| 				sbus->buswidth = 1;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Bytes transferred = tsize * src width, not
 | |
| 			 * MIN(buswidths)
 | |
| 			 */
 | |
| 			max_bytes_per_lli = bd.srcbus.buswidth *
 | |
| 						pl08x->vd->max_transfer_size;
 | |
| 			dev_vdbg(&pl08x->adev->dev,
 | |
| 				"%s max bytes per lli = %zu\n",
 | |
| 				__func__, max_bytes_per_lli);
 | |
| 
 | |
| 			/*
 | |
| 			 * Make largest possible LLIs until less than one bus
 | |
| 			 * width left
 | |
| 			 */
 | |
| 			while (bd.remainder > (mbus->buswidth - 1)) {
 | |
| 				size_t lli_len, tsize, width;
 | |
| 
 | |
| 				/*
 | |
| 				 * If enough left try to send max possible,
 | |
| 				 * otherwise try to send the remainder
 | |
| 				 */
 | |
| 				lli_len = min(bd.remainder, max_bytes_per_lli);
 | |
| 
 | |
| 				/*
 | |
| 				 * Check against maximum bus alignment:
 | |
| 				 * Calculate actual transfer size in relation to
 | |
| 				 * bus width an get a maximum remainder of the
 | |
| 				 * highest bus width - 1
 | |
| 				 */
 | |
| 				width = max(mbus->buswidth, sbus->buswidth);
 | |
| 				lli_len = (lli_len / width) * width;
 | |
| 				tsize = lli_len / bd.srcbus.buswidth;
 | |
| 
 | |
| 				dev_vdbg(&pl08x->adev->dev,
 | |
| 					"%s fill lli with single lli chunk of "
 | |
| 					"size 0x%08zx (remainder 0x%08zx)\n",
 | |
| 					__func__, lli_len, bd.remainder);
 | |
| 
 | |
| 				cctl = pl08x_lli_control_bits(pl08x, cctl,
 | |
| 					bd.srcbus.buswidth, bd.dstbus.buswidth,
 | |
| 					tsize);
 | |
| 				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
 | |
| 						lli_len, cctl, tsize);
 | |
| 				total_bytes += lli_len;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Send any odd bytes
 | |
| 			 */
 | |
| 			if (bd.remainder) {
 | |
| 				dev_vdbg(&pl08x->adev->dev,
 | |
| 					"%s align with boundary, send odd bytes (remain %zu)\n",
 | |
| 					__func__, bd.remainder);
 | |
| 				prep_byte_width_lli(pl08x, &bd, &cctl,
 | |
| 					bd.remainder, num_llis++, &total_bytes);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (total_bytes != dsg->len) {
 | |
| 			dev_err(&pl08x->adev->dev,
 | |
| 				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
 | |
| 				__func__, total_bytes, dsg->len);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (num_llis >= MAX_NUM_TSFR_LLIS) {
 | |
| 			dev_err(&pl08x->adev->dev,
 | |
| 				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
 | |
| 				__func__, MAX_NUM_TSFR_LLIS);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	llis_va = txd->llis_va;
 | |
| 	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
 | |
| 
 | |
| 	if (txd->cyclic) {
 | |
| 		/* Link back to the first LLI. */
 | |
| 		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
 | |
| 	} else {
 | |
| 		/* The final LLI terminates the LLI. */
 | |
| 		last_lli[PL080_LLI_LLI] = 0;
 | |
| 		/* The final LLI element shall also fire an interrupt. */
 | |
| 		if (pl08x->vd->ftdmac020)
 | |
| 			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
 | |
| 		else
 | |
| 			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
 | |
| 	}
 | |
| 
 | |
| 	pl08x_dump_lli(pl08x, llis_va, num_llis);
 | |
| 
 | |
| 	return num_llis;
 | |
| }
 | |
| 
 | |
| static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
 | |
| 			   struct pl08x_txd *txd)
 | |
| {
 | |
| 	struct pl08x_sg *dsg, *_dsg;
 | |
| 
 | |
| 	if (txd->llis_va)
 | |
| 		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 | |
| 
 | |
| 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
 | |
| 		list_del(&dsg->node);
 | |
| 		kfree(dsg);
 | |
| 	}
 | |
| 
 | |
| 	kfree(txd);
 | |
| }
 | |
| 
 | |
| static void pl08x_desc_free(struct virt_dma_desc *vd)
 | |
| {
 | |
| 	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
 | |
| 
 | |
| 	dma_descriptor_unmap(&vd->tx);
 | |
| 	if (!txd->done)
 | |
| 		pl08x_release_mux(plchan);
 | |
| 
 | |
| 	pl08x_free_txd(plchan->host, txd);
 | |
| }
 | |
| 
 | |
| static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
 | |
| 				struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	LIST_HEAD(head);
 | |
| 
 | |
| 	vchan_get_all_descriptors(&plchan->vc, &head);
 | |
| 	vchan_dma_desc_free_list(&plchan->vc, &head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The DMA ENGINE API
 | |
|  */
 | |
| static void pl08x_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	/* Ensure all queued descriptors are freed */
 | |
| 	vchan_free_chan_resources(to_virt_chan(chan));
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
 | |
| 		struct dma_chan *chan, unsigned long flags)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *retval = NULL;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Code accessing dma_async_is_complete() in a tight loop may give problems.
 | |
|  * If slaves are relying on interrupts to signal completion this function
 | |
|  * must not be called with interrupts disabled.
 | |
|  */
 | |
| static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
 | |
| 		dma_cookie_t cookie, struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct virt_dma_desc *vd;
 | |
| 	unsigned long flags;
 | |
| 	enum dma_status ret;
 | |
| 	size_t bytes = 0;
 | |
| 
 | |
| 	ret = dma_cookie_status(chan, cookie, txstate);
 | |
| 	if (ret == DMA_COMPLETE)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's no point calculating the residue if there's
 | |
| 	 * no txstate to store the value.
 | |
| 	 */
 | |
| 	if (!txstate) {
 | |
| 		if (plchan->state == PL08X_CHAN_PAUSED)
 | |
| 			ret = DMA_PAUSED;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&plchan->vc.lock, flags);
 | |
| 	ret = dma_cookie_status(chan, cookie, txstate);
 | |
| 	if (ret != DMA_COMPLETE) {
 | |
| 		vd = vchan_find_desc(&plchan->vc, cookie);
 | |
| 		if (vd) {
 | |
| 			/* On the issued list, so hasn't been processed yet */
 | |
| 			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 | |
| 			struct pl08x_sg *dsg;
 | |
| 
 | |
| 			list_for_each_entry(dsg, &txd->dsg_list, node)
 | |
| 				bytes += dsg->len;
 | |
| 		} else {
 | |
| 			bytes = pl08x_getbytes_chan(plchan);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This cookie not complete yet
 | |
| 	 * Get number of bytes left in the active transactions and queue
 | |
| 	 */
 | |
| 	dma_set_residue(txstate, bytes);
 | |
| 
 | |
| 	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
 | |
| 		ret = DMA_PAUSED;
 | |
| 
 | |
| 	/* Whether waiting or running, we're in progress */
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* PrimeCell DMA extension */
 | |
| struct burst_table {
 | |
| 	u32 burstwords;
 | |
| 	u32 reg;
 | |
| };
 | |
| 
 | |
| static const struct burst_table burst_sizes[] = {
 | |
| 	{
 | |
| 		.burstwords = 256,
 | |
| 		.reg = PL080_BSIZE_256,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 128,
 | |
| 		.reg = PL080_BSIZE_128,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 64,
 | |
| 		.reg = PL080_BSIZE_64,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 32,
 | |
| 		.reg = PL080_BSIZE_32,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 16,
 | |
| 		.reg = PL080_BSIZE_16,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 8,
 | |
| 		.reg = PL080_BSIZE_8,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 4,
 | |
| 		.reg = PL080_BSIZE_4,
 | |
| 	},
 | |
| 	{
 | |
| 		.burstwords = 0,
 | |
| 		.reg = PL080_BSIZE_1,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Given the source and destination available bus masks, select which
 | |
|  * will be routed to each port.  We try to have source and destination
 | |
|  * on separate ports, but always respect the allowable settings.
 | |
|  */
 | |
| static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
 | |
| {
 | |
| 	u32 cctl = 0;
 | |
| 	u32 dst_ahb2;
 | |
| 	u32 src_ahb2;
 | |
| 
 | |
| 	/* The FTDMAC020 use different bits to indicate src/dst bus */
 | |
| 	if (ftdmac020) {
 | |
| 		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
 | |
| 		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
 | |
| 	} else {
 | |
| 		dst_ahb2 = PL080_CONTROL_DST_AHB2;
 | |
| 		src_ahb2 = PL080_CONTROL_SRC_AHB2;
 | |
| 	}
 | |
| 
 | |
| 	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
 | |
| 		cctl |= dst_ahb2;
 | |
| 	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
 | |
| 		cctl |= src_ahb2;
 | |
| 
 | |
| 	return cctl;
 | |
| }
 | |
| 
 | |
| static u32 pl08x_cctl(u32 cctl)
 | |
| {
 | |
| 	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
 | |
| 		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
 | |
| 		  PL080_CONTROL_PROT_MASK);
 | |
| 
 | |
| 	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
 | |
| 	return cctl | PL080_CONTROL_PROT_SYS;
 | |
| }
 | |
| 
 | |
| static u32 pl08x_width(enum dma_slave_buswidth width)
 | |
| {
 | |
| 	switch (width) {
 | |
| 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 | |
| 		return PL080_WIDTH_8BIT;
 | |
| 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 | |
| 		return PL080_WIDTH_16BIT;
 | |
| 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 | |
| 		return PL080_WIDTH_32BIT;
 | |
| 	default:
 | |
| 		return ~0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 pl08x_burst(u32 maxburst)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
 | |
| 		if (burst_sizes[i].burstwords <= maxburst)
 | |
| 			break;
 | |
| 
 | |
| 	return burst_sizes[i].reg;
 | |
| }
 | |
| 
 | |
| static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
 | |
| 	enum dma_slave_buswidth addr_width, u32 maxburst)
 | |
| {
 | |
| 	u32 width, burst, cctl = 0;
 | |
| 
 | |
| 	width = pl08x_width(addr_width);
 | |
| 	if (width == ~0)
 | |
| 		return ~0;
 | |
| 
 | |
| 	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
 | |
| 	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this channel will only request single transfers, set this
 | |
| 	 * down to ONE element.  Also select one element if no maxburst
 | |
| 	 * is specified.
 | |
| 	 */
 | |
| 	if (plchan->cd->single)
 | |
| 		maxburst = 1;
 | |
| 
 | |
| 	burst = pl08x_burst(maxburst);
 | |
| 	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
 | |
| 	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 
 | |
| 	return pl08x_cctl(cctl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slave transactions callback to the slave device to allow
 | |
|  * synchronization of slave DMA signals with the DMAC enable
 | |
|  */
 | |
| static void pl08x_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&plchan->vc.lock, flags);
 | |
| 	if (vchan_issue_pending(&plchan->vc)) {
 | |
| 		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
 | |
| 			pl08x_phy_alloc_and_start(plchan);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| }
 | |
| 
 | |
| static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
 | |
| {
 | |
| 	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
 | |
| 
 | |
| 	if (txd)
 | |
| 		INIT_LIST_HEAD(&txd->dsg_list);
 | |
| 	return txd;
 | |
| }
 | |
| 
 | |
| static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
 | |
| {
 | |
| 	u32 cctl = 0;
 | |
| 
 | |
| 	/* Conjure cctl */
 | |
| 	switch (pl08x->pd->memcpy_burst_size) {
 | |
| 	default:
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"illegal burst size for memcpy, set to 1\n");
 | |
| 		/* Fall through */
 | |
| 	case PL08X_BURST_SZ_1:
 | |
| 		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_4:
 | |
| 		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_8:
 | |
| 		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_16:
 | |
| 		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_32:
 | |
| 		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_64:
 | |
| 		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_128:
 | |
| 		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BURST_SZ_256:
 | |
| 		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
 | |
| 			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (pl08x->pd->memcpy_bus_width) {
 | |
| 	default:
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"illegal bus width for memcpy, set to 8 bits\n");
 | |
| 		/* Fall through */
 | |
| 	case PL08X_BUS_WIDTH_8_BITS:
 | |
| 		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
 | |
| 			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BUS_WIDTH_16_BITS:
 | |
| 		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
 | |
| 			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BUS_WIDTH_32_BITS:
 | |
| 		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
 | |
| 			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Protection flags */
 | |
| 	if (pl08x->pd->memcpy_prot_buff)
 | |
| 		cctl |= PL080_CONTROL_PROT_BUFF;
 | |
| 	if (pl08x->pd->memcpy_prot_cache)
 | |
| 		cctl |= PL080_CONTROL_PROT_CACHE;
 | |
| 
 | |
| 	/* We are the kernel, so we are in privileged mode */
 | |
| 	cctl |= PL080_CONTROL_PROT_SYS;
 | |
| 
 | |
| 	/* Both to be incremented or the code will break */
 | |
| 	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
 | |
| 
 | |
| 	if (pl08x->vd->dualmaster)
 | |
| 		cctl |= pl08x_select_bus(false,
 | |
| 					 pl08x->mem_buses,
 | |
| 					 pl08x->mem_buses);
 | |
| 
 | |
| 	return cctl;
 | |
| }
 | |
| 
 | |
| static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
 | |
| {
 | |
| 	u32 cctl = 0;
 | |
| 
 | |
| 	/* Conjure cctl */
 | |
| 	switch (pl08x->pd->memcpy_bus_width) {
 | |
| 	default:
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"illegal bus width for memcpy, set to 8 bits\n");
 | |
| 		/* Fall through */
 | |
| 	case PL08X_BUS_WIDTH_8_BITS:
 | |
| 		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
 | |
| 			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BUS_WIDTH_16_BITS:
 | |
| 		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
 | |
| 			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 		break;
 | |
| 	case PL08X_BUS_WIDTH_32_BITS:
 | |
| 		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
 | |
| 			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
 | |
| 	 * the last LLI item by other code.
 | |
| 	 */
 | |
| 	cctl |= FTDMAC020_LLI_TC_MSK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
 | |
| 	 * and FTDMAC020_LLI_DSTAD_CTL as zero
 | |
| 	 */
 | |
| 	if (pl08x->vd->dualmaster)
 | |
| 		cctl |= pl08x_select_bus(true,
 | |
| 					 pl08x->mem_buses,
 | |
| 					 pl08x->mem_buses);
 | |
| 
 | |
| 	return cctl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a descriptor to be used by memcpy submit
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
 | |
| 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 | |
| 		size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_txd *txd;
 | |
| 	struct pl08x_sg *dsg;
 | |
| 	int ret;
 | |
| 
 | |
| 	txd = pl08x_get_txd(plchan);
 | |
| 	if (!txd) {
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"%s no memory for descriptor\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
 | |
| 	if (!dsg) {
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	list_add_tail(&dsg->node, &txd->dsg_list);
 | |
| 
 | |
| 	dsg->src_addr = src;
 | |
| 	dsg->dst_addr = dest;
 | |
| 	dsg->len = len;
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		/* Writing CCFG zero ENABLES all interrupts */
 | |
| 		txd->ccfg = 0;
 | |
| 		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
 | |
| 	} else {
 | |
| 		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
 | |
| 			PL080_CONFIG_TC_IRQ_MASK |
 | |
| 			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
 | |
| 		txd->cctl = pl08x_memcpy_cctl(pl08x);
 | |
| 	}
 | |
| 
 | |
| 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
 | |
| 	if (!ret) {
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
 | |
| }
 | |
| 
 | |
| static struct pl08x_txd *pl08x_init_txd(
 | |
| 		struct dma_chan *chan,
 | |
| 		enum dma_transfer_direction direction,
 | |
| 		dma_addr_t *slave_addr)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_txd *txd;
 | |
| 	enum dma_slave_buswidth addr_width;
 | |
| 	int ret, tmp;
 | |
| 	u8 src_buses, dst_buses;
 | |
| 	u32 maxburst, cctl;
 | |
| 
 | |
| 	txd = pl08x_get_txd(plchan);
 | |
| 	if (!txd) {
 | |
| 		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up addresses, the PrimeCell configured address
 | |
| 	 * will take precedence since this may configure the
 | |
| 	 * channel target address dynamically at runtime.
 | |
| 	 */
 | |
| 	if (direction == DMA_MEM_TO_DEV) {
 | |
| 		cctl = PL080_CONTROL_SRC_INCR;
 | |
| 		*slave_addr = plchan->cfg.dst_addr;
 | |
| 		addr_width = plchan->cfg.dst_addr_width;
 | |
| 		maxburst = plchan->cfg.dst_maxburst;
 | |
| 		src_buses = pl08x->mem_buses;
 | |
| 		dst_buses = plchan->cd->periph_buses;
 | |
| 	} else if (direction == DMA_DEV_TO_MEM) {
 | |
| 		cctl = PL080_CONTROL_DST_INCR;
 | |
| 		*slave_addr = plchan->cfg.src_addr;
 | |
| 		addr_width = plchan->cfg.src_addr_width;
 | |
| 		maxburst = plchan->cfg.src_maxburst;
 | |
| 		src_buses = plchan->cd->periph_buses;
 | |
| 		dst_buses = pl08x->mem_buses;
 | |
| 	} else {
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"%s direction unsupported\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
 | |
| 	if (cctl == ~0) {
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"DMA slave configuration botched?\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
 | |
| 
 | |
| 	if (plchan->cfg.device_fc)
 | |
| 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
 | |
| 			PL080_FLOW_PER2MEM_PER;
 | |
| 	else
 | |
| 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
 | |
| 			PL080_FLOW_PER2MEM;
 | |
| 
 | |
| 	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
 | |
| 		PL080_CONFIG_TC_IRQ_MASK |
 | |
| 		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
 | |
| 
 | |
| 	ret = pl08x_request_mux(plchan);
 | |
| 	if (ret < 0) {
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		dev_dbg(&pl08x->adev->dev,
 | |
| 			"unable to mux for transfer on %s due to platform restrictions\n",
 | |
| 			plchan->name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
 | |
| 		 plchan->signal, plchan->name);
 | |
| 
 | |
| 	/* Assign the flow control signal to this channel */
 | |
| 	if (direction == DMA_MEM_TO_DEV)
 | |
| 		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
 | |
| 	else
 | |
| 		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
 | |
| 
 | |
| 	return txd;
 | |
| }
 | |
| 
 | |
| static int pl08x_tx_add_sg(struct pl08x_txd *txd,
 | |
| 			   enum dma_transfer_direction direction,
 | |
| 			   dma_addr_t slave_addr,
 | |
| 			   dma_addr_t buf_addr,
 | |
| 			   unsigned int len)
 | |
| {
 | |
| 	struct pl08x_sg *dsg;
 | |
| 
 | |
| 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
 | |
| 	if (!dsg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	list_add_tail(&dsg->node, &txd->dsg_list);
 | |
| 
 | |
| 	dsg->len = len;
 | |
| 	if (direction == DMA_MEM_TO_DEV) {
 | |
| 		dsg->src_addr = buf_addr;
 | |
| 		dsg->dst_addr = slave_addr;
 | |
| 	} else {
 | |
| 		dsg->src_addr = slave_addr;
 | |
| 		dsg->dst_addr = buf_addr;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
 | |
| 		struct dma_chan *chan, struct scatterlist *sgl,
 | |
| 		unsigned int sg_len, enum dma_transfer_direction direction,
 | |
| 		unsigned long flags, void *context)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_txd *txd;
 | |
| 	struct scatterlist *sg;
 | |
| 	int ret, tmp;
 | |
| 	dma_addr_t slave_addr;
 | |
| 
 | |
| 	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
 | |
| 			__func__, sg_dma_len(sgl), plchan->name);
 | |
| 
 | |
| 	txd = pl08x_init_txd(chan, direction, &slave_addr);
 | |
| 	if (!txd)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, sg_len, tmp) {
 | |
| 		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
 | |
| 				      sg_dma_address(sg),
 | |
| 				      sg_dma_len(sg));
 | |
| 		if (ret) {
 | |
| 			pl08x_release_mux(plchan);
 | |
| 			pl08x_free_txd(pl08x, txd);
 | |
| 			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
 | |
| 					__func__);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
 | |
| 	if (!ret) {
 | |
| 		pl08x_release_mux(plchan);
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
 | |
| 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 | |
| 		size_t period_len, enum dma_transfer_direction direction,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	struct pl08x_txd *txd;
 | |
| 	int ret, tmp;
 | |
| 	dma_addr_t slave_addr;
 | |
| 
 | |
| 	dev_dbg(&pl08x->adev->dev,
 | |
| 		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
 | |
| 		__func__, period_len, buf_len,
 | |
| 		direction == DMA_MEM_TO_DEV ? "to" : "from",
 | |
| 		plchan->name);
 | |
| 
 | |
| 	txd = pl08x_init_txd(chan, direction, &slave_addr);
 | |
| 	if (!txd)
 | |
| 		return NULL;
 | |
| 
 | |
| 	txd->cyclic = true;
 | |
| 	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
 | |
| 	for (tmp = 0; tmp < buf_len; tmp += period_len) {
 | |
| 		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
 | |
| 				      buf_addr + tmp, period_len);
 | |
| 		if (ret) {
 | |
| 			pl08x_release_mux(plchan);
 | |
| 			pl08x_free_txd(pl08x, txd);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
 | |
| 	if (!ret) {
 | |
| 		pl08x_release_mux(plchan);
 | |
| 		pl08x_free_txd(pl08x, txd);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
 | |
| }
 | |
| 
 | |
| static int pl08x_config(struct dma_chan *chan,
 | |
| 			struct dma_slave_config *config)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 
 | |
| 	if (!plchan->slave)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Reject definitely invalid configurations */
 | |
| 	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 | |
| 	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (config->device_fc && pl08x->vd->pl080s) {
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"%s: PL080S does not support peripheral flow control\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	plchan->cfg = *config;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pl08x_terminate_all(struct dma_chan *chan)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	struct pl08x_driver_data *pl08x = plchan->host;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&plchan->vc.lock, flags);
 | |
| 	if (!plchan->phychan && !plchan->at) {
 | |
| 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	plchan->state = PL08X_CHAN_IDLE;
 | |
| 
 | |
| 	if (plchan->phychan) {
 | |
| 		/*
 | |
| 		 * Mark physical channel as free and free any slave
 | |
| 		 * signal
 | |
| 		 */
 | |
| 		pl08x_phy_free(plchan);
 | |
| 	}
 | |
| 	/* Dequeue jobs and free LLIs */
 | |
| 	if (plchan->at) {
 | |
| 		vchan_terminate_vdesc(&plchan->at->vd);
 | |
| 		plchan->at = NULL;
 | |
| 	}
 | |
| 	/* Dequeue jobs not yet fired as well */
 | |
| 	pl08x_free_txd_list(pl08x, plchan);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pl08x_synchronize(struct dma_chan *chan)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 
 | |
| 	vchan_synchronize(&plchan->vc);
 | |
| }
 | |
| 
 | |
| static int pl08x_pause(struct dma_chan *chan)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Anything succeeds on channels with no physical allocation and
 | |
| 	 * no queued transfers.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&plchan->vc.lock, flags);
 | |
| 	if (!plchan->phychan && !plchan->at) {
 | |
| 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pl08x_pause_phy_chan(plchan->phychan);
 | |
| 	plchan->state = PL08X_CHAN_PAUSED;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pl08x_resume(struct dma_chan *chan)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Anything succeeds on channels with no physical allocation and
 | |
| 	 * no queued transfers.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&plchan->vc.lock, flags);
 | |
| 	if (!plchan->phychan && !plchan->at) {
 | |
| 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pl08x_resume_phy_chan(plchan->phychan);
 | |
| 	plchan->state = PL08X_CHAN_RUNNING;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan;
 | |
| 	char *name = chan_id;
 | |
| 
 | |
| 	/* Reject channels for devices not bound to this driver */
 | |
| 	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
 | |
| 		return false;
 | |
| 
 | |
| 	plchan = to_pl08x_chan(chan);
 | |
| 
 | |
| 	/* Check that the channel is not taken! */
 | |
| 	if (!strcmp(plchan->name, name))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pl08x_filter_id);
 | |
| 
 | |
| static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
 | |
| {
 | |
| 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 | |
| 
 | |
| 	return plchan->cd == chan_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Just check that the device is there and active
 | |
|  * TODO: turn this bit on/off depending on the number of physical channels
 | |
|  * actually used, if it is zero... well shut it off. That will save some
 | |
|  * power. Cut the clock at the same time.
 | |
|  */
 | |
| static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
 | |
| {
 | |
| 	/* The Nomadik variant does not have the config register */
 | |
| 	if (pl08x->vd->nomadik)
 | |
| 		return;
 | |
| 	/* The FTDMAC020 variant does this in another register */
 | |
| 	if (pl08x->vd->ftdmac020) {
 | |
| 		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
 | |
| 		return;
 | |
| 	}
 | |
| 	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
 | |
| }
 | |
| 
 | |
| static irqreturn_t pl08x_irq(int irq, void *dev)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = dev;
 | |
| 	u32 mask = 0, err, tc, i;
 | |
| 
 | |
| 	/* check & clear - ERR & TC interrupts */
 | |
| 	err = readl(pl08x->base + PL080_ERR_STATUS);
 | |
| 	if (err) {
 | |
| 		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
 | |
| 			__func__, err);
 | |
| 		writel(err, pl08x->base + PL080_ERR_CLEAR);
 | |
| 	}
 | |
| 	tc = readl(pl08x->base + PL080_TC_STATUS);
 | |
| 	if (tc)
 | |
| 		writel(tc, pl08x->base + PL080_TC_CLEAR);
 | |
| 
 | |
| 	if (!err && !tc)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	for (i = 0; i < pl08x->vd->channels; i++) {
 | |
| 		if ((BIT(i) & err) || (BIT(i) & tc)) {
 | |
| 			/* Locate physical channel */
 | |
| 			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
 | |
| 			struct pl08x_dma_chan *plchan = phychan->serving;
 | |
| 			struct pl08x_txd *tx;
 | |
| 
 | |
| 			if (!plchan) {
 | |
| 				dev_err(&pl08x->adev->dev,
 | |
| 					"%s Error TC interrupt on unused channel: 0x%08x\n",
 | |
| 					__func__, i);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			spin_lock(&plchan->vc.lock);
 | |
| 			tx = plchan->at;
 | |
| 			if (tx && tx->cyclic) {
 | |
| 				vchan_cyclic_callback(&tx->vd);
 | |
| 			} else if (tx) {
 | |
| 				plchan->at = NULL;
 | |
| 				/*
 | |
| 				 * This descriptor is done, release its mux
 | |
| 				 * reservation.
 | |
| 				 */
 | |
| 				pl08x_release_mux(plchan);
 | |
| 				tx->done = true;
 | |
| 				vchan_cookie_complete(&tx->vd);
 | |
| 
 | |
| 				/*
 | |
| 				 * And start the next descriptor (if any),
 | |
| 				 * otherwise free this channel.
 | |
| 				 */
 | |
| 				if (vchan_next_desc(&plchan->vc))
 | |
| 					pl08x_start_next_txd(plchan);
 | |
| 				else
 | |
| 					pl08x_phy_free(plchan);
 | |
| 			}
 | |
| 			spin_unlock(&plchan->vc.lock);
 | |
| 
 | |
| 			mask |= BIT(i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mask ? IRQ_HANDLED : IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
 | |
| {
 | |
| 	chan->slave = true;
 | |
| 	chan->name = chan->cd->bus_id;
 | |
| 	chan->cfg.src_addr = chan->cd->addr;
 | |
| 	chan->cfg.dst_addr = chan->cd->addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise the DMAC memcpy/slave channels.
 | |
|  * Make a local wrapper to hold required data
 | |
|  */
 | |
| static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
 | |
| 		struct dma_device *dmadev, unsigned int channels, bool slave)
 | |
| {
 | |
| 	struct pl08x_dma_chan *chan;
 | |
| 	int i;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dmadev->channels);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register as many many memcpy as we have physical channels,
 | |
| 	 * we won't always be able to use all but the code will have
 | |
| 	 * to cope with that situation.
 | |
| 	 */
 | |
| 	for (i = 0; i < channels; i++) {
 | |
| 		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
 | |
| 		if (!chan)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		chan->host = pl08x;
 | |
| 		chan->state = PL08X_CHAN_IDLE;
 | |
| 		chan->signal = -1;
 | |
| 
 | |
| 		if (slave) {
 | |
| 			chan->cd = &pl08x->pd->slave_channels[i];
 | |
| 			/*
 | |
| 			 * Some implementations have muxed signals, whereas some
 | |
| 			 * use a mux in front of the signals and need dynamic
 | |
| 			 * assignment of signals.
 | |
| 			 */
 | |
| 			chan->signal = i;
 | |
| 			pl08x_dma_slave_init(chan);
 | |
| 		} else {
 | |
| 			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
 | |
| 			if (!chan->cd) {
 | |
| 				kfree(chan);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			chan->cd->bus_id = "memcpy";
 | |
| 			chan->cd->periph_buses = pl08x->pd->mem_buses;
 | |
| 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
 | |
| 			if (!chan->name) {
 | |
| 				kfree(chan->cd);
 | |
| 				kfree(chan);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 		dev_dbg(&pl08x->adev->dev,
 | |
| 			 "initialize virtual channel \"%s\"\n",
 | |
| 			 chan->name);
 | |
| 
 | |
| 		chan->vc.desc_free = pl08x_desc_free;
 | |
| 		vchan_init(&chan->vc, dmadev);
 | |
| 	}
 | |
| 	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
 | |
| 		 i, slave ? "slave" : "memcpy");
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void pl08x_free_virtual_channels(struct dma_device *dmadev)
 | |
| {
 | |
| 	struct pl08x_dma_chan *chan = NULL;
 | |
| 	struct pl08x_dma_chan *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(chan,
 | |
| 				 next, &dmadev->channels, vc.chan.device_node) {
 | |
| 		list_del(&chan->vc.chan.device_node);
 | |
| 		kfree(chan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
 | |
| {
 | |
| 	switch (state) {
 | |
| 	case PL08X_CHAN_IDLE:
 | |
| 		return "idle";
 | |
| 	case PL08X_CHAN_RUNNING:
 | |
| 		return "running";
 | |
| 	case PL08X_CHAN_PAUSED:
 | |
| 		return "paused";
 | |
| 	case PL08X_CHAN_WAITING:
 | |
| 		return "waiting";
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return "UNKNOWN STATE";
 | |
| }
 | |
| 
 | |
| static int pl08x_debugfs_show(struct seq_file *s, void *data)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = s->private;
 | |
| 	struct pl08x_dma_chan *chan;
 | |
| 	struct pl08x_phy_chan *ch;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	seq_printf(s, "PL08x physical channels:\n");
 | |
| 	seq_printf(s, "CHANNEL:\tUSER:\n");
 | |
| 	seq_printf(s, "--------\t-----\n");
 | |
| 	for (i = 0; i < pl08x->vd->channels; i++) {
 | |
| 		struct pl08x_dma_chan *virt_chan;
 | |
| 
 | |
| 		ch = &pl08x->phy_chans[i];
 | |
| 
 | |
| 		spin_lock_irqsave(&ch->lock, flags);
 | |
| 		virt_chan = ch->serving;
 | |
| 
 | |
| 		seq_printf(s, "%d\t\t%s%s\n",
 | |
| 			   ch->id,
 | |
| 			   virt_chan ? virt_chan->name : "(none)",
 | |
| 			   ch->locked ? " LOCKED" : "");
 | |
| 
 | |
| 		spin_unlock_irqrestore(&ch->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
 | |
| 	seq_printf(s, "CHANNEL:\tSTATE:\n");
 | |
| 	seq_printf(s, "--------\t------\n");
 | |
| 	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
 | |
| 		seq_printf(s, "%s\t\t%s\n", chan->name,
 | |
| 			   pl08x_state_str(chan->state));
 | |
| 	}
 | |
| 
 | |
| 	if (pl08x->has_slave) {
 | |
| 		seq_printf(s, "\nPL08x virtual slave channels:\n");
 | |
| 		seq_printf(s, "CHANNEL:\tSTATE:\n");
 | |
| 		seq_printf(s, "--------\t------\n");
 | |
| 		list_for_each_entry(chan, &pl08x->slave.channels,
 | |
| 				    vc.chan.device_node) {
 | |
| 			seq_printf(s, "%s\t\t%s\n", chan->name,
 | |
| 				   pl08x_state_str(chan->state));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pl08x_debugfs_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, pl08x_debugfs_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations pl08x_debugfs_operations = {
 | |
| 	.open		= pl08x_debugfs_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
 | |
| {
 | |
| 	/* Expose a simple debugfs interface to view all clocks */
 | |
| 	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
 | |
| 			S_IFREG | S_IRUGO, NULL, pl08x,
 | |
| 			&pl08x_debugfs_operations);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
 | |
| 					 u32 id)
 | |
| {
 | |
| 	struct pl08x_dma_chan *chan;
 | |
| 
 | |
| 	/* Trying to get a slave channel from something with no slave support */
 | |
| 	if (!pl08x->has_slave)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
 | |
| 		if (chan->signal == id)
 | |
| 			return &chan->vc.chan;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
 | |
| 				       struct of_dma *ofdma)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
 | |
| 	struct dma_chan *dma_chan;
 | |
| 	struct pl08x_dma_chan *plchan;
 | |
| 
 | |
| 	if (!pl08x)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (dma_spec->args_count != 2) {
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"DMA channel translation requires two cells\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
 | |
| 	if (!dma_chan) {
 | |
| 		dev_err(&pl08x->adev->dev,
 | |
| 			"DMA slave channel not found\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	plchan = to_pl08x_chan(dma_chan);
 | |
| 	dev_dbg(&pl08x->adev->dev,
 | |
| 		"translated channel for signal %d\n",
 | |
| 		dma_spec->args[0]);
 | |
| 
 | |
| 	/* Augment channel data for applicable AHB buses */
 | |
| 	plchan->cd->periph_buses = dma_spec->args[1];
 | |
| 	return dma_get_slave_channel(dma_chan);
 | |
| }
 | |
| 
 | |
| static int pl08x_of_probe(struct amba_device *adev,
 | |
| 			  struct pl08x_driver_data *pl08x,
 | |
| 			  struct device_node *np)
 | |
| {
 | |
| 	struct pl08x_platform_data *pd;
 | |
| 	struct pl08x_channel_data *chanp = NULL;
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
 | |
| 	if (!pd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Eligible bus masters for fetching LLIs */
 | |
| 	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
 | |
| 		pd->lli_buses |= PL08X_AHB1;
 | |
| 	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
 | |
| 		pd->lli_buses |= PL08X_AHB2;
 | |
| 	if (!pd->lli_buses) {
 | |
| 		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
 | |
| 		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
 | |
| 	}
 | |
| 
 | |
| 	/* Eligible bus masters for memory access */
 | |
| 	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
 | |
| 		pd->mem_buses |= PL08X_AHB1;
 | |
| 	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
 | |
| 		pd->mem_buses |= PL08X_AHB2;
 | |
| 	if (!pd->mem_buses) {
 | |
| 		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
 | |
| 		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse the memcpy channel properties */
 | |
| 	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
 | |
| 	if (ret) {
 | |
| 		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
 | |
| 		val = 1;
 | |
| 	}
 | |
| 	switch (val) {
 | |
| 	default:
 | |
| 		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
 | |
| 		/* Fall through */
 | |
| 	case 1:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
 | |
| 		break;
 | |
| 	case 64:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
 | |
| 		break;
 | |
| 	case 128:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
 | |
| 		break;
 | |
| 	case 256:
 | |
| 		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
 | |
| 	if (ret) {
 | |
| 		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
 | |
| 		val = 8;
 | |
| 	}
 | |
| 	switch (val) {
 | |
| 	default:
 | |
| 		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
 | |
| 		/* Fall through */
 | |
| 	case 8:
 | |
| 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate channel data for all possible slave channels (one
 | |
| 	 * for each possible signal), channels will then be allocated
 | |
| 	 * for a device and have it's AHB interfaces set up at
 | |
| 	 * translation time.
 | |
| 	 */
 | |
| 	if (pl08x->vd->signals) {
 | |
| 		chanp = devm_kcalloc(&adev->dev,
 | |
| 				     pl08x->vd->signals,
 | |
| 				     sizeof(struct pl08x_channel_data),
 | |
| 				     GFP_KERNEL);
 | |
| 		if (!chanp)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pd->slave_channels = chanp;
 | |
| 		for (i = 0; i < pl08x->vd->signals; i++) {
 | |
| 			/*
 | |
| 			 * chanp->periph_buses will be assigned at translation
 | |
| 			 */
 | |
| 			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
 | |
| 			chanp++;
 | |
| 		}
 | |
| 		pd->num_slave_channels = pl08x->vd->signals;
 | |
| 	}
 | |
| 
 | |
| 	pl08x->pd = pd;
 | |
| 
 | |
| 	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
 | |
| 					  pl08x);
 | |
| }
 | |
| #else
 | |
| static inline int pl08x_of_probe(struct amba_device *adev,
 | |
| 				 struct pl08x_driver_data *pl08x,
 | |
| 				 struct device_node *np)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
 | |
| {
 | |
| 	struct pl08x_driver_data *pl08x;
 | |
| 	struct vendor_data *vd = id->data;
 | |
| 	struct device_node *np = adev->dev.of_node;
 | |
| 	u32 tsfr_size;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ret = amba_request_regions(adev, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Ensure that we can do DMA */
 | |
| 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
 | |
| 	if (ret)
 | |
| 		goto out_no_pl08x;
 | |
| 
 | |
| 	/* Create the driver state holder */
 | |
| 	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
 | |
| 	if (!pl08x) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_no_pl08x;
 | |
| 	}
 | |
| 
 | |
| 	/* Assign useful pointers to the driver state */
 | |
| 	pl08x->adev = adev;
 | |
| 	pl08x->vd = vd;
 | |
| 
 | |
| 	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
 | |
| 	if (!pl08x->base) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_no_ioremap;
 | |
| 	}
 | |
| 
 | |
| 	if (vd->ftdmac020) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		val = readl(pl08x->base + FTDMAC020_REVISION);
 | |
| 		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
 | |
| 			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
 | |
| 		val = readl(pl08x->base + FTDMAC020_FEATURE);
 | |
| 		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
 | |
| 			 "%s built-in bridge, %s, %s linked lists\n",
 | |
| 			 (val >> 12) & 0x0f,
 | |
| 			 (val & BIT(10)) ? "no" : "has",
 | |
| 			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
 | |
| 			 (val & BIT(8)) ? "supports" : "does not support");
 | |
| 
 | |
| 		/* Vendor data from feature register */
 | |
| 		if (!(val & BIT(8)))
 | |
| 			dev_warn(&pl08x->adev->dev,
 | |
| 				 "linked lists not supported, required\n");
 | |
| 		vd->channels = (val >> 12) & 0x0f;
 | |
| 		vd->dualmaster = !!(val & BIT(9));
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize memcpy engine */
 | |
| 	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
 | |
| 	pl08x->memcpy.dev = &adev->dev;
 | |
| 	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
 | |
| 	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
 | |
| 	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
 | |
| 	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
 | |
| 	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
 | |
| 	pl08x->memcpy.device_config = pl08x_config;
 | |
| 	pl08x->memcpy.device_pause = pl08x_pause;
 | |
| 	pl08x->memcpy.device_resume = pl08x_resume;
 | |
| 	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
 | |
| 	pl08x->memcpy.device_synchronize = pl08x_synchronize;
 | |
| 	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
 | |
| 	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
 | |
| 	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
 | |
| 	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 | |
| 	if (vd->ftdmac020)
 | |
| 		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize slave engine, if the block has no signals, that means
 | |
| 	 * we have no slave support.
 | |
| 	 */
 | |
| 	if (vd->signals) {
 | |
| 		pl08x->has_slave = true;
 | |
| 		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
 | |
| 		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
 | |
| 		pl08x->slave.dev = &adev->dev;
 | |
| 		pl08x->slave.device_free_chan_resources =
 | |
| 			pl08x_free_chan_resources;
 | |
| 		pl08x->slave.device_prep_dma_interrupt =
 | |
| 			pl08x_prep_dma_interrupt;
 | |
| 		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
 | |
| 		pl08x->slave.device_issue_pending = pl08x_issue_pending;
 | |
| 		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
 | |
| 		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
 | |
| 		pl08x->slave.device_config = pl08x_config;
 | |
| 		pl08x->slave.device_pause = pl08x_pause;
 | |
| 		pl08x->slave.device_resume = pl08x_resume;
 | |
| 		pl08x->slave.device_terminate_all = pl08x_terminate_all;
 | |
| 		pl08x->slave.device_synchronize = pl08x_synchronize;
 | |
| 		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
 | |
| 		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
 | |
| 		pl08x->slave.directions =
 | |
| 			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
 | |
| 		pl08x->slave.residue_granularity =
 | |
| 			DMA_RESIDUE_GRANULARITY_SEGMENT;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the platform data */
 | |
| 	pl08x->pd = dev_get_platdata(&adev->dev);
 | |
| 	if (!pl08x->pd) {
 | |
| 		if (np) {
 | |
| 			ret = pl08x_of_probe(adev, pl08x, np);
 | |
| 			if (ret)
 | |
| 				goto out_no_platdata;
 | |
| 		} else {
 | |
| 			dev_err(&adev->dev, "no platform data supplied\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_no_platdata;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pl08x->slave.filter.map = pl08x->pd->slave_map;
 | |
| 		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
 | |
| 		pl08x->slave.filter.fn = pl08x_filter_fn;
 | |
| 	}
 | |
| 
 | |
| 	/* By default, AHB1 only.  If dualmaster, from platform */
 | |
| 	pl08x->lli_buses = PL08X_AHB1;
 | |
| 	pl08x->mem_buses = PL08X_AHB1;
 | |
| 	if (pl08x->vd->dualmaster) {
 | |
| 		pl08x->lli_buses = pl08x->pd->lli_buses;
 | |
| 		pl08x->mem_buses = pl08x->pd->mem_buses;
 | |
| 	}
 | |
| 
 | |
| 	if (vd->pl080s)
 | |
| 		pl08x->lli_words = PL080S_LLI_WORDS;
 | |
| 	else
 | |
| 		pl08x->lli_words = PL080_LLI_WORDS;
 | |
| 	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
 | |
| 
 | |
| 	/* A DMA memory pool for LLIs, align on 1-byte boundary */
 | |
| 	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
 | |
| 						tsfr_size, PL08X_ALIGN, 0);
 | |
| 	if (!pl08x->pool) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_no_lli_pool;
 | |
| 	}
 | |
| 
 | |
| 	/* Turn on the PL08x */
 | |
| 	pl08x_ensure_on(pl08x);
 | |
| 
 | |
| 	/* Clear any pending interrupts */
 | |
| 	if (vd->ftdmac020)
 | |
| 		/* This variant has error IRQs in bits 16-19 */
 | |
| 		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
 | |
| 	else
 | |
| 		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
 | |
| 	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
 | |
| 
 | |
| 	/* Attach the interrupt handler */
 | |
| 	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
 | |
| 	if (ret) {
 | |
| 		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
 | |
| 			__func__, adev->irq[0]);
 | |
| 		goto out_no_irq;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize physical channels */
 | |
| 	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
 | |
| 			GFP_KERNEL);
 | |
| 	if (!pl08x->phy_chans) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_no_phychans;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < vd->channels; i++) {
 | |
| 		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
 | |
| 
 | |
| 		ch->id = i;
 | |
| 		ch->base = pl08x->base + PL080_Cx_BASE(i);
 | |
| 		if (vd->ftdmac020) {
 | |
| 			/* FTDMA020 has a special channel busy register */
 | |
| 			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
 | |
| 			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
 | |
| 			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
 | |
| 			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
 | |
| 			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
 | |
| 			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
 | |
| 			ch->ftdmac020 = true;
 | |
| 		} else {
 | |
| 			ch->reg_config = ch->base + vd->config_offset;
 | |
| 			ch->reg_control = ch->base + PL080_CH_CONTROL;
 | |
| 			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
 | |
| 			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
 | |
| 			ch->reg_lli = ch->base + PL080_CH_LLI;
 | |
| 		}
 | |
| 		if (vd->pl080s)
 | |
| 			ch->pl080s = true;
 | |
| 
 | |
| 		spin_lock_init(&ch->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Nomadik variants can have channels that are locked
 | |
| 		 * down for the secure world only. Lock up these channels
 | |
| 		 * by perpetually serving a dummy virtual channel.
 | |
| 		 */
 | |
| 		if (vd->nomadik) {
 | |
| 			u32 val;
 | |
| 
 | |
| 			val = readl(ch->reg_config);
 | |
| 			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
 | |
| 				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
 | |
| 				ch->locked = true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(&adev->dev, "physical channel %d is %s\n",
 | |
| 			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
 | |
| 	}
 | |
| 
 | |
| 	/* Register as many memcpy channels as there are physical channels */
 | |
| 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
 | |
| 					      pl08x->vd->channels, false);
 | |
| 	if (ret <= 0) {
 | |
| 		dev_warn(&pl08x->adev->dev,
 | |
| 			 "%s failed to enumerate memcpy channels - %d\n",
 | |
| 			 __func__, ret);
 | |
| 		goto out_no_memcpy;
 | |
| 	}
 | |
| 
 | |
| 	/* Register slave channels */
 | |
| 	if (pl08x->has_slave) {
 | |
| 		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
 | |
| 					pl08x->pd->num_slave_channels, true);
 | |
| 		if (ret < 0) {
 | |
| 			dev_warn(&pl08x->adev->dev,
 | |
| 				 "%s failed to enumerate slave channels - %d\n",
 | |
| 				 __func__, ret);
 | |
| 			goto out_no_slave;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = dma_async_device_register(&pl08x->memcpy);
 | |
| 	if (ret) {
 | |
| 		dev_warn(&pl08x->adev->dev,
 | |
| 			"%s failed to register memcpy as an async device - %d\n",
 | |
| 			__func__, ret);
 | |
| 		goto out_no_memcpy_reg;
 | |
| 	}
 | |
| 
 | |
| 	if (pl08x->has_slave) {
 | |
| 		ret = dma_async_device_register(&pl08x->slave);
 | |
| 		if (ret) {
 | |
| 			dev_warn(&pl08x->adev->dev,
 | |
| 			"%s failed to register slave as an async device - %d\n",
 | |
| 			__func__, ret);
 | |
| 			goto out_no_slave_reg;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	amba_set_drvdata(adev, pl08x);
 | |
| 	init_pl08x_debugfs(pl08x);
 | |
| 	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
 | |
| 		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
 | |
| 		 (unsigned long long)adev->res.start, adev->irq[0]);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_no_slave_reg:
 | |
| 	dma_async_device_unregister(&pl08x->memcpy);
 | |
| out_no_memcpy_reg:
 | |
| 	if (pl08x->has_slave)
 | |
| 		pl08x_free_virtual_channels(&pl08x->slave);
 | |
| out_no_slave:
 | |
| 	pl08x_free_virtual_channels(&pl08x->memcpy);
 | |
| out_no_memcpy:
 | |
| 	kfree(pl08x->phy_chans);
 | |
| out_no_phychans:
 | |
| 	free_irq(adev->irq[0], pl08x);
 | |
| out_no_irq:
 | |
| 	dma_pool_destroy(pl08x->pool);
 | |
| out_no_lli_pool:
 | |
| out_no_platdata:
 | |
| 	iounmap(pl08x->base);
 | |
| out_no_ioremap:
 | |
| 	kfree(pl08x);
 | |
| out_no_pl08x:
 | |
| 	amba_release_regions(adev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* PL080 has 8 channels and the PL080 have just 2 */
 | |
| static struct vendor_data vendor_pl080 = {
 | |
| 	.config_offset = PL080_CH_CONFIG,
 | |
| 	.channels = 8,
 | |
| 	.signals = 16,
 | |
| 	.dualmaster = true,
 | |
| 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_nomadik = {
 | |
| 	.config_offset = PL080_CH_CONFIG,
 | |
| 	.channels = 8,
 | |
| 	.signals = 32,
 | |
| 	.dualmaster = true,
 | |
| 	.nomadik = true,
 | |
| 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_pl080s = {
 | |
| 	.config_offset = PL080S_CH_CONFIG,
 | |
| 	.channels = 8,
 | |
| 	.signals = 32,
 | |
| 	.pl080s = true,
 | |
| 	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_pl081 = {
 | |
| 	.config_offset = PL080_CH_CONFIG,
 | |
| 	.channels = 2,
 | |
| 	.signals = 16,
 | |
| 	.dualmaster = false,
 | |
| 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_ftdmac020 = {
 | |
| 	.config_offset = PL080_CH_CONFIG,
 | |
| 	.ftdmac020 = true,
 | |
| 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
 | |
| };
 | |
| 
 | |
| static const struct amba_id pl08x_ids[] = {
 | |
| 	/* Samsung PL080S variant */
 | |
| 	{
 | |
| 		.id	= 0x0a141080,
 | |
| 		.mask	= 0xffffffff,
 | |
| 		.data	= &vendor_pl080s,
 | |
| 	},
 | |
| 	/* PL080 */
 | |
| 	{
 | |
| 		.id	= 0x00041080,
 | |
| 		.mask	= 0x000fffff,
 | |
| 		.data	= &vendor_pl080,
 | |
| 	},
 | |
| 	/* PL081 */
 | |
| 	{
 | |
| 		.id	= 0x00041081,
 | |
| 		.mask	= 0x000fffff,
 | |
| 		.data	= &vendor_pl081,
 | |
| 	},
 | |
| 	/* Nomadik 8815 PL080 variant */
 | |
| 	{
 | |
| 		.id	= 0x00280080,
 | |
| 		.mask	= 0x00ffffff,
 | |
| 		.data	= &vendor_nomadik,
 | |
| 	},
 | |
| 	/* Faraday Technology FTDMAC020 */
 | |
| 	{
 | |
| 		.id	= 0x0003b080,
 | |
| 		.mask	= 0x000fffff,
 | |
| 		.data	= &vendor_ftdmac020,
 | |
| 	},
 | |
| 	{ 0, 0 },
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(amba, pl08x_ids);
 | |
| 
 | |
| static struct amba_driver pl08x_amba_driver = {
 | |
| 	.drv.name	= DRIVER_NAME,
 | |
| 	.id_table	= pl08x_ids,
 | |
| 	.probe		= pl08x_probe,
 | |
| };
 | |
| 
 | |
| static int __init pl08x_init(void)
 | |
| {
 | |
| 	int retval;
 | |
| 	retval = amba_driver_register(&pl08x_amba_driver);
 | |
| 	if (retval)
 | |
| 		printk(KERN_WARNING DRIVER_NAME
 | |
| 		       "failed to register as an AMBA device (%d)\n",
 | |
| 		       retval);
 | |
| 	return retval;
 | |
| }
 | |
| subsys_initcall(pl08x_init);
 |