2949 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2949 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
 | |
|  *
 | |
|  * MIPS floating point support
 | |
|  * Copyright (C) 1994-2000 Algorithmics Ltd.
 | |
|  *
 | |
|  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 | |
|  * Copyright (C) 2000  MIPS Technologies, Inc.
 | |
|  *
 | |
|  * A complete emulator for MIPS coprocessor 1 instructions.  This is
 | |
|  * required for #float(switch) or #float(trap), where it catches all
 | |
|  * COP1 instructions via the "CoProcessor Unusable" exception.
 | |
|  *
 | |
|  * More surprisingly it is also required for #float(ieee), to help out
 | |
|  * the hardware FPU at the boundaries of the IEEE-754 representation
 | |
|  * (denormalised values, infinities, underflow, etc).  It is made
 | |
|  * quite nasty because emulation of some non-COP1 instructions is
 | |
|  * required, e.g. in branch delay slots.
 | |
|  *
 | |
|  * Note if you know that you won't have an FPU, then you'll get much
 | |
|  * better performance by compiling with -msoft-float!
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/percpu-defs.h>
 | |
| #include <linux/perf_event.h>
 | |
| 
 | |
| #include <asm/branch.h>
 | |
| #include <asm/inst.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/signal.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/cpu-info.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/fpu_emulator.h>
 | |
| #include <asm/fpu.h>
 | |
| #include <asm/mips-r2-to-r6-emul.h>
 | |
| 
 | |
| #include "ieee754.h"
 | |
| 
 | |
| /* Function which emulates a floating point instruction. */
 | |
| 
 | |
| static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
 | |
| 	mips_instruction);
 | |
| 
 | |
| static int fpux_emu(struct pt_regs *,
 | |
| 	struct mips_fpu_struct *, mips_instruction, void __user **);
 | |
| 
 | |
| /* Control registers */
 | |
| 
 | |
| #define FPCREG_RID	0	/* $0  = revision id */
 | |
| #define FPCREG_FCCR	25	/* $25 = fccr */
 | |
| #define FPCREG_FEXR	26	/* $26 = fexr */
 | |
| #define FPCREG_FENR	28	/* $28 = fenr */
 | |
| #define FPCREG_CSR	31	/* $31 = csr */
 | |
| 
 | |
| /* convert condition code register number to csr bit */
 | |
| const unsigned int fpucondbit[8] = {
 | |
| 	FPU_CSR_COND,
 | |
| 	FPU_CSR_COND1,
 | |
| 	FPU_CSR_COND2,
 | |
| 	FPU_CSR_COND3,
 | |
| 	FPU_CSR_COND4,
 | |
| 	FPU_CSR_COND5,
 | |
| 	FPU_CSR_COND6,
 | |
| 	FPU_CSR_COND7
 | |
| };
 | |
| 
 | |
| /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
 | |
| static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
 | |
| static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
 | |
| static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
 | |
| static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
 | |
| 
 | |
| /*
 | |
|  * This functions translates a 32-bit microMIPS instruction
 | |
|  * into a 32-bit MIPS32 instruction. Returns 0 on success
 | |
|  * and SIGILL otherwise.
 | |
|  */
 | |
| static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
 | |
| {
 | |
| 	union mips_instruction insn = *insn_ptr;
 | |
| 	union mips_instruction mips32_insn = insn;
 | |
| 	int func, fmt, op;
 | |
| 
 | |
| 	switch (insn.mm_i_format.opcode) {
 | |
| 	case mm_ldc132_op:
 | |
| 		mips32_insn.mm_i_format.opcode = ldc1_op;
 | |
| 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 | |
| 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 | |
| 		break;
 | |
| 	case mm_lwc132_op:
 | |
| 		mips32_insn.mm_i_format.opcode = lwc1_op;
 | |
| 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 | |
| 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 | |
| 		break;
 | |
| 	case mm_sdc132_op:
 | |
| 		mips32_insn.mm_i_format.opcode = sdc1_op;
 | |
| 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 | |
| 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 | |
| 		break;
 | |
| 	case mm_swc132_op:
 | |
| 		mips32_insn.mm_i_format.opcode = swc1_op;
 | |
| 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
 | |
| 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
 | |
| 		break;
 | |
| 	case mm_pool32i_op:
 | |
| 		/* NOTE: offset is << by 1 if in microMIPS mode. */
 | |
| 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
 | |
| 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
 | |
| 			mips32_insn.fb_format.opcode = cop1_op;
 | |
| 			mips32_insn.fb_format.bc = bc_op;
 | |
| 			mips32_insn.fb_format.flag =
 | |
| 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
 | |
| 		} else
 | |
| 			return SIGILL;
 | |
| 		break;
 | |
| 	case mm_pool32f_op:
 | |
| 		switch (insn.mm_fp0_format.func) {
 | |
| 		case mm_32f_01_op:
 | |
| 		case mm_32f_11_op:
 | |
| 		case mm_32f_02_op:
 | |
| 		case mm_32f_12_op:
 | |
| 		case mm_32f_41_op:
 | |
| 		case mm_32f_51_op:
 | |
| 		case mm_32f_42_op:
 | |
| 		case mm_32f_52_op:
 | |
| 			op = insn.mm_fp0_format.func;
 | |
| 			if (op == mm_32f_01_op)
 | |
| 				func = madd_s_op;
 | |
| 			else if (op == mm_32f_11_op)
 | |
| 				func = madd_d_op;
 | |
| 			else if (op == mm_32f_02_op)
 | |
| 				func = nmadd_s_op;
 | |
| 			else if (op == mm_32f_12_op)
 | |
| 				func = nmadd_d_op;
 | |
| 			else if (op == mm_32f_41_op)
 | |
| 				func = msub_s_op;
 | |
| 			else if (op == mm_32f_51_op)
 | |
| 				func = msub_d_op;
 | |
| 			else if (op == mm_32f_42_op)
 | |
| 				func = nmsub_s_op;
 | |
| 			else
 | |
| 				func = nmsub_d_op;
 | |
| 			mips32_insn.fp6_format.opcode = cop1x_op;
 | |
| 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
 | |
| 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
 | |
| 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
 | |
| 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
 | |
| 			mips32_insn.fp6_format.func = func;
 | |
| 			break;
 | |
| 		case mm_32f_10_op:
 | |
| 			func = -1;	/* Invalid */
 | |
| 			op = insn.mm_fp5_format.op & 0x7;
 | |
| 			if (op == mm_ldxc1_op)
 | |
| 				func = ldxc1_op;
 | |
| 			else if (op == mm_sdxc1_op)
 | |
| 				func = sdxc1_op;
 | |
| 			else if (op == mm_lwxc1_op)
 | |
| 				func = lwxc1_op;
 | |
| 			else if (op == mm_swxc1_op)
 | |
| 				func = swxc1_op;
 | |
| 
 | |
| 			if (func != -1) {
 | |
| 				mips32_insn.r_format.opcode = cop1x_op;
 | |
| 				mips32_insn.r_format.rs =
 | |
| 					insn.mm_fp5_format.base;
 | |
| 				mips32_insn.r_format.rt =
 | |
| 					insn.mm_fp5_format.index;
 | |
| 				mips32_insn.r_format.rd = 0;
 | |
| 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
 | |
| 				mips32_insn.r_format.func = func;
 | |
| 			} else
 | |
| 				return SIGILL;
 | |
| 			break;
 | |
| 		case mm_32f_40_op:
 | |
| 			op = -1;	/* Invalid */
 | |
| 			if (insn.mm_fp2_format.op == mm_fmovt_op)
 | |
| 				op = 1;
 | |
| 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
 | |
| 				op = 0;
 | |
| 			if (op != -1) {
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sdps_format[insn.mm_fp2_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft =
 | |
| 					(insn.mm_fp2_format.cc<<2) + op;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp2_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp2_format.fd;
 | |
| 				mips32_insn.fp0_format.func = fmovc_op;
 | |
| 			} else
 | |
| 				return SIGILL;
 | |
| 			break;
 | |
| 		case mm_32f_60_op:
 | |
| 			func = -1;	/* Invalid */
 | |
| 			if (insn.mm_fp0_format.op == mm_fadd_op)
 | |
| 				func = fadd_op;
 | |
| 			else if (insn.mm_fp0_format.op == mm_fsub_op)
 | |
| 				func = fsub_op;
 | |
| 			else if (insn.mm_fp0_format.op == mm_fmul_op)
 | |
| 				func = fmul_op;
 | |
| 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
 | |
| 				func = fdiv_op;
 | |
| 			if (func != -1) {
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sdps_format[insn.mm_fp0_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft =
 | |
| 					insn.mm_fp0_format.ft;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp0_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp0_format.fd;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 			} else
 | |
| 				return SIGILL;
 | |
| 			break;
 | |
| 		case mm_32f_70_op:
 | |
| 			func = -1;	/* Invalid */
 | |
| 			if (insn.mm_fp0_format.op == mm_fmovn_op)
 | |
| 				func = fmovn_op;
 | |
| 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
 | |
| 				func = fmovz_op;
 | |
| 			if (func != -1) {
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sdps_format[insn.mm_fp0_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft =
 | |
| 					insn.mm_fp0_format.ft;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp0_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp0_format.fd;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 			} else
 | |
| 				return SIGILL;
 | |
| 			break;
 | |
| 		case mm_32f_73_op:    /* POOL32FXF */
 | |
| 			switch (insn.mm_fp1_format.op) {
 | |
| 			case mm_movf0_op:
 | |
| 			case mm_movf1_op:
 | |
| 			case mm_movt0_op:
 | |
| 			case mm_movt1_op:
 | |
| 				if ((insn.mm_fp1_format.op & 0x7f) ==
 | |
| 				    mm_movf0_op)
 | |
| 					op = 0;
 | |
| 				else
 | |
| 					op = 1;
 | |
| 				mips32_insn.r_format.opcode = spec_op;
 | |
| 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
 | |
| 				mips32_insn.r_format.rt =
 | |
| 					(insn.mm_fp4_format.cc << 2) + op;
 | |
| 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
 | |
| 				mips32_insn.r_format.re = 0;
 | |
| 				mips32_insn.r_format.func = movc_op;
 | |
| 				break;
 | |
| 			case mm_fcvtd0_op:
 | |
| 			case mm_fcvtd1_op:
 | |
| 			case mm_fcvts0_op:
 | |
| 			case mm_fcvts1_op:
 | |
| 				if ((insn.mm_fp1_format.op & 0x7f) ==
 | |
| 				    mm_fcvtd0_op) {
 | |
| 					func = fcvtd_op;
 | |
| 					fmt = swl_format[insn.mm_fp3_format.fmt];
 | |
| 				} else {
 | |
| 					func = fcvts_op;
 | |
| 					fmt = dwl_format[insn.mm_fp3_format.fmt];
 | |
| 				}
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt = fmt;
 | |
| 				mips32_insn.fp0_format.ft = 0;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp3_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp3_format.rt;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 				break;
 | |
| 			case mm_fmov0_op:
 | |
| 			case mm_fmov1_op:
 | |
| 			case mm_fabs0_op:
 | |
| 			case mm_fabs1_op:
 | |
| 			case mm_fneg0_op:
 | |
| 			case mm_fneg1_op:
 | |
| 				if ((insn.mm_fp1_format.op & 0x7f) ==
 | |
| 				    mm_fmov0_op)
 | |
| 					func = fmov_op;
 | |
| 				else if ((insn.mm_fp1_format.op & 0x7f) ==
 | |
| 					 mm_fabs0_op)
 | |
| 					func = fabs_op;
 | |
| 				else
 | |
| 					func = fneg_op;
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sdps_format[insn.mm_fp3_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft = 0;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp3_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp3_format.rt;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 				break;
 | |
| 			case mm_ffloorl_op:
 | |
| 			case mm_ffloorw_op:
 | |
| 			case mm_fceill_op:
 | |
| 			case mm_fceilw_op:
 | |
| 			case mm_ftruncl_op:
 | |
| 			case mm_ftruncw_op:
 | |
| 			case mm_froundl_op:
 | |
| 			case mm_froundw_op:
 | |
| 			case mm_fcvtl_op:
 | |
| 			case mm_fcvtw_op:
 | |
| 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
 | |
| 					func = ffloorl_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
 | |
| 					func = ffloor_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_fceill_op)
 | |
| 					func = fceill_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
 | |
| 					func = fceil_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
 | |
| 					func = ftruncl_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
 | |
| 					func = ftrunc_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_froundl_op)
 | |
| 					func = froundl_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_froundw_op)
 | |
| 					func = fround_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
 | |
| 					func = fcvtl_op;
 | |
| 				else
 | |
| 					func = fcvtw_op;
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sd_format[insn.mm_fp1_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft = 0;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp1_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp1_format.rt;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 				break;
 | |
| 			case mm_frsqrt_op:
 | |
| 			case mm_fsqrt_op:
 | |
| 			case mm_frecip_op:
 | |
| 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
 | |
| 					func = frsqrt_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
 | |
| 					func = fsqrt_op;
 | |
| 				else
 | |
| 					func = frecip_op;
 | |
| 				mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp0_format.fmt =
 | |
| 					sdps_format[insn.mm_fp1_format.fmt];
 | |
| 				mips32_insn.fp0_format.ft = 0;
 | |
| 				mips32_insn.fp0_format.fs =
 | |
| 					insn.mm_fp1_format.fs;
 | |
| 				mips32_insn.fp0_format.fd =
 | |
| 					insn.mm_fp1_format.rt;
 | |
| 				mips32_insn.fp0_format.func = func;
 | |
| 				break;
 | |
| 			case mm_mfc1_op:
 | |
| 			case mm_mtc1_op:
 | |
| 			case mm_cfc1_op:
 | |
| 			case mm_ctc1_op:
 | |
| 			case mm_mfhc1_op:
 | |
| 			case mm_mthc1_op:
 | |
| 				if (insn.mm_fp1_format.op == mm_mfc1_op)
 | |
| 					op = mfc_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
 | |
| 					op = mtc_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
 | |
| 					op = cfc_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
 | |
| 					op = ctc_op;
 | |
| 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
 | |
| 					op = mfhc_op;
 | |
| 				else
 | |
| 					op = mthc_op;
 | |
| 				mips32_insn.fp1_format.opcode = cop1_op;
 | |
| 				mips32_insn.fp1_format.op = op;
 | |
| 				mips32_insn.fp1_format.rt =
 | |
| 					insn.mm_fp1_format.rt;
 | |
| 				mips32_insn.fp1_format.fs =
 | |
| 					insn.mm_fp1_format.fs;
 | |
| 				mips32_insn.fp1_format.fd = 0;
 | |
| 				mips32_insn.fp1_format.func = 0;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return SIGILL;
 | |
| 			}
 | |
| 			break;
 | |
| 		case mm_32f_74_op:	/* c.cond.fmt */
 | |
| 			mips32_insn.fp0_format.opcode = cop1_op;
 | |
| 			mips32_insn.fp0_format.fmt =
 | |
| 				sdps_format[insn.mm_fp4_format.fmt];
 | |
| 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
 | |
| 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
 | |
| 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
 | |
| 			mips32_insn.fp0_format.func =
 | |
| 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return SIGILL;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return SIGILL;
 | |
| 	}
 | |
| 
 | |
| 	*insn_ptr = mips32_insn;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Redundant with logic already in kernel/branch.c,
 | |
|  * embedded in compute_return_epc.  At some point,
 | |
|  * a single subroutine should be used across both
 | |
|  * modules.
 | |
|  */
 | |
| int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
 | |
| 		  unsigned long *contpc)
 | |
| {
 | |
| 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
 | |
| 	unsigned int fcr31;
 | |
| 	unsigned int bit = 0;
 | |
| 	unsigned int bit0;
 | |
| 	union fpureg *fpr;
 | |
| 
 | |
| 	switch (insn.i_format.opcode) {
 | |
| 	case spec_op:
 | |
| 		switch (insn.r_format.func) {
 | |
| 		case jalr_op:
 | |
| 			if (insn.r_format.rd != 0) {
 | |
| 				regs->regs[insn.r_format.rd] =
 | |
| 					regs->cp0_epc + dec_insn.pc_inc +
 | |
| 					dec_insn.next_pc_inc;
 | |
| 			}
 | |
| 			fallthrough;
 | |
| 		case jr_op:
 | |
| 			/* For R6, JR already emulated in jalr_op */
 | |
| 			if (NO_R6EMU && insn.r_format.func == jr_op)
 | |
| 				break;
 | |
| 			*contpc = regs->regs[insn.r_format.rs];
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case bcond_op:
 | |
| 		switch (insn.i_format.rt) {
 | |
| 		case bltzal_op:
 | |
| 		case bltzall_op:
 | |
| 			if (NO_R6EMU && (insn.i_format.rs ||
 | |
| 			    insn.i_format.rt == bltzall_op))
 | |
| 				break;
 | |
| 
 | |
| 			regs->regs[31] = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 			fallthrough;
 | |
| 		case bltzl_op:
 | |
| 			if (NO_R6EMU)
 | |
| 				break;
 | |
| 			fallthrough;
 | |
| 		case bltz_op:
 | |
| 			if ((long)regs->regs[insn.i_format.rs] < 0)
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					(insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					dec_insn.next_pc_inc;
 | |
| 			return 1;
 | |
| 		case bgezal_op:
 | |
| 		case bgezall_op:
 | |
| 			if (NO_R6EMU && (insn.i_format.rs ||
 | |
| 			    insn.i_format.rt == bgezall_op))
 | |
| 				break;
 | |
| 
 | |
| 			regs->regs[31] = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 			fallthrough;
 | |
| 		case bgezl_op:
 | |
| 			if (NO_R6EMU)
 | |
| 				break;
 | |
| 			fallthrough;
 | |
| 		case bgez_op:
 | |
| 			if ((long)regs->regs[insn.i_format.rs] >= 0)
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					(insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					dec_insn.next_pc_inc;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case jalx_op:
 | |
| 		set_isa16_mode(bit);
 | |
| 		fallthrough;
 | |
| 	case jal_op:
 | |
| 		regs->regs[31] = regs->cp0_epc +
 | |
| 			dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 		fallthrough;
 | |
| 	case j_op:
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
 | |
| 		*contpc >>= 28;
 | |
| 		*contpc <<= 28;
 | |
| 		*contpc |= (insn.j_format.target << 2);
 | |
| 		/* Set microMIPS mode bit: XOR for jalx. */
 | |
| 		*contpc ^= bit;
 | |
| 		return 1;
 | |
| 	case beql_op:
 | |
| 		if (NO_R6EMU)
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case beq_op:
 | |
| 		if (regs->regs[insn.i_format.rs] ==
 | |
| 		    regs->regs[insn.i_format.rt])
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				(insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 		return 1;
 | |
| 	case bnel_op:
 | |
| 		if (NO_R6EMU)
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case bne_op:
 | |
| 		if (regs->regs[insn.i_format.rs] !=
 | |
| 		    regs->regs[insn.i_format.rt])
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				(insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 		return 1;
 | |
| 	case blezl_op:
 | |
| 		if (!insn.i_format.rt && NO_R6EMU)
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case blez_op:
 | |
| 
 | |
| 		/*
 | |
| 		 * Compact branches for R6 for the
 | |
| 		 * blez and blezl opcodes.
 | |
| 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
 | |
| 		 * BLEZ  | rs = rt != 0      == BGEZALC
 | |
| 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
 | |
| 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
 | |
| 		 * BLEZL | rs = rt != 0      == BGEZC
 | |
| 		 * BLEZL | rs != 0 | rt != 0 == BGEC
 | |
| 		 *
 | |
| 		 * For real BLEZ{,L}, rt is always 0.
 | |
| 		 */
 | |
| 		if (cpu_has_mips_r6 && insn.i_format.rt) {
 | |
| 			if ((insn.i_format.opcode == blez_op) &&
 | |
| 			    ((!insn.i_format.rs && insn.i_format.rt) ||
 | |
| 			     (insn.i_format.rs == insn.i_format.rt)))
 | |
| 				regs->regs[31] = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc;
 | |
| 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if ((long)regs->regs[insn.i_format.rs] <= 0)
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				(insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 		return 1;
 | |
| 	case bgtzl_op:
 | |
| 		if (!insn.i_format.rt && NO_R6EMU)
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case bgtz_op:
 | |
| 		/*
 | |
| 		 * Compact branches for R6 for the
 | |
| 		 * bgtz and bgtzl opcodes.
 | |
| 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
 | |
| 		 * BGTZ  | rs = rt != 0      == BLTZALC
 | |
| 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
 | |
| 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
 | |
| 		 * BGTZL | rs = rt != 0      == BLTZC
 | |
| 		 * BGTZL | rs != 0 | rt != 0 == BLTC
 | |
| 		 *
 | |
| 		 * *ZALC varint for BGTZ &&& rt != 0
 | |
| 		 * For real GTZ{,L}, rt is always 0.
 | |
| 		 */
 | |
| 		if (cpu_has_mips_r6 && insn.i_format.rt) {
 | |
| 			if ((insn.i_format.opcode == blez_op) &&
 | |
| 			    ((!insn.i_format.rs && insn.i_format.rt) ||
 | |
| 			     (insn.i_format.rs == insn.i_format.rt)))
 | |
| 				regs->regs[31] = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc;
 | |
| 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if ((long)regs->regs[insn.i_format.rs] > 0)
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				(insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc +
 | |
| 				dec_insn.pc_inc +
 | |
| 				dec_insn.next_pc_inc;
 | |
| 		return 1;
 | |
| 	case pop10_op:
 | |
| 	case pop30_op:
 | |
| 		if (!cpu_has_mips_r6)
 | |
| 			break;
 | |
| 		if (insn.i_format.rt && !insn.i_format.rs)
 | |
| 			regs->regs[31] = regs->cp0_epc + 4;
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 
 | |
| 		return 1;
 | |
| #ifdef CONFIG_CPU_CAVIUM_OCTEON
 | |
| 	case lwc2_op: /* This is bbit0 on Octeon */
 | |
| 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
 | |
| 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc + 8;
 | |
| 		return 1;
 | |
| 	case ldc2_op: /* This is bbit032 on Octeon */
 | |
| 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
 | |
| 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc + 8;
 | |
| 		return 1;
 | |
| 	case swc2_op: /* This is bbit1 on Octeon */
 | |
| 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
 | |
| 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc + 8;
 | |
| 		return 1;
 | |
| 	case sdc2_op: /* This is bbit132 on Octeon */
 | |
| 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
 | |
| 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			*contpc = regs->cp0_epc + 8;
 | |
| 		return 1;
 | |
| #else
 | |
| 	case bc6_op:
 | |
| 		/*
 | |
| 		 * Only valid for MIPS R6 but we can still end up
 | |
| 		 * here from a broken userland so just tell emulator
 | |
| 		 * this is not a branch and let it break later on.
 | |
| 		 */
 | |
| 		if  (!cpu_has_mips_r6)
 | |
| 			break;
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 
 | |
| 		return 1;
 | |
| 	case balc6_op:
 | |
| 		if (!cpu_has_mips_r6)
 | |
| 			break;
 | |
| 		regs->regs[31] = regs->cp0_epc + 4;
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 
 | |
| 		return 1;
 | |
| 	case pop66_op:
 | |
| 		if (!cpu_has_mips_r6)
 | |
| 			break;
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 
 | |
| 		return 1;
 | |
| 	case pop76_op:
 | |
| 		if (!cpu_has_mips_r6)
 | |
| 			break;
 | |
| 		if (!insn.i_format.rs)
 | |
| 			regs->regs[31] = regs->cp0_epc + 4;
 | |
| 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
 | |
| 			dec_insn.next_pc_inc;
 | |
| 
 | |
| 		return 1;
 | |
| #endif
 | |
| 	case cop0_op:
 | |
| 	case cop1_op:
 | |
| 		/* Need to check for R6 bc1nez and bc1eqz branches */
 | |
| 		if (cpu_has_mips_r6 &&
 | |
| 		    ((insn.i_format.rs == bc1eqz_op) ||
 | |
| 		     (insn.i_format.rs == bc1nez_op))) {
 | |
| 			bit = 0;
 | |
| 			fpr = ¤t->thread.fpu.fpr[insn.i_format.rt];
 | |
| 			bit0 = get_fpr32(fpr, 0) & 0x1;
 | |
| 			switch (insn.i_format.rs) {
 | |
| 			case bc1eqz_op:
 | |
| 				bit = bit0 == 0;
 | |
| 				break;
 | |
| 			case bc1nez_op:
 | |
| 				bit = bit0 != 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (bit)
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					(insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				*contpc = regs->cp0_epc +
 | |
| 					dec_insn.pc_inc +
 | |
| 					dec_insn.next_pc_inc;
 | |
| 
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* R2/R6 compatible cop1 instruction */
 | |
| 		fallthrough;
 | |
| 	case cop2_op:
 | |
| 	case cop1x_op:
 | |
| 		if (insn.i_format.rs == bc_op) {
 | |
| 			preempt_disable();
 | |
| 			if (is_fpu_owner())
 | |
| 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
 | |
| 			else
 | |
| 				fcr31 = current->thread.fpu.fcr31;
 | |
| 			preempt_enable();
 | |
| 
 | |
| 			bit = (insn.i_format.rt >> 2);
 | |
| 			bit += (bit != 0);
 | |
| 			bit += 23;
 | |
| 			switch (insn.i_format.rt & 3) {
 | |
| 			case 0:	/* bc1f */
 | |
| 			case 2:	/* bc1fl */
 | |
| 				if (~fcr31 & (1 << bit))
 | |
| 					*contpc = regs->cp0_epc +
 | |
| 						dec_insn.pc_inc +
 | |
| 						(insn.i_format.simmediate << 2);
 | |
| 				else
 | |
| 					*contpc = regs->cp0_epc +
 | |
| 						dec_insn.pc_inc +
 | |
| 						dec_insn.next_pc_inc;
 | |
| 				return 1;
 | |
| 			case 1:	/* bc1t */
 | |
| 			case 3:	/* bc1tl */
 | |
| 				if (fcr31 & (1 << bit))
 | |
| 					*contpc = regs->cp0_epc +
 | |
| 						dec_insn.pc_inc +
 | |
| 						(insn.i_format.simmediate << 2);
 | |
| 				else
 | |
| 					*contpc = regs->cp0_epc +
 | |
| 						dec_insn.pc_inc +
 | |
| 						dec_insn.next_pc_inc;
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In the Linux kernel, we support selection of FPR format on the
 | |
|  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
 | |
|  * is hardwired to zero, which would imply a 32-bit FPU even for
 | |
|  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
 | |
|  * FPU emu is slow and bulky and optimizing this function offers fairly
 | |
|  * sizeable benefits so we try to be clever and make this function return
 | |
|  * a constant whenever possible, that is on 64-bit kernels without O32
 | |
|  * compatibility enabled and on 32-bit without 64-bit FPU support.
 | |
|  */
 | |
| static inline int cop1_64bit(struct pt_regs *xcp)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
 | |
| 		return 1;
 | |
| 	else if (IS_ENABLED(CONFIG_32BIT) &&
 | |
| 		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
 | |
| 		return 0;
 | |
| 
 | |
| 	return !test_thread_flag(TIF_32BIT_FPREGS);
 | |
| }
 | |
| 
 | |
| static inline bool hybrid_fprs(void)
 | |
| {
 | |
| 	return test_thread_flag(TIF_HYBRID_FPREGS);
 | |
| }
 | |
| 
 | |
| #define SIFROMREG(si, x)						\
 | |
| do {									\
 | |
| 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
 | |
| 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
 | |
| 	else								\
 | |
| 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
 | |
| } while (0)
 | |
| 
 | |
| #define SITOREG(si, x)							\
 | |
| do {									\
 | |
| 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
 | |
| 		unsigned int i;						\
 | |
| 		set_fpr32(&ctx->fpr[x], 0, si);				\
 | |
| 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
 | |
| 			set_fpr32(&ctx->fpr[x], i, 0);			\
 | |
| 	} else {							\
 | |
| 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
 | |
| 	}								\
 | |
| } while (0)
 | |
| 
 | |
| #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
 | |
| 
 | |
| #define SITOHREG(si, x)							\
 | |
| do {									\
 | |
| 	unsigned int i;							\
 | |
| 	set_fpr32(&ctx->fpr[x], 1, si);					\
 | |
| 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
 | |
| 		set_fpr32(&ctx->fpr[x], i, 0);				\
 | |
| } while (0)
 | |
| 
 | |
| #define DIFROMREG(di, x)						\
 | |
| 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0))
 | |
| 
 | |
| #define DITOREG(di, x)							\
 | |
| do {									\
 | |
| 	unsigned int fpr, i;						\
 | |
| 	fpr = (x) & ~(cop1_64bit(xcp) ^ 1);				\
 | |
| 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
 | |
| 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
 | |
| 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
 | |
| } while (0)
 | |
| 
 | |
| #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
 | |
| #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
 | |
| #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
 | |
| #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
 | |
| 
 | |
| /*
 | |
|  * Emulate a CFC1 instruction.
 | |
|  */
 | |
| static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 			    mips_instruction ir)
 | |
| {
 | |
| 	u32 fcr31 = ctx->fcr31;
 | |
| 	u32 value = 0;
 | |
| 
 | |
| 	switch (MIPSInst_RD(ir)) {
 | |
| 	case FPCREG_CSR:
 | |
| 		value = fcr31;
 | |
| 		pr_debug("%p gpr[%d]<-csr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FENR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
 | |
| 			MIPS_FENR_FS;
 | |
| 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
 | |
| 		pr_debug("%p gpr[%d]<-enr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FEXR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 | |
| 		pr_debug("%p gpr[%d]<-exr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FCCR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
 | |
| 			MIPS_FCCR_COND0;
 | |
| 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
 | |
| 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
 | |
| 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_RID:
 | |
| 		value = boot_cpu_data.fpu_id;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (MIPSInst_RT(ir))
 | |
| 		xcp->regs[MIPSInst_RT(ir)] = value;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate a CTC1 instruction.
 | |
|  */
 | |
| static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 			    mips_instruction ir)
 | |
| {
 | |
| 	u32 fcr31 = ctx->fcr31;
 | |
| 	u32 value;
 | |
| 	u32 mask;
 | |
| 
 | |
| 	if (MIPSInst_RT(ir) == 0)
 | |
| 		value = 0;
 | |
| 	else
 | |
| 		value = xcp->regs[MIPSInst_RT(ir)];
 | |
| 
 | |
| 	switch (MIPSInst_RD(ir)) {
 | |
| 	case FPCREG_CSR:
 | |
| 		pr_debug("%p gpr[%d]->csr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 
 | |
| 		/* Preserve read-only bits.  */
 | |
| 		mask = boot_cpu_data.fpu_msk31;
 | |
| 		fcr31 = (value & ~mask) | (fcr31 & mask);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FENR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		pr_debug("%p gpr[%d]->enr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
 | |
| 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
 | |
| 			 FPU_CSR_FS;
 | |
| 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FEXR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		pr_debug("%p gpr[%d]->exr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 | |
| 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
 | |
| 		break;
 | |
| 
 | |
| 	case FPCREG_FCCR:
 | |
| 		if (!cpu_has_mips_r)
 | |
| 			break;
 | |
| 		pr_debug("%p gpr[%d]->ccr=%08x\n",
 | |
| 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
 | |
| 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
 | |
| 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
 | |
| 			 FPU_CSR_COND;
 | |
| 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
 | |
| 			 FPU_CSR_CONDX;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ctx->fcr31 = fcr31;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate the single floating point instruction pointed at by EPC.
 | |
|  * Two instructions if the instruction is in a branch delay slot.
 | |
|  */
 | |
| 
 | |
| static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 		struct mm_decoded_insn dec_insn, void __user **fault_addr)
 | |
| {
 | |
| 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
 | |
| 	unsigned int cond, cbit, bit0;
 | |
| 	mips_instruction ir;
 | |
| 	int likely, pc_inc;
 | |
| 	union fpureg *fpr;
 | |
| 	u32 __user *wva;
 | |
| 	u64 __user *dva;
 | |
| 	u32 wval;
 | |
| 	u64 dval;
 | |
| 	int sig;
 | |
| 
 | |
| 	/*
 | |
| 	 * These are giving gcc a gentle hint about what to expect in
 | |
| 	 * dec_inst in order to do better optimization.
 | |
| 	 */
 | |
| 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
 | |
| 		unreachable();
 | |
| 
 | |
| 	/* XXX NEC Vr54xx bug workaround */
 | |
| 	if (delay_slot(xcp)) {
 | |
| 		if (dec_insn.micro_mips_mode) {
 | |
| 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
 | |
| 				clear_delay_slot(xcp);
 | |
| 		} else {
 | |
| 			if (!isBranchInstr(xcp, dec_insn, &contpc))
 | |
| 				clear_delay_slot(xcp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (delay_slot(xcp)) {
 | |
| 		/*
 | |
| 		 * The instruction to be emulated is in a branch delay slot
 | |
| 		 * which means that we have to	emulate the branch instruction
 | |
| 		 * BEFORE we do the cop1 instruction.
 | |
| 		 *
 | |
| 		 * This branch could be a COP1 branch, but in that case we
 | |
| 		 * would have had a trap for that instruction, and would not
 | |
| 		 * come through this route.
 | |
| 		 *
 | |
| 		 * Linux MIPS branch emulator operates on context, updating the
 | |
| 		 * cp0_epc.
 | |
| 		 */
 | |
| 		ir = dec_insn.next_insn;  /* process delay slot instr */
 | |
| 		pc_inc = dec_insn.next_pc_inc;
 | |
| 	} else {
 | |
| 		ir = dec_insn.insn;       /* process current instr */
 | |
| 		pc_inc = dec_insn.pc_inc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
 | |
| 	 * instructions, we want to convert microMIPS FPU instructions
 | |
| 	 * into MIPS32 instructions so that we could reuse all of the
 | |
| 	 * FPU emulation code.
 | |
| 	 *
 | |
| 	 * NOTE: We cannot do this for branch instructions since they
 | |
| 	 *       are not a subset. Example: Cannot emulate a 16-bit
 | |
| 	 *       aligned target address with a MIPS32 instruction.
 | |
| 	 */
 | |
| 	if (dec_insn.micro_mips_mode) {
 | |
| 		/*
 | |
| 		 * If next instruction is a 16-bit instruction, then
 | |
| 		 * it cannot be a FPU instruction. This could happen
 | |
| 		 * since we can be called for non-FPU instructions.
 | |
| 		 */
 | |
| 		if ((pc_inc == 2) ||
 | |
| 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
 | |
| 			 == SIGILL))
 | |
| 			return SIGILL;
 | |
| 	}
 | |
| 
 | |
| emul:
 | |
| 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
 | |
| 	MIPS_FPU_EMU_INC_STATS(emulated);
 | |
| 	switch (MIPSInst_OPCODE(ir)) {
 | |
| 	case ldc1_op:
 | |
| 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 | |
| 				     MIPSInst_SIMM(ir));
 | |
| 		MIPS_FPU_EMU_INC_STATS(loads);
 | |
| 
 | |
| 		if (!access_ok(dva, sizeof(u64))) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = dva;
 | |
| 			return SIGBUS;
 | |
| 		}
 | |
| 		if (__get_user(dval, dva)) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = dva;
 | |
| 			return SIGSEGV;
 | |
| 		}
 | |
| 		DITOREG(dval, MIPSInst_RT(ir));
 | |
| 		break;
 | |
| 
 | |
| 	case sdc1_op:
 | |
| 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 | |
| 				      MIPSInst_SIMM(ir));
 | |
| 		MIPS_FPU_EMU_INC_STATS(stores);
 | |
| 		DIFROMREG(dval, MIPSInst_RT(ir));
 | |
| 		if (!access_ok(dva, sizeof(u64))) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = dva;
 | |
| 			return SIGBUS;
 | |
| 		}
 | |
| 		if (__put_user(dval, dva)) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = dva;
 | |
| 			return SIGSEGV;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case lwc1_op:
 | |
| 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 | |
| 				      MIPSInst_SIMM(ir));
 | |
| 		MIPS_FPU_EMU_INC_STATS(loads);
 | |
| 		if (!access_ok(wva, sizeof(u32))) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = wva;
 | |
| 			return SIGBUS;
 | |
| 		}
 | |
| 		if (__get_user(wval, wva)) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = wva;
 | |
| 			return SIGSEGV;
 | |
| 		}
 | |
| 		SITOREG(wval, MIPSInst_RT(ir));
 | |
| 		break;
 | |
| 
 | |
| 	case swc1_op:
 | |
| 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
 | |
| 				      MIPSInst_SIMM(ir));
 | |
| 		MIPS_FPU_EMU_INC_STATS(stores);
 | |
| 		SIFROMREG(wval, MIPSInst_RT(ir));
 | |
| 		if (!access_ok(wva, sizeof(u32))) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = wva;
 | |
| 			return SIGBUS;
 | |
| 		}
 | |
| 		if (__put_user(wval, wva)) {
 | |
| 			MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 			*fault_addr = wva;
 | |
| 			return SIGSEGV;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case cop1_op:
 | |
| 		switch (MIPSInst_RS(ir)) {
 | |
| 		case dmfc_op:
 | |
| 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			/* copregister fs -> gpr[rt] */
 | |
| 			if (MIPSInst_RT(ir) != 0) {
 | |
| 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 | |
| 					MIPSInst_RD(ir));
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case dmtc_op:
 | |
| 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			/* copregister fs <- rt */
 | |
| 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case mfhc_op:
 | |
| 			if (!cpu_has_mips_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			/* copregister rd -> gpr[rt] */
 | |
| 			if (MIPSInst_RT(ir) != 0) {
 | |
| 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
 | |
| 					MIPSInst_RD(ir));
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case mthc_op:
 | |
| 			if (!cpu_has_mips_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			/* copregister rd <- gpr[rt] */
 | |
| 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case mfc_op:
 | |
| 			/* copregister rd -> gpr[rt] */
 | |
| 			if (MIPSInst_RT(ir) != 0) {
 | |
| 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
 | |
| 					MIPSInst_RD(ir));
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case mtc_op:
 | |
| 			/* copregister rd <- rt */
 | |
| 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case cfc_op:
 | |
| 			/* cop control register rd -> gpr[rt] */
 | |
| 			cop1_cfc(xcp, ctx, ir);
 | |
| 			break;
 | |
| 
 | |
| 		case ctc_op:
 | |
| 			/* copregister rd <- rt */
 | |
| 			cop1_ctc(xcp, ctx, ir);
 | |
| 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 | |
| 				return SIGFPE;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case bc1eqz_op:
 | |
| 		case bc1nez_op:
 | |
| 			if (!cpu_has_mips_r6 || delay_slot(xcp))
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			likely = 0;
 | |
| 			cond = 0;
 | |
| 			fpr = ¤t->thread.fpu.fpr[MIPSInst_RT(ir)];
 | |
| 			bit0 = get_fpr32(fpr, 0) & 0x1;
 | |
| 			switch (MIPSInst_RS(ir)) {
 | |
| 			case bc1eqz_op:
 | |
| 				MIPS_FPU_EMU_INC_STATS(bc1eqz);
 | |
| 				cond = bit0 == 0;
 | |
| 				break;
 | |
| 			case bc1nez_op:
 | |
| 				MIPS_FPU_EMU_INC_STATS(bc1nez);
 | |
| 				cond = bit0 != 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			goto branch_common;
 | |
| 
 | |
| 		case bc_op:
 | |
| 			if (delay_slot(xcp))
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (cpu_has_mips_4_5_r)
 | |
| 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
 | |
| 			else
 | |
| 				cbit = FPU_CSR_COND;
 | |
| 			cond = ctx->fcr31 & cbit;
 | |
| 
 | |
| 			likely = 0;
 | |
| 			switch (MIPSInst_RT(ir) & 3) {
 | |
| 			case bcfl_op:
 | |
| 				if (cpu_has_mips_2_3_4_5_r)
 | |
| 					likely = 1;
 | |
| 				fallthrough;
 | |
| 			case bcf_op:
 | |
| 				cond = !cond;
 | |
| 				break;
 | |
| 			case bctl_op:
 | |
| 				if (cpu_has_mips_2_3_4_5_r)
 | |
| 					likely = 1;
 | |
| 				fallthrough;
 | |
| 			case bct_op:
 | |
| 				break;
 | |
| 			}
 | |
| branch_common:
 | |
| 			MIPS_FPU_EMU_INC_STATS(branches);
 | |
| 			set_delay_slot(xcp);
 | |
| 			if (cond) {
 | |
| 				/*
 | |
| 				 * Branch taken: emulate dslot instruction
 | |
| 				 */
 | |
| 				unsigned long bcpc;
 | |
| 
 | |
| 				/*
 | |
| 				 * Remember EPC at the branch to point back
 | |
| 				 * at so that any delay-slot instruction
 | |
| 				 * signal is not silently ignored.
 | |
| 				 */
 | |
| 				bcpc = xcp->cp0_epc;
 | |
| 				xcp->cp0_epc += dec_insn.pc_inc;
 | |
| 
 | |
| 				contpc = MIPSInst_SIMM(ir);
 | |
| 				ir = dec_insn.next_insn;
 | |
| 				if (dec_insn.micro_mips_mode) {
 | |
| 					contpc = (xcp->cp0_epc + (contpc << 1));
 | |
| 
 | |
| 					/* If 16-bit instruction, not FPU. */
 | |
| 					if ((dec_insn.next_pc_inc == 2) ||
 | |
| 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
 | |
| 
 | |
| 						/*
 | |
| 						 * Since this instruction will
 | |
| 						 * be put on the stack with
 | |
| 						 * 32-bit words, get around
 | |
| 						 * this problem by putting a
 | |
| 						 * NOP16 as the second one.
 | |
| 						 */
 | |
| 						if (dec_insn.next_pc_inc == 2)
 | |
| 							ir = (ir & (~0xffff)) | MM_NOP16;
 | |
| 
 | |
| 						/*
 | |
| 						 * Single step the non-CP1
 | |
| 						 * instruction in the dslot.
 | |
| 						 */
 | |
| 						sig = mips_dsemul(xcp, ir,
 | |
| 								  bcpc, contpc);
 | |
| 						if (sig < 0)
 | |
| 							break;
 | |
| 						if (sig)
 | |
| 							xcp->cp0_epc = bcpc;
 | |
| 						/*
 | |
| 						 * SIGILL forces out of
 | |
| 						 * the emulation loop.
 | |
| 						 */
 | |
| 						return sig ? sig : SIGILL;
 | |
| 					}
 | |
| 				} else
 | |
| 					contpc = (xcp->cp0_epc + (contpc << 2));
 | |
| 
 | |
| 				switch (MIPSInst_OPCODE(ir)) {
 | |
| 				case lwc1_op:
 | |
| 				case swc1_op:
 | |
| 					goto emul;
 | |
| 
 | |
| 				case ldc1_op:
 | |
| 				case sdc1_op:
 | |
| 					if (cpu_has_mips_2_3_4_5_r)
 | |
| 						goto emul;
 | |
| 
 | |
| 					goto bc_sigill;
 | |
| 
 | |
| 				case cop1_op:
 | |
| 					goto emul;
 | |
| 
 | |
| 				case cop1x_op:
 | |
| 					if (cpu_has_mips_4_5_64_r2_r6)
 | |
| 						/* its one of ours */
 | |
| 						goto emul;
 | |
| 
 | |
| 					goto bc_sigill;
 | |
| 
 | |
| 				case spec_op:
 | |
| 					switch (MIPSInst_FUNC(ir)) {
 | |
| 					case movc_op:
 | |
| 						if (cpu_has_mips_4_5_r)
 | |
| 							goto emul;
 | |
| 
 | |
| 						goto bc_sigill;
 | |
| 					}
 | |
| 					break;
 | |
| 
 | |
| 				bc_sigill:
 | |
| 					xcp->cp0_epc = bcpc;
 | |
| 					return SIGILL;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Single step the non-cp1
 | |
| 				 * instruction in the dslot
 | |
| 				 */
 | |
| 				sig = mips_dsemul(xcp, ir, bcpc, contpc);
 | |
| 				if (sig < 0)
 | |
| 					break;
 | |
| 				if (sig)
 | |
| 					xcp->cp0_epc = bcpc;
 | |
| 				/* SIGILL forces out of the emulation loop.  */
 | |
| 				return sig ? sig : SIGILL;
 | |
| 			} else if (likely) {	/* branch not taken */
 | |
| 				/*
 | |
| 				 * branch likely nullifies
 | |
| 				 * dslot if not taken
 | |
| 				 */
 | |
| 				xcp->cp0_epc += dec_insn.pc_inc;
 | |
| 				contpc += dec_insn.pc_inc;
 | |
| 				/*
 | |
| 				 * else continue & execute
 | |
| 				 * dslot as normal insn
 | |
| 				 */
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			if (!(MIPSInst_RS(ir) & 0x10))
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			/* a real fpu computation instruction */
 | |
| 			sig = fpu_emu(xcp, ctx, ir);
 | |
| 			if (sig)
 | |
| 				return sig;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case cop1x_op:
 | |
| 		if (!cpu_has_mips_4_5_64_r2_r6)
 | |
| 			return SIGILL;
 | |
| 
 | |
| 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
 | |
| 		if (sig)
 | |
| 			return sig;
 | |
| 		break;
 | |
| 
 | |
| 	case spec_op:
 | |
| 		if (!cpu_has_mips_4_5_r)
 | |
| 			return SIGILL;
 | |
| 
 | |
| 		if (MIPSInst_FUNC(ir) != movc_op)
 | |
| 			return SIGILL;
 | |
| 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
 | |
| 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
 | |
| 			xcp->regs[MIPSInst_RD(ir)] =
 | |
| 				xcp->regs[MIPSInst_RS(ir)];
 | |
| 		break;
 | |
| 	default:
 | |
| 		return SIGILL;
 | |
| 	}
 | |
| 
 | |
| 	/* we did it !! */
 | |
| 	xcp->cp0_epc = contpc;
 | |
| 	clear_delay_slot(xcp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conversion table from MIPS compare ops 48-63
 | |
|  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
 | |
|  */
 | |
| static const unsigned char cmptab[8] = {
 | |
| 	0,			/* cmp_0 (sig) cmp_sf */
 | |
| 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
 | |
| 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
 | |
| 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
 | |
| 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
 | |
| 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
 | |
| 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
 | |
| 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
 | |
| };
 | |
| 
 | |
| static const unsigned char negative_cmptab[8] = {
 | |
| 	0, /* Reserved */
 | |
| 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
 | |
| 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
 | |
| 	IEEE754_CLT | IEEE754_CGT,
 | |
| 	/* Reserved */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Additional MIPS4 instructions
 | |
|  */
 | |
| 
 | |
| #define DEF3OP(name, p, f1, f2, f3)					\
 | |
| static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
 | |
| 	union ieee754##p s, union ieee754##p t)				\
 | |
| {									\
 | |
| 	struct _ieee754_csr ieee754_csr_save;				\
 | |
| 	s = f1(s, t);							\
 | |
| 	ieee754_csr_save = ieee754_csr;					\
 | |
| 	s = f2(s, r);							\
 | |
| 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
 | |
| 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
 | |
| 	s = f3(s);							\
 | |
| 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
 | |
| 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
 | |
| 	return s;							\
 | |
| }
 | |
| 
 | |
| static union ieee754dp fpemu_dp_recip(union ieee754dp d)
 | |
| {
 | |
| 	return ieee754dp_div(ieee754dp_one(0), d);
 | |
| }
 | |
| 
 | |
| static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
 | |
| {
 | |
| 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
 | |
| }
 | |
| 
 | |
| static union ieee754sp fpemu_sp_recip(union ieee754sp s)
 | |
| {
 | |
| 	return ieee754sp_div(ieee754sp_one(0), s);
 | |
| }
 | |
| 
 | |
| static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
 | |
| {
 | |
| 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
 | |
| }
 | |
| 
 | |
| DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
 | |
| DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
 | |
| DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
 | |
| DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
 | |
| DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
 | |
| DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
 | |
| DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
 | |
| DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
 | |
| 
 | |
| static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 	mips_instruction ir, void __user **fault_addr)
 | |
| {
 | |
| 	unsigned int rcsr = 0;	/* resulting csr */
 | |
| 
 | |
| 	MIPS_FPU_EMU_INC_STATS(cp1xops);
 | |
| 
 | |
| 	switch (MIPSInst_FMA_FFMT(ir)) {
 | |
| 	case s_fmt:{		/* 0 */
 | |
| 
 | |
| 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
 | |
| 		union ieee754sp fd, fr, fs, ft;
 | |
| 		u32 __user *va;
 | |
| 		u32 val;
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 		case lwxc1_op:
 | |
| 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 | |
| 				xcp->regs[MIPSInst_FT(ir)]);
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(loads);
 | |
| 			if (!access_ok(va, sizeof(u32))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			if (__get_user(val, va)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGSEGV;
 | |
| 			}
 | |
| 			SITOREG(val, MIPSInst_FD(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case swxc1_op:
 | |
| 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 | |
| 				xcp->regs[MIPSInst_FT(ir)]);
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(stores);
 | |
| 
 | |
| 			SIFROMREG(val, MIPSInst_FS(ir));
 | |
| 			if (!access_ok(va, sizeof(u32))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			if (put_user(val, va)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGSEGV;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case madd_s_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754sp_madd;
 | |
| 			else
 | |
| 				handler = fpemu_sp_madd;
 | |
| 			goto scoptop;
 | |
| 		case msub_s_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754sp_msub;
 | |
| 			else
 | |
| 				handler = fpemu_sp_msub;
 | |
| 			goto scoptop;
 | |
| 		case nmadd_s_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754sp_nmadd;
 | |
| 			else
 | |
| 				handler = fpemu_sp_nmadd;
 | |
| 			goto scoptop;
 | |
| 		case nmsub_s_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754sp_nmsub;
 | |
| 			else
 | |
| 				handler = fpemu_sp_nmsub;
 | |
| 			goto scoptop;
 | |
| 
 | |
| 		      scoptop:
 | |
| 			SPFROMREG(fr, MIPSInst_FR(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			fd = (*handler) (fr, fs, ft);
 | |
| 			SPTOREG(fd, MIPSInst_FD(ir));
 | |
| 
 | |
| 		      copcsr:
 | |
| 			if (ieee754_cxtest(IEEE754_INEXACT)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
 | |
| 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
 | |
| 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
 | |
| 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
 | |
| 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 			}
 | |
| 
 | |
| 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
 | |
| 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 | |
| 				/*printk ("SIGFPE: FPU csr = %08x\n",
 | |
| 				   ctx->fcr31); */
 | |
| 				return SIGFPE;
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return SIGILL;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case d_fmt:{		/* 1 */
 | |
| 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
 | |
| 		union ieee754dp fd, fr, fs, ft;
 | |
| 		u64 __user *va;
 | |
| 		u64 val;
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 		case ldxc1_op:
 | |
| 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 | |
| 				xcp->regs[MIPSInst_FT(ir)]);
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(loads);
 | |
| 			if (!access_ok(va, sizeof(u64))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			if (__get_user(val, va)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGSEGV;
 | |
| 			}
 | |
| 			DITOREG(val, MIPSInst_FD(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case sdxc1_op:
 | |
| 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
 | |
| 				xcp->regs[MIPSInst_FT(ir)]);
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(stores);
 | |
| 			DIFROMREG(val, MIPSInst_FS(ir));
 | |
| 			if (!access_ok(va, sizeof(u64))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			if (__put_user(val, va)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				*fault_addr = va;
 | |
| 				return SIGSEGV;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case madd_d_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754dp_madd;
 | |
| 			else
 | |
| 				handler = fpemu_dp_madd;
 | |
| 			goto dcoptop;
 | |
| 		case msub_d_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754dp_msub;
 | |
| 			else
 | |
| 				handler = fpemu_dp_msub;
 | |
| 			goto dcoptop;
 | |
| 		case nmadd_d_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754dp_nmadd;
 | |
| 			else
 | |
| 				handler = fpemu_dp_nmadd;
 | |
| 			goto dcoptop;
 | |
| 		case nmsub_d_op:
 | |
| 			if (cpu_has_mac2008_only)
 | |
| 				handler = ieee754dp_nmsub;
 | |
| 			else
 | |
| 			handler = fpemu_dp_nmsub;
 | |
| 			goto dcoptop;
 | |
| 
 | |
| 		      dcoptop:
 | |
| 			DPFROMREG(fr, MIPSInst_FR(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			fd = (*handler) (fr, fs, ft);
 | |
| 			DPTOREG(fd, MIPSInst_FD(ir));
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		default:
 | |
| 			return SIGILL;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case 0x3:
 | |
| 		if (MIPSInst_FUNC(ir) != pfetch_op)
 | |
| 			return SIGILL;
 | |
| 
 | |
| 		/* ignore prefx operation */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return SIGILL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Emulate a single COP1 arithmetic instruction.
 | |
|  */
 | |
| static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 	mips_instruction ir)
 | |
| {
 | |
| 	int rfmt;		/* resulting format */
 | |
| 	unsigned int rcsr = 0;	/* resulting csr */
 | |
| 	unsigned int oldrm;
 | |
| 	unsigned int cbit;
 | |
| 	unsigned int cond;
 | |
| 	union {
 | |
| 		union ieee754dp d;
 | |
| 		union ieee754sp s;
 | |
| 		int w;
 | |
| 		s64 l;
 | |
| 	} rv;			/* resulting value */
 | |
| 	u64 bits;
 | |
| 
 | |
| 	MIPS_FPU_EMU_INC_STATS(cp1ops);
 | |
| 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
 | |
| 	case s_fmt: {		/* 0 */
 | |
| 		union {
 | |
| 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
 | |
| 			union ieee754sp(*u) (union ieee754sp);
 | |
| 		} handler;
 | |
| 		union ieee754sp fd, fs, ft;
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 			/* binary ops */
 | |
| 		case fadd_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(add_s);
 | |
| 			handler.b = ieee754sp_add;
 | |
| 			goto scopbop;
 | |
| 		case fsub_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(sub_s);
 | |
| 			handler.b = ieee754sp_sub;
 | |
| 			goto scopbop;
 | |
| 		case fmul_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(mul_s);
 | |
| 			handler.b = ieee754sp_mul;
 | |
| 			goto scopbop;
 | |
| 		case fdiv_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(div_s);
 | |
| 			handler.b = ieee754sp_div;
 | |
| 			goto scopbop;
 | |
| 
 | |
| 			/* unary  ops */
 | |
| 		case fsqrt_op:
 | |
| 			if (!cpu_has_mips_2_3_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(sqrt_s);
 | |
| 			handler.u = ieee754sp_sqrt;
 | |
| 			goto scopuop;
 | |
| 
 | |
| 		/*
 | |
| 		 * Note that on some MIPS IV implementations such as the
 | |
| 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
 | |
| 		 * achieve full IEEE-754 accuracy - however this emulator does.
 | |
| 		 */
 | |
| 		case frsqrt_op:
 | |
| 			if (!cpu_has_mips_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(rsqrt_s);
 | |
| 			handler.u = fpemu_sp_rsqrt;
 | |
| 			goto scopuop;
 | |
| 
 | |
| 		case frecip_op:
 | |
| 			if (!cpu_has_mips_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(recip_s);
 | |
| 			handler.u = fpemu_sp_recip;
 | |
| 			goto scopuop;
 | |
| 
 | |
| 		case fmovc_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
 | |
| 			if (((ctx->fcr31 & cond) != 0) !=
 | |
| 				((MIPSInst_FT(ir) & 1) != 0))
 | |
| 				return 0;
 | |
| 			SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fmovz_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
 | |
| 				return 0;
 | |
| 			SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fmovn_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
 | |
| 				return 0;
 | |
| 			SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fseleqz_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(seleqz_s);
 | |
| 			SPFROMREG(rv.s, MIPSInst_FT(ir));
 | |
| 			if (rv.w & 0x1)
 | |
| 				rv.w = 0;
 | |
| 			else
 | |
| 				SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fselnez_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(selnez_s);
 | |
| 			SPFROMREG(rv.s, MIPSInst_FT(ir));
 | |
| 			if (rv.w & 0x1)
 | |
| 				SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			else
 | |
| 				rv.w = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case fmaddf_op: {
 | |
| 			union ieee754sp ft, fs, fd;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(maddf_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			SPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			rv.s = ieee754sp_maddf(fd, fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmsubf_op: {
 | |
| 			union ieee754sp ft, fs, fd;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(msubf_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			SPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			rv.s = ieee754sp_msubf(fd, fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case frint_op: {
 | |
| 			union ieee754sp fs;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(rint_s);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_rint(fs);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fclass_op: {
 | |
| 			union ieee754sp fs;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(class_s);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.w = ieee754sp_2008class(fs);
 | |
| 			rfmt = w_fmt;
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmin_op: {
 | |
| 			union ieee754sp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(min_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fmin(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmina_op: {
 | |
| 			union ieee754sp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(mina_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fmina(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmax_op: {
 | |
| 			union ieee754sp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(max_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fmax(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmaxa_op: {
 | |
| 			union ieee754sp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(maxa_s);
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fmaxa(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fabs_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(abs_s);
 | |
| 			handler.u = ieee754sp_abs;
 | |
| 			goto scopuop;
 | |
| 
 | |
| 		case fneg_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(neg_s);
 | |
| 			handler.u = ieee754sp_neg;
 | |
| 			goto scopuop;
 | |
| 
 | |
| 		case fmov_op:
 | |
| 			/* an easy one */
 | |
| 			MIPS_FPU_EMU_INC_STATS(mov_s);
 | |
| 			SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			goto copcsr;
 | |
| 
 | |
| 			/* binary op on handler */
 | |
| scopbop:
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 
 | |
| 			rv.s = (*handler.b) (fs, ft);
 | |
| 			goto copcsr;
 | |
| scopuop:
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = (*handler.u) (fs);
 | |
| 			goto copcsr;
 | |
| copcsr:
 | |
| 			if (ieee754_cxtest(IEEE754_INEXACT)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
 | |
| 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
 | |
| 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
 | |
| 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
 | |
| 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
 | |
| 			}
 | |
| 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
 | |
| 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 			/* unary conv ops */
 | |
| 		case fcvts_op:
 | |
| 			return SIGILL;	/* not defined */
 | |
| 
 | |
| 		case fcvtd_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_d_s);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fsp(fs);
 | |
| 			rfmt = d_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fcvtw_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_w_s);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.w = ieee754sp_tint(fs);
 | |
| 			rfmt = w_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fround_op:
 | |
| 		case ftrunc_op:
 | |
| 		case fceil_op:
 | |
| 		case ffloor_op:
 | |
| 			if (!cpu_has_mips_2_3_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (MIPSInst_FUNC(ir) == fceil_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(ceil_w_s);
 | |
| 			if (MIPSInst_FUNC(ir) == ffloor_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(floor_w_s);
 | |
| 			if (MIPSInst_FUNC(ir) == fround_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(round_w_s);
 | |
| 			if (MIPSInst_FUNC(ir) == ftrunc_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(trunc_w_s);
 | |
| 
 | |
| 			oldrm = ieee754_csr.rm;
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			ieee754_csr.rm = MIPSInst_FUNC(ir);
 | |
| 			rv.w = ieee754sp_tint(fs);
 | |
| 			ieee754_csr.rm = oldrm;
 | |
| 			rfmt = w_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fsel_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(sel_s);
 | |
| 			SPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			if (fd.bits & 0x1)
 | |
| 				SPFROMREG(rv.s, MIPSInst_FT(ir));
 | |
| 			else
 | |
| 				SPFROMREG(rv.s, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fcvtl_op:
 | |
| 			if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_l_s);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.l = ieee754sp_tlong(fs);
 | |
| 			rfmt = l_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case froundl_op:
 | |
| 		case ftruncl_op:
 | |
| 		case fceill_op:
 | |
| 		case ffloorl_op:
 | |
| 			if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (MIPSInst_FUNC(ir) == fceill_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(ceil_l_s);
 | |
| 			if (MIPSInst_FUNC(ir) == ffloorl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(floor_l_s);
 | |
| 			if (MIPSInst_FUNC(ir) == froundl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(round_l_s);
 | |
| 			if (MIPSInst_FUNC(ir) == ftruncl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(trunc_l_s);
 | |
| 
 | |
| 			oldrm = ieee754_csr.rm;
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			ieee754_csr.rm = MIPSInst_FUNC(ir);
 | |
| 			rv.l = ieee754sp_tlong(fs);
 | |
| 			ieee754_csr.rm = oldrm;
 | |
| 			rfmt = l_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		default:
 | |
| 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
 | |
| 				unsigned int cmpop;
 | |
| 				union ieee754sp fs, ft;
 | |
| 
 | |
| 				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
 | |
| 				SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 				SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 				rv.w = ieee754sp_cmp(fs, ft,
 | |
| 					cmptab[cmpop & 0x7], cmpop & 0x8);
 | |
| 				rfmt = -1;
 | |
| 				if ((cmpop & 0x8) && ieee754_cxtest
 | |
| 					(IEEE754_INVALID_OPERATION))
 | |
| 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 				else
 | |
| 					goto copcsr;
 | |
| 
 | |
| 			} else
 | |
| 				return SIGILL;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case d_fmt: {
 | |
| 		union ieee754dp fd, fs, ft;
 | |
| 		union {
 | |
| 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
 | |
| 			union ieee754dp(*u) (union ieee754dp);
 | |
| 		} handler;
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 			/* binary ops */
 | |
| 		case fadd_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(add_d);
 | |
| 			handler.b = ieee754dp_add;
 | |
| 			goto dcopbop;
 | |
| 		case fsub_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(sub_d);
 | |
| 			handler.b = ieee754dp_sub;
 | |
| 			goto dcopbop;
 | |
| 		case fmul_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(mul_d);
 | |
| 			handler.b = ieee754dp_mul;
 | |
| 			goto dcopbop;
 | |
| 		case fdiv_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(div_d);
 | |
| 			handler.b = ieee754dp_div;
 | |
| 			goto dcopbop;
 | |
| 
 | |
| 			/* unary  ops */
 | |
| 		case fsqrt_op:
 | |
| 			if (!cpu_has_mips_2_3_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(sqrt_d);
 | |
| 			handler.u = ieee754dp_sqrt;
 | |
| 			goto dcopuop;
 | |
| 		/*
 | |
| 		 * Note that on some MIPS IV implementations such as the
 | |
| 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
 | |
| 		 * achieve full IEEE-754 accuracy - however this emulator does.
 | |
| 		 */
 | |
| 		case frsqrt_op:
 | |
| 			if (!cpu_has_mips_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(rsqrt_d);
 | |
| 			handler.u = fpemu_dp_rsqrt;
 | |
| 			goto dcopuop;
 | |
| 		case frecip_op:
 | |
| 			if (!cpu_has_mips_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(recip_d);
 | |
| 			handler.u = fpemu_dp_recip;
 | |
| 			goto dcopuop;
 | |
| 		case fmovc_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
 | |
| 			if (((ctx->fcr31 & cond) != 0) !=
 | |
| 				((MIPSInst_FT(ir) & 1) != 0))
 | |
| 				return 0;
 | |
| 			DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 		case fmovz_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
 | |
| 				return 0;
 | |
| 			DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 		case fmovn_op:
 | |
| 			if (!cpu_has_mips_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
 | |
| 				return 0;
 | |
| 			DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fseleqz_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(seleqz_d);
 | |
| 			DPFROMREG(rv.d, MIPSInst_FT(ir));
 | |
| 			if (rv.l & 0x1)
 | |
| 				rv.l = 0;
 | |
| 			else
 | |
| 				DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fselnez_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(selnez_d);
 | |
| 			DPFROMREG(rv.d, MIPSInst_FT(ir));
 | |
| 			if (rv.l & 0x1)
 | |
| 				DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			else
 | |
| 				rv.l = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case fmaddf_op: {
 | |
| 			union ieee754dp ft, fs, fd;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(maddf_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			DPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			rv.d = ieee754dp_maddf(fd, fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmsubf_op: {
 | |
| 			union ieee754dp ft, fs, fd;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(msubf_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			DPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			rv.d = ieee754dp_msubf(fd, fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case frint_op: {
 | |
| 			union ieee754dp fs;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(rint_d);
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_rint(fs);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fclass_op: {
 | |
| 			union ieee754dp fs;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(class_d);
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.l = ieee754dp_2008class(fs);
 | |
| 			rfmt = l_fmt;
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmin_op: {
 | |
| 			union ieee754dp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(min_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fmin(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmina_op: {
 | |
| 			union ieee754dp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(mina_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fmina(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmax_op: {
 | |
| 			union ieee754dp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(max_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fmax(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fmaxa_op: {
 | |
| 			union ieee754dp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(maxa_d);
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fmaxa(fs, ft);
 | |
| 			goto copcsr;
 | |
| 		}
 | |
| 
 | |
| 		case fabs_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(abs_d);
 | |
| 			handler.u = ieee754dp_abs;
 | |
| 			goto dcopuop;
 | |
| 
 | |
| 		case fneg_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(neg_d);
 | |
| 			handler.u = ieee754dp_neg;
 | |
| 			goto dcopuop;
 | |
| 
 | |
| 		case fmov_op:
 | |
| 			/* an easy one */
 | |
| 			MIPS_FPU_EMU_INC_STATS(mov_d);
 | |
| 			DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			goto copcsr;
 | |
| 
 | |
| 			/* binary op on handler */
 | |
| dcopbop:
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 
 | |
| 			rv.d = (*handler.b) (fs, ft);
 | |
| 			goto copcsr;
 | |
| dcopuop:
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = (*handler.u) (fs);
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		/*
 | |
| 		 * unary conv ops
 | |
| 		 */
 | |
| 		case fcvts_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_s_d);
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fdp(fs);
 | |
| 			rfmt = s_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fcvtd_op:
 | |
| 			return SIGILL;	/* not defined */
 | |
| 
 | |
| 		case fcvtw_op:
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_w_d);
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.w = ieee754dp_tint(fs);	/* wrong */
 | |
| 			rfmt = w_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fround_op:
 | |
| 		case ftrunc_op:
 | |
| 		case fceil_op:
 | |
| 		case ffloor_op:
 | |
| 			if (!cpu_has_mips_2_3_4_5_r)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (MIPSInst_FUNC(ir) == fceil_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(ceil_w_d);
 | |
| 			if (MIPSInst_FUNC(ir) == ffloor_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(floor_w_d);
 | |
| 			if (MIPSInst_FUNC(ir) == fround_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(round_w_d);
 | |
| 			if (MIPSInst_FUNC(ir) == ftrunc_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(trunc_w_d);
 | |
| 
 | |
| 			oldrm = ieee754_csr.rm;
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			ieee754_csr.rm = MIPSInst_FUNC(ir);
 | |
| 			rv.w = ieee754dp_tint(fs);
 | |
| 			ieee754_csr.rm = oldrm;
 | |
| 			rfmt = w_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case fsel_op:
 | |
| 			if (!cpu_has_mips_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(sel_d);
 | |
| 			DPFROMREG(fd, MIPSInst_FD(ir));
 | |
| 			if (fd.bits & 0x1)
 | |
| 				DPFROMREG(rv.d, MIPSInst_FT(ir));
 | |
| 			else
 | |
| 				DPFROMREG(rv.d, MIPSInst_FS(ir));
 | |
| 			break;
 | |
| 
 | |
| 		case fcvtl_op:
 | |
| 			if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_l_d);
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.l = ieee754dp_tlong(fs);
 | |
| 			rfmt = l_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		case froundl_op:
 | |
| 		case ftruncl_op:
 | |
| 		case fceill_op:
 | |
| 		case ffloorl_op:
 | |
| 			if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (MIPSInst_FUNC(ir) == fceill_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(ceil_l_d);
 | |
| 			if (MIPSInst_FUNC(ir) == ffloorl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(floor_l_d);
 | |
| 			if (MIPSInst_FUNC(ir) == froundl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(round_l_d);
 | |
| 			if (MIPSInst_FUNC(ir) == ftruncl_op)
 | |
| 				MIPS_FPU_EMU_INC_STATS(trunc_l_d);
 | |
| 
 | |
| 			oldrm = ieee754_csr.rm;
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			ieee754_csr.rm = MIPSInst_FUNC(ir);
 | |
| 			rv.l = ieee754dp_tlong(fs);
 | |
| 			ieee754_csr.rm = oldrm;
 | |
| 			rfmt = l_fmt;
 | |
| 			goto copcsr;
 | |
| 
 | |
| 		default:
 | |
| 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
 | |
| 				unsigned int cmpop;
 | |
| 				union ieee754dp fs, ft;
 | |
| 
 | |
| 				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
 | |
| 				DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 				DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 				rv.w = ieee754dp_cmp(fs, ft,
 | |
| 					cmptab[cmpop & 0x7], cmpop & 0x8);
 | |
| 				rfmt = -1;
 | |
| 				if ((cmpop & 0x8)
 | |
| 					&&
 | |
| 					ieee754_cxtest
 | |
| 					(IEEE754_INVALID_OPERATION))
 | |
| 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 				else
 | |
| 					goto copcsr;
 | |
| 
 | |
| 			}
 | |
| 			else {
 | |
| 				return SIGILL;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case w_fmt: {
 | |
| 		union ieee754dp fs;
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 		case fcvts_op:
 | |
| 			/* convert word to single precision real */
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_s_w);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.s = ieee754sp_fint(fs.bits);
 | |
| 			rfmt = s_fmt;
 | |
| 			goto copcsr;
 | |
| 		case fcvtd_op:
 | |
| 			/* convert word to double precision real */
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_d_w);
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			rv.d = ieee754dp_fint(fs.bits);
 | |
| 			rfmt = d_fmt;
 | |
| 			goto copcsr;
 | |
| 		default: {
 | |
| 			/* Emulating the new CMP.condn.fmt R6 instruction */
 | |
| #define CMPOP_MASK	0x7
 | |
| #define SIGN_BIT	(0x1 << 3)
 | |
| #define PREDICATE_BIT	(0x1 << 4)
 | |
| 
 | |
| 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
 | |
| 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
 | |
| 			union ieee754sp fs, ft;
 | |
| 
 | |
| 			/* This is an R6 only instruction */
 | |
| 			if (!cpu_has_mips_r6 ||
 | |
| 			    (MIPSInst_FUNC(ir) & 0x20))
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (!sig) {
 | |
| 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 					switch (cmpop) {
 | |
| 					case 0:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_af_s);
 | |
| 					break;
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_un_s);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_eq_s);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ueq_s);
 | |
| 					break;
 | |
| 					case 4:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_lt_s);
 | |
| 					break;
 | |
| 					case 5:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ult_s);
 | |
| 					break;
 | |
| 					case 6:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_le_s);
 | |
| 					break;
 | |
| 					case 7:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ule_s);
 | |
| 					break;
 | |
| 					}
 | |
| 				} else {
 | |
| 					switch (cmpop) {
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_or_s);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_une_s);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ne_s);
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 					switch (cmpop) {
 | |
| 					case 0:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_saf_s);
 | |
| 					break;
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sun_s);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_seq_s);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sueq_s);
 | |
| 					break;
 | |
| 					case 4:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_slt_s);
 | |
| 					break;
 | |
| 					case 5:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sult_s);
 | |
| 					break;
 | |
| 					case 6:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sle_s);
 | |
| 					break;
 | |
| 					case 7:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sule_s);
 | |
| 					break;
 | |
| 					}
 | |
| 				} else {
 | |
| 					switch (cmpop) {
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sor_s);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sune_s);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sne_s);
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* fmt is w_fmt for single precision so fix it */
 | |
| 			rfmt = s_fmt;
 | |
| 			/* default to false */
 | |
| 			rv.w = 0;
 | |
| 
 | |
| 			/* CMP.condn.S */
 | |
| 			SPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			SPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 
 | |
| 			/* positive predicates */
 | |
| 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
 | |
| 						  sig))
 | |
| 				    rv.w = -1; /* true, all 1s */
 | |
| 				if ((sig) &&
 | |
| 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
 | |
| 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 				else
 | |
| 					goto copcsr;
 | |
| 			} else {
 | |
| 				/* negative predicates */
 | |
| 				switch (cmpop) {
 | |
| 				case 1:
 | |
| 				case 2:
 | |
| 				case 3:
 | |
| 					if (ieee754sp_cmp(fs, ft,
 | |
| 							  negative_cmptab[cmpop],
 | |
| 							  sig))
 | |
| 						rv.w = -1; /* true, all 1s */
 | |
| 					if (sig &&
 | |
| 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
 | |
| 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 					else
 | |
| 						goto copcsr;
 | |
| 					break;
 | |
| 				default:
 | |
| 					/* Reserved R6 ops */
 | |
| 					return SIGILL;
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case l_fmt:
 | |
| 
 | |
| 		if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 			return SIGILL;
 | |
| 
 | |
| 		DIFROMREG(bits, MIPSInst_FS(ir));
 | |
| 
 | |
| 		switch (MIPSInst_FUNC(ir)) {
 | |
| 		case fcvts_op:
 | |
| 			/* convert long to single precision real */
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_s_l);
 | |
| 			rv.s = ieee754sp_flong(bits);
 | |
| 			rfmt = s_fmt;
 | |
| 			goto copcsr;
 | |
| 		case fcvtd_op:
 | |
| 			/* convert long to double precision real */
 | |
| 			MIPS_FPU_EMU_INC_STATS(cvt_d_l);
 | |
| 			rv.d = ieee754dp_flong(bits);
 | |
| 			rfmt = d_fmt;
 | |
| 			goto copcsr;
 | |
| 		default: {
 | |
| 			/* Emulating the new CMP.condn.fmt R6 instruction */
 | |
| 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
 | |
| 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
 | |
| 			union ieee754dp fs, ft;
 | |
| 
 | |
| 			if (!cpu_has_mips_r6 ||
 | |
| 			    (MIPSInst_FUNC(ir) & 0x20))
 | |
| 				return SIGILL;
 | |
| 
 | |
| 			if (!sig) {
 | |
| 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 					switch (cmpop) {
 | |
| 					case 0:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_af_d);
 | |
| 					break;
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_un_d);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_eq_d);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ueq_d);
 | |
| 					break;
 | |
| 					case 4:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_lt_d);
 | |
| 					break;
 | |
| 					case 5:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ult_d);
 | |
| 					break;
 | |
| 					case 6:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_le_d);
 | |
| 					break;
 | |
| 					case 7:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ule_d);
 | |
| 					break;
 | |
| 					}
 | |
| 				} else {
 | |
| 					switch (cmpop) {
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_or_d);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_une_d);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_ne_d);
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 					switch (cmpop) {
 | |
| 					case 0:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_saf_d);
 | |
| 					break;
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sun_d);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_seq_d);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sueq_d);
 | |
| 					break;
 | |
| 					case 4:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_slt_d);
 | |
| 					break;
 | |
| 					case 5:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sult_d);
 | |
| 					break;
 | |
| 					case 6:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sle_d);
 | |
| 					break;
 | |
| 					case 7:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sule_d);
 | |
| 					break;
 | |
| 					}
 | |
| 				} else {
 | |
| 					switch (cmpop) {
 | |
| 					case 1:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sor_d);
 | |
| 					break;
 | |
| 					case 2:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sune_d);
 | |
| 					break;
 | |
| 					case 3:
 | |
| 					MIPS_FPU_EMU_INC_STATS(cmp_sne_d);
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* fmt is l_fmt for double precision so fix it */
 | |
| 			rfmt = d_fmt;
 | |
| 			/* default to false */
 | |
| 			rv.l = 0;
 | |
| 
 | |
| 			/* CMP.condn.D */
 | |
| 			DPFROMREG(fs, MIPSInst_FS(ir));
 | |
| 			DPFROMREG(ft, MIPSInst_FT(ir));
 | |
| 
 | |
| 			/* positive predicates */
 | |
| 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
 | |
| 				if (ieee754dp_cmp(fs, ft,
 | |
| 						  cmptab[cmpop], sig))
 | |
| 				    rv.l = -1LL; /* true, all 1s */
 | |
| 				if (sig &&
 | |
| 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
 | |
| 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 				else
 | |
| 					goto copcsr;
 | |
| 			} else {
 | |
| 				/* negative predicates */
 | |
| 				switch (cmpop) {
 | |
| 				case 1:
 | |
| 				case 2:
 | |
| 				case 3:
 | |
| 					if (ieee754dp_cmp(fs, ft,
 | |
| 							  negative_cmptab[cmpop],
 | |
| 							  sig))
 | |
| 						rv.l = -1LL; /* true, all 1s */
 | |
| 					if (sig &&
 | |
| 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
 | |
| 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
 | |
| 					else
 | |
| 						goto copcsr;
 | |
| 					break;
 | |
| 				default:
 | |
| 					/* Reserved R6 ops */
 | |
| 					return SIGILL;
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return SIGILL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the fpu CSR register for this operation.
 | |
| 	 * If an exception is required, generate a tidy SIGFPE exception,
 | |
| 	 * without updating the result register.
 | |
| 	 * Note: cause exception bits do not accumulate, they are rewritten
 | |
| 	 * for each op; only the flag/sticky bits accumulate.
 | |
| 	 */
 | |
| 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
 | |
| 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
 | |
| 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
 | |
| 		return SIGFPE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can safely write the result back to the register file.
 | |
| 	 */
 | |
| 	switch (rfmt) {
 | |
| 	case -1:
 | |
| 
 | |
| 		if (cpu_has_mips_4_5_r)
 | |
| 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
 | |
| 		else
 | |
| 			cbit = FPU_CSR_COND;
 | |
| 		if (rv.w)
 | |
| 			ctx->fcr31 |= cbit;
 | |
| 		else
 | |
| 			ctx->fcr31 &= ~cbit;
 | |
| 		break;
 | |
| 
 | |
| 	case d_fmt:
 | |
| 		DPTOREG(rv.d, MIPSInst_FD(ir));
 | |
| 		break;
 | |
| 	case s_fmt:
 | |
| 		SPTOREG(rv.s, MIPSInst_FD(ir));
 | |
| 		break;
 | |
| 	case w_fmt:
 | |
| 		SITOREG(rv.w, MIPSInst_FD(ir));
 | |
| 		break;
 | |
| 	case l_fmt:
 | |
| 		if (!cpu_has_mips_3_4_5_64_r2_r6)
 | |
| 			return SIGILL;
 | |
| 
 | |
| 		DITOREG(rv.l, MIPSInst_FD(ir));
 | |
| 		break;
 | |
| 	default:
 | |
| 		return SIGILL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate FPU instructions.
 | |
|  *
 | |
|  * If we use FPU hardware, then we have been typically called to handle
 | |
|  * an unimplemented operation, such as where an operand is a NaN or
 | |
|  * denormalized.  In that case exit the emulation loop after a single
 | |
|  * iteration so as to let hardware execute any subsequent instructions.
 | |
|  *
 | |
|  * If we have no FPU hardware or it has been disabled, then continue
 | |
|  * emulating floating-point instructions until one of these conditions
 | |
|  * has occurred:
 | |
|  *
 | |
|  * - a non-FPU instruction has been encountered,
 | |
|  *
 | |
|  * - an attempt to emulate has ended with a signal,
 | |
|  *
 | |
|  * - the ISA mode has been switched.
 | |
|  *
 | |
|  * We need to terminate the emulation loop if we got switched to the
 | |
|  * MIPS16 mode, whether supported or not, so that we do not attempt
 | |
|  * to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
 | |
|  * Similarly if we got switched to the microMIPS mode and only the
 | |
|  * regular MIPS mode is supported, so that we do not attempt to emulate
 | |
|  * a microMIPS instruction as a regular MIPS FPU instruction.  Or if
 | |
|  * we got switched to the regular MIPS mode and only the microMIPS mode
 | |
|  * is supported, so that we do not attempt to emulate a regular MIPS
 | |
|  * instruction that should cause an Address Error exception instead.
 | |
|  * For simplicity we always terminate upon an ISA mode switch.
 | |
|  */
 | |
| int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
 | |
| 	int has_fpu, void __user **fault_addr)
 | |
| {
 | |
| 	unsigned long oldepc, prevepc;
 | |
| 	struct mm_decoded_insn dec_insn;
 | |
| 	u16 instr[4];
 | |
| 	u16 *instr_ptr;
 | |
| 	int sig = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize context if it hasn't been used already, otherwise ensure
 | |
| 	 * it has been saved to struct thread_struct.
 | |
| 	 */
 | |
| 	if (!init_fp_ctx(current))
 | |
| 		lose_fpu(1);
 | |
| 
 | |
| 	oldepc = xcp->cp0_epc;
 | |
| 	do {
 | |
| 		prevepc = xcp->cp0_epc;
 | |
| 
 | |
| 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
 | |
| 			/*
 | |
| 			 * Get next 2 microMIPS instructions and convert them
 | |
| 			 * into 32-bit instructions.
 | |
| 			 */
 | |
| 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
 | |
| 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
 | |
| 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
 | |
| 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			instr_ptr = instr;
 | |
| 
 | |
| 			/* Get first instruction. */
 | |
| 			if (mm_insn_16bit(*instr_ptr)) {
 | |
| 				/* Duplicate the half-word. */
 | |
| 				dec_insn.insn = (*instr_ptr << 16) |
 | |
| 					(*instr_ptr);
 | |
| 				/* 16-bit instruction. */
 | |
| 				dec_insn.pc_inc = 2;
 | |
| 				instr_ptr += 1;
 | |
| 			} else {
 | |
| 				dec_insn.insn = (*instr_ptr << 16) |
 | |
| 					*(instr_ptr+1);
 | |
| 				/* 32-bit instruction. */
 | |
| 				dec_insn.pc_inc = 4;
 | |
| 				instr_ptr += 2;
 | |
| 			}
 | |
| 			/* Get second instruction. */
 | |
| 			if (mm_insn_16bit(*instr_ptr)) {
 | |
| 				/* Duplicate the half-word. */
 | |
| 				dec_insn.next_insn = (*instr_ptr << 16) |
 | |
| 					(*instr_ptr);
 | |
| 				/* 16-bit instruction. */
 | |
| 				dec_insn.next_pc_inc = 2;
 | |
| 			} else {
 | |
| 				dec_insn.next_insn = (*instr_ptr << 16) |
 | |
| 					*(instr_ptr+1);
 | |
| 				/* 32-bit instruction. */
 | |
| 				dec_insn.next_pc_inc = 4;
 | |
| 			}
 | |
| 			dec_insn.micro_mips_mode = 1;
 | |
| 		} else {
 | |
| 			if ((get_user(dec_insn.insn,
 | |
| 			    (mips_instruction __user *) xcp->cp0_epc)) ||
 | |
| 			    (get_user(dec_insn.next_insn,
 | |
| 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
 | |
| 				MIPS_FPU_EMU_INC_STATS(errors);
 | |
| 				return SIGBUS;
 | |
| 			}
 | |
| 			dec_insn.pc_inc = 4;
 | |
| 			dec_insn.next_pc_inc = 4;
 | |
| 			dec_insn.micro_mips_mode = 0;
 | |
| 		}
 | |
| 
 | |
| 		if ((dec_insn.insn == 0) ||
 | |
| 		   ((dec_insn.pc_inc == 2) &&
 | |
| 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
 | |
| 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
 | |
| 			 * No need to copy ctx->fcr31 to ieee754_csr.
 | |
| 			 */
 | |
| 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
 | |
| 		}
 | |
| 
 | |
| 		if (has_fpu)
 | |
| 			break;
 | |
| 		if (sig)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * We have to check for the ISA bit explicitly here,
 | |
| 		 * because `get_isa16_mode' may return 0 if support
 | |
| 		 * for code compression has been globally disabled,
 | |
| 		 * or otherwise we may produce the wrong signal or
 | |
| 		 * even proceed successfully where we must not.
 | |
| 		 */
 | |
| 		if ((xcp->cp0_epc ^ prevepc) & 0x1)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	} while (xcp->cp0_epc > prevepc);
 | |
| 
 | |
| 	/* SIGILL indicates a non-fpu instruction */
 | |
| 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
 | |
| 		/* but if EPC has advanced, then ignore it */
 | |
| 		sig = 0;
 | |
| 
 | |
| 	return sig;
 | |
| }
 |