1869 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1869 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Just-In-Time compiler for eBPF filters on 32bit ARM
 | |
|  *
 | |
|  * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
 | |
|  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; version 2 of the License.
 | |
|  */
 | |
| 
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/filter.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/if_vlan.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/hwcap.h>
 | |
| #include <asm/opcodes.h>
 | |
| 
 | |
| #include "bpf_jit_32.h"
 | |
| 
 | |
| /*
 | |
|  * eBPF prog stack layout:
 | |
|  *
 | |
|  *                         high
 | |
|  * original ARM_SP =>     +-----+
 | |
|  *                        |     | callee saved registers
 | |
|  *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
 | |
|  *                        | ... | eBPF JIT scratch space
 | |
|  * eBPF fp register =>    +-----+
 | |
|  *   (BPF_FP)             | ... | eBPF prog stack
 | |
|  *                        +-----+
 | |
|  *                        |RSVD | JIT scratchpad
 | |
|  * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
 | |
|  *                        |     |
 | |
|  *                        | ... | Function call stack
 | |
|  *                        |     |
 | |
|  *                        +-----+
 | |
|  *                          low
 | |
|  *
 | |
|  * The callee saved registers depends on whether frame pointers are enabled.
 | |
|  * With frame pointers (to be compliant with the ABI):
 | |
|  *
 | |
|  *                                high
 | |
|  * original ARM_SP =>     +------------------+ \
 | |
|  *                        |        pc        | |
 | |
|  * current ARM_FP =>      +------------------+ } callee saved registers
 | |
|  *                        |r4-r8,r10,fp,ip,lr| |
 | |
|  *                        +------------------+ /
 | |
|  *                                low
 | |
|  *
 | |
|  * Without frame pointers:
 | |
|  *
 | |
|  *                                high
 | |
|  * original ARM_SP =>     +------------------+
 | |
|  *                        | r4-r8,r10,fp,lr  | callee saved registers
 | |
|  * current ARM_FP =>      +------------------+
 | |
|  *                                low
 | |
|  *
 | |
|  * When popping registers off the stack at the end of a BPF function, we
 | |
|  * reference them via the current ARM_FP register.
 | |
|  */
 | |
| #define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
 | |
| 			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
 | |
| 			 1 << ARM_FP)
 | |
| #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
 | |
| #define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
 | |
| 
 | |
| #define STACK_OFFSET(k)	(k)
 | |
| #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 | |
| #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 | |
| #define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 | |
| 
 | |
| #define FLAG_IMM_OVERFLOW	(1 << 0)
 | |
| 
 | |
| /*
 | |
|  * Map eBPF registers to ARM 32bit registers or stack scratch space.
 | |
|  *
 | |
|  * 1. First argument is passed using the arm 32bit registers and rest of the
 | |
|  * arguments are passed on stack scratch space.
 | |
|  * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 | |
|  * arguments are mapped to scratch space on stack.
 | |
|  * 3. We need two 64 bit temp registers to do complex operations on eBPF
 | |
|  * registers.
 | |
|  *
 | |
|  * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 | |
|  * registers, we have to map each eBPF registers with two arm 32 bit regs or
 | |
|  * scratch memory space and we have to build eBPF 64 bit register from those.
 | |
|  *
 | |
|  */
 | |
| static const u8 bpf2a32[][2] = {
 | |
| 	/* return value from in-kernel function, and exit value from eBPF */
 | |
| 	[BPF_REG_0] = {ARM_R1, ARM_R0},
 | |
| 	/* arguments from eBPF program to in-kernel function */
 | |
| 	[BPF_REG_1] = {ARM_R3, ARM_R2},
 | |
| 	/* Stored on stack scratch space */
 | |
| 	[BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
 | |
| 	[BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
 | |
| 	[BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
 | |
| 	[BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
 | |
| 	/* callee saved registers that in-kernel function will preserve */
 | |
| 	[BPF_REG_6] = {ARM_R5, ARM_R4},
 | |
| 	/* Stored on stack scratch space */
 | |
| 	[BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
 | |
| 	[BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
 | |
| 	[BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
 | |
| 	/* Read only Frame Pointer to access Stack */
 | |
| 	[BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
 | |
| 	/* Temporary Register for internal BPF JIT, can be used
 | |
| 	 * for constant blindings and others.
 | |
| 	 */
 | |
| 	[TMP_REG_1] = {ARM_R7, ARM_R6},
 | |
| 	[TMP_REG_2] = {ARM_R10, ARM_R8},
 | |
| 	/* Tail call count. Stored on stack scratch space. */
 | |
| 	[TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
 | |
| 	/* temporary register for blinding constants.
 | |
| 	 * Stored on stack scratch space.
 | |
| 	 */
 | |
| 	[BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
 | |
| };
 | |
| 
 | |
| #define	dst_lo	dst[1]
 | |
| #define dst_hi	dst[0]
 | |
| #define src_lo	src[1]
 | |
| #define src_hi	src[0]
 | |
| 
 | |
| /*
 | |
|  * JIT Context:
 | |
|  *
 | |
|  * prog			:	bpf_prog
 | |
|  * idx			:	index of current last JITed instruction.
 | |
|  * prologue_bytes	:	bytes used in prologue.
 | |
|  * epilogue_offset	:	offset of epilogue starting.
 | |
|  * offsets		:	array of eBPF instruction offsets in
 | |
|  *				JITed code.
 | |
|  * target		:	final JITed code.
 | |
|  * epilogue_bytes	:	no of bytes used in epilogue.
 | |
|  * imm_count		:	no of immediate counts used for global
 | |
|  *				variables.
 | |
|  * imms			:	array of global variable addresses.
 | |
|  */
 | |
| 
 | |
| struct jit_ctx {
 | |
| 	const struct bpf_prog *prog;
 | |
| 	unsigned int idx;
 | |
| 	unsigned int prologue_bytes;
 | |
| 	unsigned int epilogue_offset;
 | |
| 	u32 flags;
 | |
| 	u32 *offsets;
 | |
| 	u32 *target;
 | |
| 	u32 stack_size;
 | |
| #if __LINUX_ARM_ARCH__ < 7
 | |
| 	u16 epilogue_bytes;
 | |
| 	u16 imm_count;
 | |
| 	u32 *imms;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 | |
|  * (where the assembly routines like __aeabi_uidiv could cause problems).
 | |
|  */
 | |
| static u32 jit_udiv32(u32 dividend, u32 divisor)
 | |
| {
 | |
| 	return dividend / divisor;
 | |
| }
 | |
| 
 | |
| static u32 jit_mod32(u32 dividend, u32 divisor)
 | |
| {
 | |
| 	return dividend % divisor;
 | |
| }
 | |
| 
 | |
| static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 | |
| {
 | |
| 	inst |= (cond << 28);
 | |
| 	inst = __opcode_to_mem_arm(inst);
 | |
| 
 | |
| 	if (ctx->target != NULL)
 | |
| 		ctx->target[ctx->idx] = inst;
 | |
| 
 | |
| 	ctx->idx++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emit an instruction that will be executed unconditionally.
 | |
|  */
 | |
| static inline void emit(u32 inst, struct jit_ctx *ctx)
 | |
| {
 | |
| 	_emit(ARM_COND_AL, inst, ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks if immediate value can be converted to imm12(12 bits) value.
 | |
|  */
 | |
| static int16_t imm8m(u32 x)
 | |
| {
 | |
| 	u32 rot;
 | |
| 
 | |
| 	for (rot = 0; rot < 16; rot++)
 | |
| 		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 | |
| 			return rol32(x, 2 * rot) | (rot << 8);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initializes the JIT space with undefined instructions.
 | |
|  */
 | |
| static void jit_fill_hole(void *area, unsigned int size)
 | |
| {
 | |
| 	u32 *ptr;
 | |
| 	/* We are guaranteed to have aligned memory. */
 | |
| 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 | |
| 		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 | |
| /* EABI requires the stack to be aligned to 64-bit boundaries */
 | |
| #define STACK_ALIGNMENT	8
 | |
| #else
 | |
| /* Stack must be aligned to 32-bit boundaries */
 | |
| #define STACK_ALIGNMENT	4
 | |
| #endif
 | |
| 
 | |
| /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 | |
|  * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 | |
|  * BPF_REG_FP and Tail call counts.
 | |
|  */
 | |
| #define SCRATCH_SIZE 80
 | |
| 
 | |
| /* total stack size used in JITed code */
 | |
| #define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 | |
| #define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 | |
| 
 | |
| /* Get the offset of eBPF REGISTERs stored on scratch space. */
 | |
| #define STACK_VAR(off) (STACK_SIZE - off)
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ < 7
 | |
| 
 | |
| static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 | |
| {
 | |
| 	unsigned int i = 0, offset;
 | |
| 	u16 imm;
 | |
| 
 | |
| 	/* on the "fake" run we just count them (duplicates included) */
 | |
| 	if (ctx->target == NULL) {
 | |
| 		ctx->imm_count++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	while ((i < ctx->imm_count) && ctx->imms[i]) {
 | |
| 		if (ctx->imms[i] == k)
 | |
| 			break;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->imms[i] == 0)
 | |
| 		ctx->imms[i] = k;
 | |
| 
 | |
| 	/* constants go just after the epilogue */
 | |
| 	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 | |
| 	offset += ctx->prologue_bytes;
 | |
| 	offset += ctx->epilogue_bytes;
 | |
| 	offset += i * 4;
 | |
| 
 | |
| 	ctx->target[offset / 4] = k;
 | |
| 
 | |
| 	/* PC in ARM mode == address of the instruction + 8 */
 | |
| 	imm = offset - (8 + ctx->idx * 4);
 | |
| 
 | |
| 	if (imm & ~0xfff) {
 | |
| 		/*
 | |
| 		 * literal pool is too far, signal it into flags. we
 | |
| 		 * can only detect it on the second pass unfortunately.
 | |
| 		 */
 | |
| 		ctx->flags |= FLAG_IMM_OVERFLOW;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return imm;
 | |
| }
 | |
| 
 | |
| #endif /* __LINUX_ARM_ARCH__ */
 | |
| 
 | |
| static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 | |
| 				 const struct jit_ctx *ctx) {
 | |
| 	int to, from;
 | |
| 
 | |
| 	if (ctx->target == NULL)
 | |
| 		return 0;
 | |
| 	to = ctx->offsets[bpf_to];
 | |
| 	from = ctx->offsets[bpf_from];
 | |
| 
 | |
| 	return to - from - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move an immediate that's not an imm8m to a core register.
 | |
|  */
 | |
| static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 | |
| {
 | |
| #if __LINUX_ARM_ARCH__ < 7
 | |
| 	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 | |
| #else
 | |
| 	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 | |
| 	if (val > 0xffff)
 | |
| 		emit(ARM_MOVT(rd, val >> 16), ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 | |
| {
 | |
| 	int imm12 = imm8m(val);
 | |
| 
 | |
| 	if (imm12 >= 0)
 | |
| 		emit(ARM_MOV_I(rd, imm12), ctx);
 | |
| 	else
 | |
| 		emit_mov_i_no8m(rd, val, ctx);
 | |
| }
 | |
| 
 | |
| static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (elf_hwcap & HWCAP_THUMB)
 | |
| 		emit(ARM_BX(tgt_reg), ctx);
 | |
| 	else
 | |
| 		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 | |
| }
 | |
| 
 | |
| static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 | |
| {
 | |
| #if __LINUX_ARM_ARCH__ < 5
 | |
| 	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 | |
| 	emit_bx_r(tgt_reg, ctx);
 | |
| #else
 | |
| 	emit(ARM_BLX_R(tgt_reg), ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int epilogue_offset(const struct jit_ctx *ctx)
 | |
| {
 | |
| 	int to, from;
 | |
| 	/* No need for 1st dummy run */
 | |
| 	if (ctx->target == NULL)
 | |
| 		return 0;
 | |
| 	to = ctx->epilogue_offset;
 | |
| 	from = ctx->idx;
 | |
| 
 | |
| 	return to - from - 2;
 | |
| }
 | |
| 
 | |
| static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 | |
| {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ == 7
 | |
| 	if (elf_hwcap & HWCAP_IDIVA) {
 | |
| 		if (op == BPF_DIV)
 | |
| 			emit(ARM_UDIV(rd, rm, rn), ctx);
 | |
| 		else {
 | |
| 			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 | |
| 			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 | |
| 	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 | |
| 	 * function, we need to save it on caller side to save
 | |
| 	 * it from getting destroyed within callee.
 | |
| 	 * After the return from the callee, we restore ARM_R0
 | |
| 	 * ARM_R1.
 | |
| 	 */
 | |
| 	if (rn != ARM_R1) {
 | |
| 		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 | |
| 		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 | |
| 	}
 | |
| 	if (rm != ARM_R0) {
 | |
| 		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 | |
| 		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Call appropriate function */
 | |
| 	emit_mov_i(ARM_IP, op == BPF_DIV ?
 | |
| 		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 | |
| 	emit_blx_r(ARM_IP, ctx);
 | |
| 
 | |
| 	/* Save return value */
 | |
| 	if (rd != ARM_R0)
 | |
| 		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 | |
| 
 | |
| 	/* Restore ARM_R0 and ARM_R1 */
 | |
| 	if (rn != ARM_R1)
 | |
| 		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 | |
| 	if (rm != ARM_R0)
 | |
| 		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 | |
| }
 | |
| 
 | |
| /* Checks whether BPF register is on scratch stack space or not. */
 | |
| static inline bool is_on_stack(u8 bpf_reg)
 | |
| {
 | |
| 	static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
 | |
| 				BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
 | |
| 				BPF_REG_2, BPF_REG_FP};
 | |
| 	int i, reg_len = sizeof(stack_regs);
 | |
| 
 | |
| 	for (i = 0 ; i < reg_len ; i++) {
 | |
| 		if (bpf_reg == stack_regs[i])
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void emit_a32_mov_i(const u8 dst, const u32 val,
 | |
| 				  bool dstk, struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit_mov_i(tmp[1], val, ctx);
 | |
| 		emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 	} else {
 | |
| 		emit_mov_i(dst, val, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Sign extended move */
 | |
| static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
 | |
| 				  const u32 val, bool dstk,
 | |
| 				  struct jit_ctx *ctx) {
 | |
| 	u32 hi = 0;
 | |
| 
 | |
| 	if (is64 && (val & (1<<31)))
 | |
| 		hi = (u32)~0;
 | |
| 	emit_a32_mov_i(dst_lo, val, dstk, ctx);
 | |
| 	emit_a32_mov_i(dst_hi, hi, dstk, ctx);
 | |
| }
 | |
| 
 | |
| static inline void emit_a32_add_r(const u8 dst, const u8 src,
 | |
| 			      const bool is64, const bool hi,
 | |
| 			      struct jit_ctx *ctx) {
 | |
| 	/* 64 bit :
 | |
| 	 *	adds dst_lo, dst_lo, src_lo
 | |
| 	 *	adc dst_hi, dst_hi, src_hi
 | |
| 	 * 32 bit :
 | |
| 	 *	add dst_lo, dst_lo, src_lo
 | |
| 	 */
 | |
| 	if (!hi && is64)
 | |
| 		emit(ARM_ADDS_R(dst, dst, src), ctx);
 | |
| 	else if (hi && is64)
 | |
| 		emit(ARM_ADC_R(dst, dst, src), ctx);
 | |
| 	else
 | |
| 		emit(ARM_ADD_R(dst, dst, src), ctx);
 | |
| }
 | |
| 
 | |
| static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 | |
| 				  const bool is64, const bool hi,
 | |
| 				  struct jit_ctx *ctx) {
 | |
| 	/* 64 bit :
 | |
| 	 *	subs dst_lo, dst_lo, src_lo
 | |
| 	 *	sbc dst_hi, dst_hi, src_hi
 | |
| 	 * 32 bit :
 | |
| 	 *	sub dst_lo, dst_lo, src_lo
 | |
| 	 */
 | |
| 	if (!hi && is64)
 | |
| 		emit(ARM_SUBS_R(dst, dst, src), ctx);
 | |
| 	else if (hi && is64)
 | |
| 		emit(ARM_SBC_R(dst, dst, src), ctx);
 | |
| 	else
 | |
| 		emit(ARM_SUB_R(dst, dst, src), ctx);
 | |
| }
 | |
| 
 | |
| static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 | |
| 			      const bool hi, const u8 op, struct jit_ctx *ctx){
 | |
| 	switch (BPF_OP(op)) {
 | |
| 	/* dst = dst + src */
 | |
| 	case BPF_ADD:
 | |
| 		emit_a32_add_r(dst, src, is64, hi, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst - src */
 | |
| 	case BPF_SUB:
 | |
| 		emit_a32_sub_r(dst, src, is64, hi, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst | src */
 | |
| 	case BPF_OR:
 | |
| 		emit(ARM_ORR_R(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst & src */
 | |
| 	case BPF_AND:
 | |
| 		emit(ARM_AND_R(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst ^ src */
 | |
| 	case BPF_XOR:
 | |
| 		emit(ARM_EOR_R(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst * src */
 | |
| 	case BPF_MUL:
 | |
| 		emit(ARM_MUL(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst << src */
 | |
| 	case BPF_LSH:
 | |
| 		emit(ARM_LSL_R(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> src */
 | |
| 	case BPF_RSH:
 | |
| 		emit(ARM_LSR_R(dst, dst, src), ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> src (signed)*/
 | |
| 	case BPF_ARSH:
 | |
| 		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ALU operation (32 bit)
 | |
|  * dst = dst (op) src
 | |
|  */
 | |
| static inline void emit_a32_alu_r(const u8 dst, const u8 src,
 | |
| 				  bool dstk, bool sstk,
 | |
| 				  struct jit_ctx *ctx, const bool is64,
 | |
| 				  const bool hi, const u8 op) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	u8 rn = sstk ? tmp[1] : src;
 | |
| 
 | |
| 	if (sstk)
 | |
| 		emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
 | |
| 
 | |
| 	/* ALU operation */
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 		emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
 | |
| 		emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 	} else {
 | |
| 		emit_alu_r(dst, rn, is64, hi, op, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ALU operation (64 bit) */
 | |
| static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
 | |
| 				  const u8 src[], bool dstk,
 | |
| 				  bool sstk, struct jit_ctx *ctx,
 | |
| 				  const u8 op) {
 | |
| 	emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
 | |
| 	if (is64)
 | |
| 		emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
 | |
| 	else
 | |
| 		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 | |
| }
 | |
| 
 | |
| /* dst = imm (4 bytes)*/
 | |
| static inline void emit_a32_mov_r(const u8 dst, const u8 src,
 | |
| 				  bool dstk, bool sstk,
 | |
| 				  struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	u8 rt = sstk ? tmp[0] : src;
 | |
| 
 | |
| 	if (sstk)
 | |
| 		emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
 | |
| 	if (dstk)
 | |
| 		emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 	else
 | |
| 		emit(ARM_MOV_R(dst, rt), ctx);
 | |
| }
 | |
| 
 | |
| /* dst = src */
 | |
| static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
 | |
| 				  const u8 src[], bool dstk,
 | |
| 				  bool sstk, struct jit_ctx *ctx) {
 | |
| 	emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
 | |
| 	if (is64) {
 | |
| 		/* complete 8 byte move */
 | |
| 		emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
 | |
| 	} else {
 | |
| 		/* Zero out high 4 bytes */
 | |
| 		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Shift operations */
 | |
| static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
 | |
| 				struct jit_ctx *ctx, const u8 op) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	u8 rd = dstk ? tmp[0] : dst;
 | |
| 
 | |
| 	if (dstk)
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 
 | |
| 	/* Do shift operation */
 | |
| 	switch (op) {
 | |
| 	case BPF_LSH:
 | |
| 		emit(ARM_LSL_I(rd, rd, val), ctx);
 | |
| 		break;
 | |
| 	case BPF_RSH:
 | |
| 		emit(ARM_LSR_I(rd, rd, val), ctx);
 | |
| 		break;
 | |
| 	case BPF_NEG:
 | |
| 		emit(ARM_RSB_I(rd, rd, val), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (dstk)
 | |
| 		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 | |
| }
 | |
| 
 | |
| /* dst = ~dst (64 bit) */
 | |
| static inline void emit_a32_neg64(const u8 dst[], bool dstk,
 | |
| 				struct jit_ctx *ctx){
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	u8 rd = dstk ? tmp[1] : dst[1];
 | |
| 	u8 rm = dstk ? tmp[0] : dst[0];
 | |
| 
 | |
| 	/* Setup Operand */
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do Negate Operation */
 | |
| 	emit(ARM_RSBS_I(rd, rd, 0), ctx);
 | |
| 	emit(ARM_RSC_I(rm, rm, 0), ctx);
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst << src */
 | |
| static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
 | |
| 				    bool sstk, struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 
 | |
| 	/* Setup Operands */
 | |
| 	u8 rt = sstk ? tmp2[1] : src_lo;
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (sstk)
 | |
| 		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do LSH operation */
 | |
| 	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 | |
| 	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 | |
| 		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst >> src (signed)*/
 | |
| static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
 | |
| 				    bool sstk, struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	/* Setup Operands */
 | |
| 	u8 rt = sstk ? tmp2[1] : src_lo;
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (sstk)
 | |
| 		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do the ARSH operation */
 | |
| 	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 | |
| 	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 | |
| 	_emit(ARM_COND_MI, ARM_B(0), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 | |
| 		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst >> src */
 | |
| static inline void emit_a32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
 | |
| 				     bool sstk, struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	/* Setup Operands */
 | |
| 	u8 rt = sstk ? tmp2[1] : src_lo;
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (sstk)
 | |
| 		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do RSH operation */
 | |
| 	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 | |
| 	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 | |
| 	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
 | |
| 	emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 | |
| 		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst << val */
 | |
| static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
 | |
| 				     const u32 val, struct jit_ctx *ctx){
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	/* Setup operands */
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do LSH operation */
 | |
| 	if (val < 32) {
 | |
| 		emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
 | |
| 		emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
 | |
| 		emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
 | |
| 	} else {
 | |
| 		if (val == 32)
 | |
| 			emit(ARM_MOV_R(rm, rd), ctx);
 | |
| 		else
 | |
| 			emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
 | |
| 		emit(ARM_EOR_R(rd, rd, rd), ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst >> val */
 | |
| static inline void emit_a32_rsh_i64(const u8 dst[], bool dstk,
 | |
| 				    const u32 val, struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	/* Setup operands */
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do LSR operation */
 | |
| 	if (val < 32) {
 | |
| 		emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 | |
| 		emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 | |
| 		emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
 | |
| 	} else if (val == 32) {
 | |
| 		emit(ARM_MOV_R(rd, rm), ctx);
 | |
| 		emit(ARM_MOV_I(rm, 0), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
 | |
| 		emit(ARM_MOV_I(rm, 0), ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = dst >> val (signed) */
 | |
| static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
 | |
| 				     const u32 val, struct jit_ctx *ctx){
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	 /* Setup operands */
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do ARSH operation */
 | |
| 	if (val < 32) {
 | |
| 		emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 | |
| 		emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 | |
| 		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
 | |
| 	} else if (val == 32) {
 | |
| 		emit(ARM_MOV_R(rd, rm), ctx);
 | |
| 		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
 | |
| 		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
 | |
| 				    bool sstk, struct jit_ctx *ctx) {
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	/* Setup operands for multiplication */
 | |
| 	u8 rd = dstk ? tmp[1] : dst_lo;
 | |
| 	u8 rm = dstk ? tmp[0] : dst_hi;
 | |
| 	u8 rt = sstk ? tmp2[1] : src_lo;
 | |
| 	u8 rn = sstk ? tmp2[0] : src_hi;
 | |
| 
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	}
 | |
| 	if (sstk) {
 | |
| 		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 		emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Do Multiplication */
 | |
| 	emit(ARM_MUL(ARM_IP, rd, rn), ctx);
 | |
| 	emit(ARM_MUL(ARM_LR, rm, rt), ctx);
 | |
| 	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 | |
| 
 | |
| 	emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
 | |
| 	emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
 | |
| 	if (dstk) {
 | |
| 		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 	} else {
 | |
| 		emit(ARM_MOV_R(rd, ARM_IP), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* *(size *)(dst + off) = src */
 | |
| static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
 | |
| 			      const s32 off, struct jit_ctx *ctx, const u8 sz){
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	u8 rd = dstk ? tmp[1] : dst;
 | |
| 
 | |
| 	if (dstk)
 | |
| 		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 | |
| 	if (off) {
 | |
| 		emit_a32_mov_i(tmp[0], off, false, ctx);
 | |
| 		emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
 | |
| 		rd = tmp[0];
 | |
| 	}
 | |
| 	switch (sz) {
 | |
| 	case BPF_W:
 | |
| 		/* Store a Word */
 | |
| 		emit(ARM_STR_I(src, rd, 0), ctx);
 | |
| 		break;
 | |
| 	case BPF_H:
 | |
| 		/* Store a HalfWord */
 | |
| 		emit(ARM_STRH_I(src, rd, 0), ctx);
 | |
| 		break;
 | |
| 	case BPF_B:
 | |
| 		/* Store a Byte */
 | |
| 		emit(ARM_STRB_I(src, rd, 0), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dst = *(size*)(src + off) */
 | |
| static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
 | |
| 			      s32 off, struct jit_ctx *ctx, const u8 sz){
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *rd = dstk ? tmp : dst;
 | |
| 	u8 rm = src;
 | |
| 	s32 off_max;
 | |
| 
 | |
| 	if (sz == BPF_H)
 | |
| 		off_max = 0xff;
 | |
| 	else
 | |
| 		off_max = 0xfff;
 | |
| 
 | |
| 	if (off < 0 || off > off_max) {
 | |
| 		emit_a32_mov_i(tmp[0], off, false, ctx);
 | |
| 		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
 | |
| 		rm = tmp[0];
 | |
| 		off = 0;
 | |
| 	} else if (rd[1] == rm) {
 | |
| 		emit(ARM_MOV_R(tmp[0], rm), ctx);
 | |
| 		rm = tmp[0];
 | |
| 	}
 | |
| 	switch (sz) {
 | |
| 	case BPF_B:
 | |
| 		/* Load a Byte */
 | |
| 		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
 | |
| 		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 | |
| 		break;
 | |
| 	case BPF_H:
 | |
| 		/* Load a HalfWord */
 | |
| 		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
 | |
| 		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 | |
| 		break;
 | |
| 	case BPF_W:
 | |
| 		/* Load a Word */
 | |
| 		emit(ARM_LDR_I(rd[1], rm, off), ctx);
 | |
| 		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 | |
| 		break;
 | |
| 	case BPF_DW:
 | |
| 		/* Load a Double Word */
 | |
| 		emit(ARM_LDR_I(rd[1], rm, off), ctx);
 | |
| 		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (dstk)
 | |
| 		emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
 | |
| 	if (dstk && sz == BPF_DW)
 | |
| 		emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
 | |
| }
 | |
| 
 | |
| /* Arithmatic Operation */
 | |
| static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
 | |
| 			     const u8 rn, struct jit_ctx *ctx, u8 op) {
 | |
| 	switch (op) {
 | |
| 	case BPF_JSET:
 | |
| 		emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
 | |
| 		emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
 | |
| 		emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
 | |
| 		break;
 | |
| 	case BPF_JEQ:
 | |
| 	case BPF_JNE:
 | |
| 	case BPF_JGT:
 | |
| 	case BPF_JGE:
 | |
| 	case BPF_JLE:
 | |
| 	case BPF_JLT:
 | |
| 		emit(ARM_CMP_R(rd, rm), ctx);
 | |
| 		_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
 | |
| 		break;
 | |
| 	case BPF_JSLE:
 | |
| 	case BPF_JSGT:
 | |
| 		emit(ARM_CMP_R(rn, rt), ctx);
 | |
| 		emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
 | |
| 		break;
 | |
| 	case BPF_JSLT:
 | |
| 	case BPF_JSGE:
 | |
| 		emit(ARM_CMP_R(rt, rn), ctx);
 | |
| 		emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int out_offset = -1; /* initialized on the first pass of build_body() */
 | |
| static int emit_bpf_tail_call(struct jit_ctx *ctx)
 | |
| {
 | |
| 
 | |
| 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
 | |
| 	const u8 *r2 = bpf2a32[BPF_REG_2];
 | |
| 	const u8 *r3 = bpf2a32[BPF_REG_3];
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	const u8 *tcc = bpf2a32[TCALL_CNT];
 | |
| 	const int idx0 = ctx->idx;
 | |
| #define cur_offset (ctx->idx - idx0)
 | |
| #define jmp_offset (out_offset - (cur_offset) - 2)
 | |
| 	u32 off, lo, hi;
 | |
| 
 | |
| 	/* if (index >= array->map.max_entries)
 | |
| 	 *	goto out;
 | |
| 	 */
 | |
| 	off = offsetof(struct bpf_array, map.max_entries);
 | |
| 	/* array->map.max_entries */
 | |
| 	emit_a32_mov_i(tmp[1], off, false, ctx);
 | |
| 	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
 | |
| 	emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
 | |
| 	/* index is 32-bit for arrays */
 | |
| 	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
 | |
| 	/* index >= array->map.max_entries */
 | |
| 	emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
 | |
| 	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
 | |
| 
 | |
| 	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 | |
| 	 *	goto out;
 | |
| 	 * tail_call_cnt++;
 | |
| 	 */
 | |
| 	lo = (u32)MAX_TAIL_CALL_CNT;
 | |
| 	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
 | |
| 	emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
 | |
| 	emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
 | |
| 	emit(ARM_CMP_I(tmp[0], hi), ctx);
 | |
| 	_emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
 | |
| 	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
 | |
| 	emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
 | |
| 	emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
 | |
| 	emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
 | |
| 	emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
 | |
| 
 | |
| 	/* prog = array->ptrs[index]
 | |
| 	 * if (prog == NULL)
 | |
| 	 *	goto out;
 | |
| 	 */
 | |
| 	off = offsetof(struct bpf_array, ptrs);
 | |
| 	emit_a32_mov_i(tmp[1], off, false, ctx);
 | |
| 	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
 | |
| 	emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
 | |
| 	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
 | |
| 	emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
 | |
| 	emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
 | |
| 	emit(ARM_CMP_I(tmp[1], 0), ctx);
 | |
| 	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
 | |
| 
 | |
| 	/* goto *(prog->bpf_func + prologue_size); */
 | |
| 	off = offsetof(struct bpf_prog, bpf_func);
 | |
| 	emit_a32_mov_i(tmp2[1], off, false, ctx);
 | |
| 	emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
 | |
| 	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
 | |
| 	emit_bx_r(tmp[1], ctx);
 | |
| 
 | |
| 	/* out: */
 | |
| 	if (out_offset == -1)
 | |
| 		out_offset = cur_offset;
 | |
| 	if (cur_offset != out_offset) {
 | |
| 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
 | |
| 			    cur_offset, out_offset);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| #undef cur_offset
 | |
| #undef jmp_offset
 | |
| }
 | |
| 
 | |
| /* 0xabcd => 0xcdab */
 | |
| static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
 | |
| {
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 
 | |
| 	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
 | |
| 	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
 | |
| 	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
 | |
| 	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
 | |
| #else /* ARMv6+ */
 | |
| 	emit(ARM_REV16(rd, rn), ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* 0xabcdefgh => 0xghefcdab */
 | |
| static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
 | |
| {
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 
 | |
| 	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
 | |
| 	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
 | |
| 	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
 | |
| 
 | |
| 	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
 | |
| 	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
 | |
| 	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
 | |
| 	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
 | |
| 	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
 | |
| 	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
 | |
| 	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
 | |
| 
 | |
| #else /* ARMv6+ */
 | |
| 	emit(ARM_REV(rd, rn), ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // push the scratch stack register on top of the stack
 | |
| static inline void emit_push_r64(const u8 src[], const u8 shift,
 | |
| 		struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	u16 reg_set = 0;
 | |
| 
 | |
| 	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
 | |
| 	emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
 | |
| 
 | |
| 	reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
 | |
| 	emit(ARM_PUSH(reg_set), ctx);
 | |
| }
 | |
| 
 | |
| static void build_prologue(struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 r0 = bpf2a32[BPF_REG_0][1];
 | |
| 	const u8 r2 = bpf2a32[BPF_REG_1][1];
 | |
| 	const u8 r3 = bpf2a32[BPF_REG_1][0];
 | |
| 	const u8 r4 = bpf2a32[BPF_REG_6][1];
 | |
| 	const u8 fplo = bpf2a32[BPF_REG_FP][1];
 | |
| 	const u8 fphi = bpf2a32[BPF_REG_FP][0];
 | |
| 	const u8 *tcc = bpf2a32[TCALL_CNT];
 | |
| 
 | |
| 	/* Save callee saved registers. */
 | |
| #ifdef CONFIG_FRAME_POINTER
 | |
| 	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
 | |
| 	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
 | |
| 	emit(ARM_PUSH(reg_set), ctx);
 | |
| 	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
 | |
| #else
 | |
| 	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
 | |
| 	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
 | |
| #endif
 | |
| 	/* Save frame pointer for later */
 | |
| 	emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
 | |
| 
 | |
| 	ctx->stack_size = imm8m(STACK_SIZE);
 | |
| 
 | |
| 	/* Set up function call stack */
 | |
| 	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
 | |
| 
 | |
| 	/* Set up BPF prog stack base register */
 | |
| 	emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
 | |
| 	emit_a32_mov_i(fphi, 0, true, ctx);
 | |
| 
 | |
| 	/* mov r4, 0 */
 | |
| 	emit(ARM_MOV_I(r4, 0), ctx);
 | |
| 
 | |
| 	/* Move BPF_CTX to BPF_R1 */
 | |
| 	emit(ARM_MOV_R(r3, r4), ctx);
 | |
| 	emit(ARM_MOV_R(r2, r0), ctx);
 | |
| 	/* Initialize Tail Count */
 | |
| 	emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
 | |
| 	emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
 | |
| 	/* end of prologue */
 | |
| }
 | |
| 
 | |
| /* restore callee saved registers. */
 | |
| static void build_epilogue(struct jit_ctx *ctx)
 | |
| {
 | |
| #ifdef CONFIG_FRAME_POINTER
 | |
| 	/* When using frame pointers, some additional registers need to
 | |
| 	 * be loaded. */
 | |
| 	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
 | |
| 	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
 | |
| 	emit(ARM_LDM(ARM_SP, reg_set), ctx);
 | |
| #else
 | |
| 	/* Restore callee saved registers. */
 | |
| 	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
 | |
| 	emit(ARM_POP(CALLEE_POP_MASK), ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert an eBPF instruction to native instruction, i.e
 | |
|  * JITs an eBPF instruction.
 | |
|  * Returns :
 | |
|  *	0  - Successfully JITed an 8-byte eBPF instruction
 | |
|  *	>0 - Successfully JITed a 16-byte eBPF instruction
 | |
|  *	<0 - Failed to JIT.
 | |
|  */
 | |
| static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 code = insn->code;
 | |
| 	const u8 *dst = bpf2a32[insn->dst_reg];
 | |
| 	const u8 *src = bpf2a32[insn->src_reg];
 | |
| 	const u8 *tmp = bpf2a32[TMP_REG_1];
 | |
| 	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 | |
| 	const s16 off = insn->off;
 | |
| 	const s32 imm = insn->imm;
 | |
| 	const int i = insn - ctx->prog->insnsi;
 | |
| 	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
 | |
| 	const bool dstk = is_on_stack(insn->dst_reg);
 | |
| 	const bool sstk = is_on_stack(insn->src_reg);
 | |
| 	u8 rd, rt, rm, rn;
 | |
| 	s32 jmp_offset;
 | |
| 
 | |
| #define check_imm(bits, imm) do {				\
 | |
| 	if ((imm) >= (1 << ((bits) - 1)) ||			\
 | |
| 	    (imm) < -(1 << ((bits) - 1))) {			\
 | |
| 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
 | |
| 			i, imm, imm);				\
 | |
| 		return -EINVAL;					\
 | |
| 	}							\
 | |
| } while (0)
 | |
| #define check_imm24(imm) check_imm(24, imm)
 | |
| 
 | |
| 	switch (code) {
 | |
| 	/* ALU operations */
 | |
| 
 | |
| 	/* dst = src */
 | |
| 	case BPF_ALU | BPF_MOV | BPF_K:
 | |
| 	case BPF_ALU | BPF_MOV | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_MOV | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_MOV | BPF_X:
 | |
| 		switch (BPF_SRC(code)) {
 | |
| 		case BPF_X:
 | |
| 			emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
 | |
| 			break;
 | |
| 		case BPF_K:
 | |
| 			/* Sign-extend immediate value to destination reg */
 | |
| 			emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* dst = dst + src/imm */
 | |
| 	/* dst = dst - src/imm */
 | |
| 	/* dst = dst | src/imm */
 | |
| 	/* dst = dst & src/imm */
 | |
| 	/* dst = dst ^ src/imm */
 | |
| 	/* dst = dst * src/imm */
 | |
| 	/* dst = dst << src */
 | |
| 	/* dst = dst >> src */
 | |
| 	case BPF_ALU | BPF_ADD | BPF_K:
 | |
| 	case BPF_ALU | BPF_ADD | BPF_X:
 | |
| 	case BPF_ALU | BPF_SUB | BPF_K:
 | |
| 	case BPF_ALU | BPF_SUB | BPF_X:
 | |
| 	case BPF_ALU | BPF_OR | BPF_K:
 | |
| 	case BPF_ALU | BPF_OR | BPF_X:
 | |
| 	case BPF_ALU | BPF_AND | BPF_K:
 | |
| 	case BPF_ALU | BPF_AND | BPF_X:
 | |
| 	case BPF_ALU | BPF_XOR | BPF_K:
 | |
| 	case BPF_ALU | BPF_XOR | BPF_X:
 | |
| 	case BPF_ALU | BPF_MUL | BPF_K:
 | |
| 	case BPF_ALU | BPF_MUL | BPF_X:
 | |
| 	case BPF_ALU | BPF_LSH | BPF_X:
 | |
| 	case BPF_ALU | BPF_RSH | BPF_X:
 | |
| 	case BPF_ALU | BPF_ARSH | BPF_K:
 | |
| 	case BPF_ALU | BPF_ARSH | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_ADD | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_ADD | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_SUB | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_SUB | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_OR | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_OR | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_AND | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_AND | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_XOR | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_XOR | BPF_X:
 | |
| 		switch (BPF_SRC(code)) {
 | |
| 		case BPF_X:
 | |
| 			emit_a32_alu_r64(is64, dst, src, dstk, sstk,
 | |
| 					 ctx, BPF_OP(code));
 | |
| 			break;
 | |
| 		case BPF_K:
 | |
| 			/* Move immediate value to the temporary register
 | |
| 			 * and then do the ALU operation on the temporary
 | |
| 			 * register as this will sign-extend the immediate
 | |
| 			 * value into temporary reg and then it would be
 | |
| 			 * safe to do the operation on it.
 | |
| 			 */
 | |
| 			emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
 | |
| 			emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
 | |
| 					 ctx, BPF_OP(code));
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* dst = dst / src(imm) */
 | |
| 	/* dst = dst % src(imm) */
 | |
| 	case BPF_ALU | BPF_DIV | BPF_K:
 | |
| 	case BPF_ALU | BPF_DIV | BPF_X:
 | |
| 	case BPF_ALU | BPF_MOD | BPF_K:
 | |
| 	case BPF_ALU | BPF_MOD | BPF_X:
 | |
| 		rt = src_lo;
 | |
| 		rd = dstk ? tmp2[1] : dst_lo;
 | |
| 		if (dstk)
 | |
| 			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		switch (BPF_SRC(code)) {
 | |
| 		case BPF_X:
 | |
| 			rt = sstk ? tmp2[0] : rt;
 | |
| 			if (sstk)
 | |
| 				emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
 | |
| 				     ctx);
 | |
| 			break;
 | |
| 		case BPF_K:
 | |
| 			rt = tmp2[0];
 | |
| 			emit_a32_mov_i(rt, imm, false, ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
 | |
| 		if (dstk)
 | |
| 			emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_DIV | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_DIV | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_MOD | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_MOD | BPF_X:
 | |
| 		goto notyet;
 | |
| 	/* dst = dst >> imm */
 | |
| 	/* dst = dst << imm */
 | |
| 	case BPF_ALU | BPF_RSH | BPF_K:
 | |
| 	case BPF_ALU | BPF_LSH | BPF_K:
 | |
| 		if (unlikely(imm > 31))
 | |
| 			return -EINVAL;
 | |
| 		if (imm)
 | |
| 			emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
 | |
| 		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst << imm */
 | |
| 	case BPF_ALU64 | BPF_LSH | BPF_K:
 | |
| 		if (unlikely(imm > 63))
 | |
| 			return -EINVAL;
 | |
| 		emit_a32_lsh_i64(dst, dstk, imm, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> imm */
 | |
| 	case BPF_ALU64 | BPF_RSH | BPF_K:
 | |
| 		if (unlikely(imm > 63))
 | |
| 			return -EINVAL;
 | |
| 		emit_a32_rsh_i64(dst, dstk, imm, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst << src */
 | |
| 	case BPF_ALU64 | BPF_LSH | BPF_X:
 | |
| 		emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> src */
 | |
| 	case BPF_ALU64 | BPF_RSH | BPF_X:
 | |
| 		emit_a32_rsh_r64(dst, src, dstk, sstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> src (signed) */
 | |
| 	case BPF_ALU64 | BPF_ARSH | BPF_X:
 | |
| 		emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst >> imm (signed) */
 | |
| 	case BPF_ALU64 | BPF_ARSH | BPF_K:
 | |
| 		if (unlikely(imm > 63))
 | |
| 			return -EINVAL;
 | |
| 		emit_a32_arsh_i64(dst, dstk, imm, ctx);
 | |
| 		break;
 | |
| 	/* dst = ~dst */
 | |
| 	case BPF_ALU | BPF_NEG:
 | |
| 		emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
 | |
| 		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = ~dst (64 bit) */
 | |
| 	case BPF_ALU64 | BPF_NEG:
 | |
| 		emit_a32_neg64(dst, dstk, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst * src/imm */
 | |
| 	case BPF_ALU64 | BPF_MUL | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_MUL | BPF_K:
 | |
| 		switch (BPF_SRC(code)) {
 | |
| 		case BPF_X:
 | |
| 			emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
 | |
| 			break;
 | |
| 		case BPF_K:
 | |
| 			/* Move immediate value to the temporary register
 | |
| 			 * and then do the multiplication on it as this
 | |
| 			 * will sign-extend the immediate value into temp
 | |
| 			 * reg then it would be safe to do the operation
 | |
| 			 * on it.
 | |
| 			 */
 | |
| 			emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
 | |
| 			emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* dst = htole(dst) */
 | |
| 	/* dst = htobe(dst) */
 | |
| 	case BPF_ALU | BPF_END | BPF_FROM_LE:
 | |
| 	case BPF_ALU | BPF_END | BPF_FROM_BE:
 | |
| 		rd = dstk ? tmp[0] : dst_hi;
 | |
| 		rt = dstk ? tmp[1] : dst_lo;
 | |
| 		if (dstk) {
 | |
| 			emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 		}
 | |
| 		if (BPF_SRC(code) == BPF_FROM_LE)
 | |
| 			goto emit_bswap_uxt;
 | |
| 		switch (imm) {
 | |
| 		case 16:
 | |
| 			emit_rev16(rt, rt, ctx);
 | |
| 			goto emit_bswap_uxt;
 | |
| 		case 32:
 | |
| 			emit_rev32(rt, rt, ctx);
 | |
| 			goto emit_bswap_uxt;
 | |
| 		case 64:
 | |
| 			emit_rev32(ARM_LR, rt, ctx);
 | |
| 			emit_rev32(rt, rd, ctx);
 | |
| 			emit(ARM_MOV_R(rd, ARM_LR), ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		goto exit;
 | |
| emit_bswap_uxt:
 | |
| 		switch (imm) {
 | |
| 		case 16:
 | |
| 			/* zero-extend 16 bits into 64 bits */
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| 			emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
 | |
| 			emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
 | |
| #else /* ARMv6+ */
 | |
| 			emit(ARM_UXTH(rt, rt), ctx);
 | |
| #endif
 | |
| 			emit(ARM_EOR_R(rd, rd, rd), ctx);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			/* zero-extend 32 bits into 64 bits */
 | |
| 			emit(ARM_EOR_R(rd, rd, rd), ctx);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			/* nop */
 | |
| 			break;
 | |
| 		}
 | |
| exit:
 | |
| 		if (dstk) {
 | |
| 			emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 			emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 		}
 | |
| 		break;
 | |
| 	/* dst = imm64 */
 | |
| 	case BPF_LD | BPF_IMM | BPF_DW:
 | |
| 	{
 | |
| 		const struct bpf_insn insn1 = insn[1];
 | |
| 		u32 hi, lo = imm;
 | |
| 
 | |
| 		hi = insn1.imm;
 | |
| 		emit_a32_mov_i(dst_lo, lo, dstk, ctx);
 | |
| 		emit_a32_mov_i(dst_hi, hi, dstk, ctx);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/* LDX: dst = *(size *)(src + off) */
 | |
| 	case BPF_LDX | BPF_MEM | BPF_W:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_H:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_B:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_DW:
 | |
| 		rn = sstk ? tmp2[1] : src_lo;
 | |
| 		if (sstk)
 | |
| 			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 		emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
 | |
| 		break;
 | |
| 	/* speculation barrier */
 | |
| 	case BPF_ST | BPF_NOSPEC:
 | |
| 		break;
 | |
| 	/* ST: *(size *)(dst + off) = imm */
 | |
| 	case BPF_ST | BPF_MEM | BPF_W:
 | |
| 	case BPF_ST | BPF_MEM | BPF_H:
 | |
| 	case BPF_ST | BPF_MEM | BPF_B:
 | |
| 	case BPF_ST | BPF_MEM | BPF_DW:
 | |
| 		switch (BPF_SIZE(code)) {
 | |
| 		case BPF_DW:
 | |
| 			/* Sign-extend immediate value into temp reg */
 | |
| 			emit_a32_mov_i64(true, tmp2, imm, false, ctx);
 | |
| 			emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
 | |
| 			emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
 | |
| 			break;
 | |
| 		case BPF_W:
 | |
| 		case BPF_H:
 | |
| 		case BPF_B:
 | |
| 			emit_a32_mov_i(tmp2[1], imm, false, ctx);
 | |
| 			emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
 | |
| 				   BPF_SIZE(code));
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* STX XADD: lock *(u32 *)(dst + off) += src */
 | |
| 	case BPF_STX | BPF_XADD | BPF_W:
 | |
| 	/* STX XADD: lock *(u64 *)(dst + off) += src */
 | |
| 	case BPF_STX | BPF_XADD | BPF_DW:
 | |
| 		goto notyet;
 | |
| 	/* STX: *(size *)(dst + off) = src */
 | |
| 	case BPF_STX | BPF_MEM | BPF_W:
 | |
| 	case BPF_STX | BPF_MEM | BPF_H:
 | |
| 	case BPF_STX | BPF_MEM | BPF_B:
 | |
| 	case BPF_STX | BPF_MEM | BPF_DW:
 | |
| 	{
 | |
| 		u8 sz = BPF_SIZE(code);
 | |
| 
 | |
| 		rn = sstk ? tmp2[1] : src_lo;
 | |
| 		rm = sstk ? tmp2[0] : src_hi;
 | |
| 		if (sstk) {
 | |
| 			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 			emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
 | |
| 		}
 | |
| 
 | |
| 		/* Store the value */
 | |
| 		if (BPF_SIZE(code) == BPF_DW) {
 | |
| 			emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
 | |
| 			emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
 | |
| 		} else {
 | |
| 			emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	/* PC += off if dst == src */
 | |
| 	/* PC += off if dst > src */
 | |
| 	/* PC += off if dst >= src */
 | |
| 	/* PC += off if dst < src */
 | |
| 	/* PC += off if dst <= src */
 | |
| 	/* PC += off if dst != src */
 | |
| 	/* PC += off if dst > src (signed) */
 | |
| 	/* PC += off if dst >= src (signed) */
 | |
| 	/* PC += off if dst < src (signed) */
 | |
| 	/* PC += off if dst <= src (signed) */
 | |
| 	/* PC += off if dst & src */
 | |
| 	case BPF_JMP | BPF_JEQ | BPF_X:
 | |
| 	case BPF_JMP | BPF_JGT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JGE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JNE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSGT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSGE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSET | BPF_X:
 | |
| 	case BPF_JMP | BPF_JLE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JLT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSLT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSLE | BPF_X:
 | |
| 		/* Setup source registers */
 | |
| 		rm = sstk ? tmp2[0] : src_hi;
 | |
| 		rn = sstk ? tmp2[1] : src_lo;
 | |
| 		if (sstk) {
 | |
| 			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
 | |
| 			emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
 | |
| 		}
 | |
| 		goto go_jmp;
 | |
| 	/* PC += off if dst == imm */
 | |
| 	/* PC += off if dst > imm */
 | |
| 	/* PC += off if dst >= imm */
 | |
| 	/* PC += off if dst < imm */
 | |
| 	/* PC += off if dst <= imm */
 | |
| 	/* PC += off if dst != imm */
 | |
| 	/* PC += off if dst > imm (signed) */
 | |
| 	/* PC += off if dst >= imm (signed) */
 | |
| 	/* PC += off if dst < imm (signed) */
 | |
| 	/* PC += off if dst <= imm (signed) */
 | |
| 	/* PC += off if dst & imm */
 | |
| 	case BPF_JMP | BPF_JEQ | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JNE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSET | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLE | BPF_K:
 | |
| 		if (off == 0)
 | |
| 			break;
 | |
| 		rm = tmp2[0];
 | |
| 		rn = tmp2[1];
 | |
| 		/* Sign-extend immediate value */
 | |
| 		emit_a32_mov_i64(true, tmp2, imm, false, ctx);
 | |
| go_jmp:
 | |
| 		/* Setup destination register */
 | |
| 		rd = dstk ? tmp[0] : dst_hi;
 | |
| 		rt = dstk ? tmp[1] : dst_lo;
 | |
| 		if (dstk) {
 | |
| 			emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
 | |
| 			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
 | |
| 		}
 | |
| 
 | |
| 		/* Check for the condition */
 | |
| 		emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
 | |
| 
 | |
| 		/* Setup JUMP instruction */
 | |
| 		jmp_offset = bpf2a32_offset(i+off, i, ctx);
 | |
| 		switch (BPF_OP(code)) {
 | |
| 		case BPF_JNE:
 | |
| 		case BPF_JSET:
 | |
| 			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JEQ:
 | |
| 			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JGT:
 | |
| 			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JGE:
 | |
| 			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JSGT:
 | |
| 			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JSGE:
 | |
| 			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JLE:
 | |
| 			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JLT:
 | |
| 			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JSLT:
 | |
| 			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		case BPF_JSLE:
 | |
| 			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* JMP OFF */
 | |
| 	case BPF_JMP | BPF_JA:
 | |
| 	{
 | |
| 		if (off == 0)
 | |
| 			break;
 | |
| 		jmp_offset = bpf2a32_offset(i+off, i, ctx);
 | |
| 		check_imm24(jmp_offset);
 | |
| 		emit(ARM_B(jmp_offset), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* tail call */
 | |
| 	case BPF_JMP | BPF_TAIL_CALL:
 | |
| 		if (emit_bpf_tail_call(ctx))
 | |
| 			return -EFAULT;
 | |
| 		break;
 | |
| 	/* function call */
 | |
| 	case BPF_JMP | BPF_CALL:
 | |
| 	{
 | |
| 		const u8 *r0 = bpf2a32[BPF_REG_0];
 | |
| 		const u8 *r1 = bpf2a32[BPF_REG_1];
 | |
| 		const u8 *r2 = bpf2a32[BPF_REG_2];
 | |
| 		const u8 *r3 = bpf2a32[BPF_REG_3];
 | |
| 		const u8 *r4 = bpf2a32[BPF_REG_4];
 | |
| 		const u8 *r5 = bpf2a32[BPF_REG_5];
 | |
| 		const u32 func = (u32)__bpf_call_base + (u32)imm;
 | |
| 
 | |
| 		emit_a32_mov_r64(true, r0, r1, false, false, ctx);
 | |
| 		emit_a32_mov_r64(true, r1, r2, false, true, ctx);
 | |
| 		emit_push_r64(r5, 0, ctx);
 | |
| 		emit_push_r64(r4, 8, ctx);
 | |
| 		emit_push_r64(r3, 16, ctx);
 | |
| 
 | |
| 		emit_a32_mov_i(tmp[1], func, false, ctx);
 | |
| 		emit_blx_r(tmp[1], ctx);
 | |
| 
 | |
| 		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
 | |
| 		break;
 | |
| 	}
 | |
| 	/* function return */
 | |
| 	case BPF_JMP | BPF_EXIT:
 | |
| 		/* Optimization: when last instruction is EXIT
 | |
| 		 * simply fallthrough to epilogue.
 | |
| 		 */
 | |
| 		if (i == ctx->prog->len - 1)
 | |
| 			break;
 | |
| 		jmp_offset = epilogue_offset(ctx);
 | |
| 		check_imm24(jmp_offset);
 | |
| 		emit(ARM_B(jmp_offset), ctx);
 | |
| 		break;
 | |
| notyet:
 | |
| 		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
 | |
| 		return -EFAULT;
 | |
| 	default:
 | |
| 		pr_err_once("unknown opcode %02x\n", code);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->flags & FLAG_IMM_OVERFLOW)
 | |
| 		/*
 | |
| 		 * this instruction generated an overflow when
 | |
| 		 * trying to access the literal pool, so
 | |
| 		 * delegate this filter to the kernel interpreter.
 | |
| 		 */
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_body(struct jit_ctx *ctx)
 | |
| {
 | |
| 	const struct bpf_prog *prog = ctx->prog;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < prog->len; i++) {
 | |
| 		const struct bpf_insn *insn = &(prog->insnsi[i]);
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = build_insn(insn, ctx);
 | |
| 
 | |
| 		/* It's used with loading the 64 bit immediate value. */
 | |
| 		if (ret > 0) {
 | |
| 			i++;
 | |
| 			if (ctx->target == NULL)
 | |
| 				ctx->offsets[i] = ctx->idx;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ctx->target == NULL)
 | |
| 			ctx->offsets[i] = ctx->idx;
 | |
| 
 | |
| 		/* If unsuccesfull, return with error code */
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int validate_code(struct jit_ctx *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ctx->idx; i++) {
 | |
| 		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bpf_jit_compile(struct bpf_prog *prog)
 | |
| {
 | |
| 	/* Nothing to do here. We support Internal BPF. */
 | |
| }
 | |
| 
 | |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
 | |
| {
 | |
| 	struct bpf_prog *tmp, *orig_prog = prog;
 | |
| 	struct bpf_binary_header *header;
 | |
| 	bool tmp_blinded = false;
 | |
| 	struct jit_ctx ctx;
 | |
| 	unsigned int tmp_idx;
 | |
| 	unsigned int image_size;
 | |
| 	u8 *image_ptr;
 | |
| 
 | |
| 	/* If BPF JIT was not enabled then we must fall back to
 | |
| 	 * the interpreter.
 | |
| 	 */
 | |
| 	if (!prog->jit_requested)
 | |
| 		return orig_prog;
 | |
| 
 | |
| 	/* If constant blinding was enabled and we failed during blinding
 | |
| 	 * then we must fall back to the interpreter. Otherwise, we save
 | |
| 	 * the new JITed code.
 | |
| 	 */
 | |
| 	tmp = bpf_jit_blind_constants(prog);
 | |
| 
 | |
| 	if (IS_ERR(tmp))
 | |
| 		return orig_prog;
 | |
| 	if (tmp != prog) {
 | |
| 		tmp_blinded = true;
 | |
| 		prog = tmp;
 | |
| 	}
 | |
| 
 | |
| 	memset(&ctx, 0, sizeof(ctx));
 | |
| 	ctx.prog = prog;
 | |
| 
 | |
| 	/* Not able to allocate memory for offsets[] , then
 | |
| 	 * we must fall back to the interpreter
 | |
| 	 */
 | |
| 	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
 | |
| 	if (ctx.offsets == NULL) {
 | |
| 		prog = orig_prog;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* 1) fake pass to find in the length of the JITed code,
 | |
| 	 * to compute ctx->offsets and other context variables
 | |
| 	 * needed to compute final JITed code.
 | |
| 	 * Also, calculate random starting pointer/start of JITed code
 | |
| 	 * which is prefixed by random number of fault instructions.
 | |
| 	 *
 | |
| 	 * If the first pass fails then there is no chance of it
 | |
| 	 * being successful in the second pass, so just fall back
 | |
| 	 * to the interpreter.
 | |
| 	 */
 | |
| 	if (build_body(&ctx)) {
 | |
| 		prog = orig_prog;
 | |
| 		goto out_off;
 | |
| 	}
 | |
| 
 | |
| 	tmp_idx = ctx.idx;
 | |
| 	build_prologue(&ctx);
 | |
| 	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
 | |
| 
 | |
| 	ctx.epilogue_offset = ctx.idx;
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ < 7
 | |
| 	tmp_idx = ctx.idx;
 | |
| 	build_epilogue(&ctx);
 | |
| 	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
 | |
| 
 | |
| 	ctx.idx += ctx.imm_count;
 | |
| 	if (ctx.imm_count) {
 | |
| 		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
 | |
| 		if (ctx.imms == NULL) {
 | |
| 			prog = orig_prog;
 | |
| 			goto out_off;
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	/* there's nothing about the epilogue on ARMv7 */
 | |
| 	build_epilogue(&ctx);
 | |
| #endif
 | |
| 	/* Now we can get the actual image size of the JITed arm code.
 | |
| 	 * Currently, we are not considering the THUMB-2 instructions
 | |
| 	 * for jit, although it can decrease the size of the image.
 | |
| 	 *
 | |
| 	 * As each arm instruction is of length 32bit, we are translating
 | |
| 	 * number of JITed intructions into the size required to store these
 | |
| 	 * JITed code.
 | |
| 	 */
 | |
| 	image_size = sizeof(u32) * ctx.idx;
 | |
| 
 | |
| 	/* Now we know the size of the structure to make */
 | |
| 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
 | |
| 				      sizeof(u32), jit_fill_hole);
 | |
| 	/* Not able to allocate memory for the structure then
 | |
| 	 * we must fall back to the interpretation
 | |
| 	 */
 | |
| 	if (header == NULL) {
 | |
| 		prog = orig_prog;
 | |
| 		goto out_imms;
 | |
| 	}
 | |
| 
 | |
| 	/* 2.) Actual pass to generate final JIT code */
 | |
| 	ctx.target = (u32 *) image_ptr;
 | |
| 	ctx.idx = 0;
 | |
| 
 | |
| 	build_prologue(&ctx);
 | |
| 
 | |
| 	/* If building the body of the JITed code fails somehow,
 | |
| 	 * we fall back to the interpretation.
 | |
| 	 */
 | |
| 	if (build_body(&ctx) < 0) {
 | |
| 		image_ptr = NULL;
 | |
| 		bpf_jit_binary_free(header);
 | |
| 		prog = orig_prog;
 | |
| 		goto out_imms;
 | |
| 	}
 | |
| 	build_epilogue(&ctx);
 | |
| 
 | |
| 	/* 3.) Extra pass to validate JITed Code */
 | |
| 	if (validate_code(&ctx)) {
 | |
| 		image_ptr = NULL;
 | |
| 		bpf_jit_binary_free(header);
 | |
| 		prog = orig_prog;
 | |
| 		goto out_imms;
 | |
| 	}
 | |
| 	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
 | |
| 
 | |
| 	if (bpf_jit_enable > 1)
 | |
| 		/* there are 2 passes here */
 | |
| 		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
 | |
| 
 | |
| 	bpf_jit_binary_lock_ro(header);
 | |
| 	prog->bpf_func = (void *)ctx.target;
 | |
| 	prog->jited = 1;
 | |
| 	prog->jited_len = image_size;
 | |
| 
 | |
| out_imms:
 | |
| #if __LINUX_ARM_ARCH__ < 7
 | |
| 	if (ctx.imm_count)
 | |
| 		kfree(ctx.imms);
 | |
| #endif
 | |
| out_off:
 | |
| 	kfree(ctx.offsets);
 | |
| out:
 | |
| 	if (tmp_blinded)
 | |
| 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
 | |
| 					   tmp : orig_prog);
 | |
| 	return prog;
 | |
| }
 | |
| 
 |