394 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * SGI RTC clock/timer routines.
 | |
|  *
 | |
|  *  (C) Copyright 2020 Hewlett Packard Enterprise Development LP
 | |
|  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
 | |
|  *  Copyright (c) Dimitri Sivanich
 | |
|  */
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/uv/uv_mmrs.h>
 | |
| #include <asm/uv/uv_hub.h>
 | |
| #include <asm/uv/bios.h>
 | |
| #include <asm/uv/uv.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/cpu.h>
 | |
| 
 | |
| #define RTC_NAME		"sgi_rtc"
 | |
| 
 | |
| static u64 uv_read_rtc(struct clocksource *cs);
 | |
| static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
 | |
| static int uv_rtc_shutdown(struct clock_event_device *evt);
 | |
| 
 | |
| static struct clocksource clocksource_uv = {
 | |
| 	.name		= RTC_NAME,
 | |
| 	.rating		= 299,
 | |
| 	.read		= uv_read_rtc,
 | |
| 	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| static struct clock_event_device clock_event_device_uv = {
 | |
| 	.name			= RTC_NAME,
 | |
| 	.features		= CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.shift			= 20,
 | |
| 	.rating			= 400,
 | |
| 	.irq			= -1,
 | |
| 	.set_next_event		= uv_rtc_next_event,
 | |
| 	.set_state_shutdown	= uv_rtc_shutdown,
 | |
| 	.event_handler		= NULL,
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
 | |
| 
 | |
| /* There is one of these allocated per node */
 | |
| struct uv_rtc_timer_head {
 | |
| 	spinlock_t	lock;
 | |
| 	/* next cpu waiting for timer, local node relative: */
 | |
| 	int		next_cpu;
 | |
| 	/* number of cpus on this node: */
 | |
| 	int		ncpus;
 | |
| 	struct {
 | |
| 		int	lcpu;		/* systemwide logical cpu number */
 | |
| 		u64	expires;	/* next timer expiration for this cpu */
 | |
| 	} cpu[] __counted_by(ncpus);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Access to uv_rtc_timer_head via blade id.
 | |
|  */
 | |
| static struct uv_rtc_timer_head		**blade_info __read_mostly;
 | |
| 
 | |
| static int				uv_rtc_evt_enable;
 | |
| 
 | |
| /*
 | |
|  * Hardware interface routines
 | |
|  */
 | |
| 
 | |
| /* Send IPIs to another node */
 | |
| static void uv_rtc_send_IPI(int cpu)
 | |
| {
 | |
| 	unsigned long apicid, val;
 | |
| 	int pnode;
 | |
| 
 | |
| 	apicid = cpu_physical_id(cpu);
 | |
| 	pnode = uv_apicid_to_pnode(apicid);
 | |
| 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
 | |
| 	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
 | |
| 	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
 | |
| 
 | |
| 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 | |
| }
 | |
| 
 | |
| /* Check for an RTC interrupt pending */
 | |
| static int uv_intr_pending(int pnode)
 | |
| {
 | |
| 	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
 | |
| 		UVH_EVENT_OCCURRED2_RTC_1_MASK;
 | |
| }
 | |
| 
 | |
| /* Setup interrupt and return non-zero if early expiration occurred. */
 | |
| static int uv_setup_intr(int cpu, u64 expires)
 | |
| {
 | |
| 	u64 val;
 | |
| 	unsigned long apicid = cpu_physical_id(cpu);
 | |
| 	int pnode = uv_cpu_to_pnode(cpu);
 | |
| 
 | |
| 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
 | |
| 		UVH_RTC1_INT_CONFIG_M_MASK);
 | |
| 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
 | |
| 
 | |
| 	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
 | |
| 			      UVH_EVENT_OCCURRED2_RTC_1_MASK);
 | |
| 
 | |
| 	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
 | |
| 		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
 | |
| 
 | |
| 	/* Set configuration */
 | |
| 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
 | |
| 	/* Initialize comparator value */
 | |
| 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
 | |
| 
 | |
| 	if (uv_read_rtc(NULL) <= expires)
 | |
| 		return 0;
 | |
| 
 | |
| 	return !uv_intr_pending(pnode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-cpu timer tracking routines
 | |
|  */
 | |
| 
 | |
| static __init void uv_rtc_deallocate_timers(void)
 | |
| {
 | |
| 	int bid;
 | |
| 
 | |
| 	for_each_possible_blade(bid) {
 | |
| 		kfree(blade_info[bid]);
 | |
| 	}
 | |
| 	kfree(blade_info);
 | |
| }
 | |
| 
 | |
| /* Allocate per-node list of cpu timer expiration times. */
 | |
| static __init int uv_rtc_allocate_timers(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
 | |
| 	if (!blade_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		int nid = cpu_to_node(cpu);
 | |
| 		int bid = uv_cpu_to_blade_id(cpu);
 | |
| 		int bcpu = uv_cpu_blade_processor_id(cpu);
 | |
| 		struct uv_rtc_timer_head *head = blade_info[bid];
 | |
| 
 | |
| 		if (!head) {
 | |
| 			head = kmalloc_node(struct_size(head, cpu,
 | |
| 				uv_blade_nr_possible_cpus(bid)),
 | |
| 				GFP_KERNEL, nid);
 | |
| 			if (!head) {
 | |
| 				uv_rtc_deallocate_timers();
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			spin_lock_init(&head->lock);
 | |
| 			head->ncpus = uv_blade_nr_possible_cpus(bid);
 | |
| 			head->next_cpu = -1;
 | |
| 			blade_info[bid] = head;
 | |
| 		}
 | |
| 
 | |
| 		head->cpu[bcpu].lcpu = cpu;
 | |
| 		head->cpu[bcpu].expires = ULLONG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Find and set the next expiring timer.  */
 | |
| static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
 | |
| {
 | |
| 	u64 lowest = ULLONG_MAX;
 | |
| 	int c, bcpu = -1;
 | |
| 
 | |
| 	head->next_cpu = -1;
 | |
| 	for (c = 0; c < head->ncpus; c++) {
 | |
| 		u64 exp = head->cpu[c].expires;
 | |
| 		if (exp < lowest) {
 | |
| 			bcpu = c;
 | |
| 			lowest = exp;
 | |
| 		}
 | |
| 	}
 | |
| 	if (bcpu >= 0) {
 | |
| 		head->next_cpu = bcpu;
 | |
| 		c = head->cpu[bcpu].lcpu;
 | |
| 		if (uv_setup_intr(c, lowest))
 | |
| 			/* If we didn't set it up in time, trigger */
 | |
| 			uv_rtc_send_IPI(c);
 | |
| 	} else {
 | |
| 		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
 | |
| 			UVH_RTC1_INT_CONFIG_M_MASK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set expiration time for current cpu.
 | |
|  *
 | |
|  * Returns 1 if we missed the expiration time.
 | |
|  */
 | |
| static int uv_rtc_set_timer(int cpu, u64 expires)
 | |
| {
 | |
| 	int pnode = uv_cpu_to_pnode(cpu);
 | |
| 	int bid = uv_cpu_to_blade_id(cpu);
 | |
| 	struct uv_rtc_timer_head *head = blade_info[bid];
 | |
| 	int bcpu = uv_cpu_blade_processor_id(cpu);
 | |
| 	u64 *t = &head->cpu[bcpu].expires;
 | |
| 	unsigned long flags;
 | |
| 	int next_cpu;
 | |
| 
 | |
| 	spin_lock_irqsave(&head->lock, flags);
 | |
| 
 | |
| 	next_cpu = head->next_cpu;
 | |
| 	*t = expires;
 | |
| 
 | |
| 	/* Will this one be next to go off? */
 | |
| 	if (next_cpu < 0 || bcpu == next_cpu ||
 | |
| 			expires < head->cpu[next_cpu].expires) {
 | |
| 		head->next_cpu = bcpu;
 | |
| 		if (uv_setup_intr(cpu, expires)) {
 | |
| 			*t = ULLONG_MAX;
 | |
| 			uv_rtc_find_next_timer(head, pnode);
 | |
| 			spin_unlock_irqrestore(&head->lock, flags);
 | |
| 			return -ETIME;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&head->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unset expiration time for current cpu.
 | |
|  *
 | |
|  * Returns 1 if this timer was pending.
 | |
|  */
 | |
| static int uv_rtc_unset_timer(int cpu, int force)
 | |
| {
 | |
| 	int pnode = uv_cpu_to_pnode(cpu);
 | |
| 	int bid = uv_cpu_to_blade_id(cpu);
 | |
| 	struct uv_rtc_timer_head *head = blade_info[bid];
 | |
| 	int bcpu = uv_cpu_blade_processor_id(cpu);
 | |
| 	u64 *t = &head->cpu[bcpu].expires;
 | |
| 	unsigned long flags;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&head->lock, flags);
 | |
| 
 | |
| 	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
 | |
| 		rc = 1;
 | |
| 
 | |
| 	if (rc) {
 | |
| 		*t = ULLONG_MAX;
 | |
| 		/* Was the hardware setup for this timer? */
 | |
| 		if (head->next_cpu == bcpu)
 | |
| 			uv_rtc_find_next_timer(head, pnode);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&head->lock, flags);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Kernel interface routines.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Read the RTC.
 | |
|  *
 | |
|  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
 | |
|  * cachelines of its own page.  This allows faster simultaneous reads
 | |
|  * from a given socket.
 | |
|  */
 | |
| static u64 uv_read_rtc(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (uv_get_min_hub_revision_id() == 1)
 | |
| 		offset = 0;
 | |
| 	else
 | |
| 		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
 | |
| 
 | |
| 	return (u64)uv_read_local_mmr(UVH_RTC | offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Program the next event, relative to now
 | |
|  */
 | |
| static int uv_rtc_next_event(unsigned long delta,
 | |
| 			     struct clock_event_device *ced)
 | |
| {
 | |
| 	int ced_cpu = cpumask_first(ced->cpumask);
 | |
| 
 | |
| 	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shutdown the RTC timer
 | |
|  */
 | |
| static int uv_rtc_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	int ced_cpu = cpumask_first(evt->cpumask);
 | |
| 
 | |
| 	uv_rtc_unset_timer(ced_cpu, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void uv_rtc_interrupt(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
 | |
| 
 | |
| 	if (!ced || !ced->event_handler)
 | |
| 		return;
 | |
| 
 | |
| 	if (uv_rtc_unset_timer(cpu, 0) != 1)
 | |
| 		return;
 | |
| 
 | |
| 	ced->event_handler(ced);
 | |
| }
 | |
| 
 | |
| static int __init uv_enable_evt_rtc(char *str)
 | |
| {
 | |
| 	uv_rtc_evt_enable = 1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("uvrtcevt", uv_enable_evt_rtc);
 | |
| 
 | |
| static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
 | |
| {
 | |
| 	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
 | |
| 
 | |
| 	*ced = clock_event_device_uv;
 | |
| 	ced->cpumask = cpumask_of(smp_processor_id());
 | |
| 	clockevents_register_device(ced);
 | |
| }
 | |
| 
 | |
| static __init int uv_rtc_setup_clock(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!is_uv_system())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
 | |
| 	if (rc)
 | |
| 		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
 | |
| 	else
 | |
| 		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
 | |
| 			sn_rtc_cycles_per_second/(unsigned long)1E6);
 | |
| 
 | |
| 	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Setup and register clockevents */
 | |
| 	rc = uv_rtc_allocate_timers();
 | |
| 	if (rc)
 | |
| 		goto error;
 | |
| 
 | |
| 	x86_platform_ipi_callback = uv_rtc_interrupt;
 | |
| 
 | |
| 	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
 | |
| 				NSEC_PER_SEC, clock_event_device_uv.shift);
 | |
| 
 | |
| 	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
 | |
| 						sn_rtc_cycles_per_second;
 | |
| 	clock_event_device_uv.min_delta_ticks = 1;
 | |
| 
 | |
| 	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
 | |
| 				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
 | |
| 	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
 | |
| 
 | |
| 	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
 | |
| 	if (rc) {
 | |
| 		x86_platform_ipi_callback = NULL;
 | |
| 		uv_rtc_deallocate_timers();
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "UV RTC clockevents registered\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	clocksource_unregister(&clocksource_uv);
 | |
| 	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| arch_initcall(uv_rtc_setup_clock);
 |